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Abstract

Disaster and evacuation planning crucially depend on good routing

strategies. This article compares two di�erent routing strategies in a

multi-agent simulation of a large real world evacuation scenario. The

�rst approach approximates a Nash equilibrium where every evacuee

adopts an individually optimal routing strategy regardless of what

this solution imposes on others. The second approach approximately

minimizes the total travel time in the system, which requires to enforce

cooperative behavior of the evacuees. Both approaches are analyzed in

terms of the global evacuation dynamics and on a detailed geographic

level.
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1 Introduction

The evacuation of whole cities or even regions is a problem of substan-

tial practical relevance, which is demonstrated by recent events such as

the evacuation of Houston because of Hurricane Rita or the evacuation of

coastal cities in the case of tsunamis.

This paper compares two routing strategies by simulating them in a real-

world evacuation scenario (Birkmann et al., 2008; Lämmel et al., 2008b).

Both strategies are generated by a learning-based multi-agent simulation:

1. A strategy where every agent learns an evacuation route of minimal

travel time, regardless of the consequences for others. This sel�sh learning

behavior leads towards a Nash equilibrium, where nobody can gain by

unilateral deviation. 2. The system optimal approach, where the average

travel time per agent is minimized. Here, learning agents are no longer

optimizing their individual travel time only but in some way also take care

about the others.

The presented "agent-based learning" approach to the realization of di�er-

ent routing strategies has its origin in tra�c modeling, where it is known

as the "dynamic tra�c assignment (DTA) problem", routing strategy 1

is called "user optimal", and routing strategy 2 is denoted as "system

optimal" (Peeta & Ziliaskopoulos, 2001). The added value of the agent-

based approach is its natural representation of individual travelers by soft-

ware agents, whereas classical DTA approaches are based on mathematical

formulations that replace agents by continuous tra�c streams. However,

the improved modeling capabilities of multi-agent simulations come at the

price of greater di�culties in their mathematical treatment. The agent-

based routing approaches presented in this article are therefore only of an

approximate nature, and they are enforced exclusively by modifying the

information provided to replanning agents.

The remainder of the paper is organized as follows. Section 2 gives an

overview of the dynamic simulation framework. In Section 3, the investi-

gated routing strategies are described in detail. Section 4 presents simula-

tion results based on which both strategies are evaluated. Finally, Section
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5 concludes the article and provides an outlook on more advanced routing

approaches that are currently under investigation.

2 Simulation framework

We implemented our experiments in the MATSim simulation framework

(MATSIM www page, accessed 2008). Since the details of this system are

described elsewhere, e.g., (Lämmel et al., 2008b; Lämmel & Nagel, 2009)),

only a brief description is given here.

MATSim always starts with a synthetic population, which is a randomly

generated population of individuals that is based as much as possible on

existing data such as census data. Every synthetic individual possesses one

or several plans. These plans are possible realizations of the �intentions�

of the synthetic individuals. In an evacuation context, a plan corresponds

to a route from an individual's current location to a safe place. Plans are

generated by an iterative learning mechanism. In every iteration, one plan

of every agent is selected for execution in a simulation of the physical world.

The learning logic tests di�erent plans, eventually discards poor plans, and

sometimes generates new plans to be tested (Ferber, 1999).

The model of the real world is a pedestrian tra�c �ow simulation, where

each street (link) is represented by a �rst-in/�rst-out queue with three

parameters (Gawron, 1998): minimum link traversal time, maximum link

out�ow capacity (in evacuees per hour), and link space capacity (in evac-

uees). The link space capacity limits the number of agents on the link

and generates spillback if the link is �lled up. In the context of a tsunami

evacuation, an additional di�culty results from the fact that a �ooded link

becomes unavailable. Reference (Lämmel et al., 2008a) describes in detail

how this issue is resolved.

The route learning process relies heavily on a time-dependent Dijkstra al-

gorithm that calculates best routes through a network where to every link

a time-dependent cost function is attached.

In an evacuation setting, there typically exists no single destination node
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for the routing because every node outside the evacuation area is a possible

destination. To resolve this, the standard approach (e.g., (Lu et al., 2005))

is to extend the network in the following way: All links which lead out

of the evacuation area are connected, using virtual links with in�nite �ow

capacity and zero length, to a special �evacuation node�. Doing so, Dijk-

stra's algorithm will always �nd the shortest route from any node inside

the evacuation area to this evacuation node.

3 Routing solutions

Each agent iteratively optimizes its personal evacuation plan during a sim-

ulation run. After each iteration, every agent calculates the cost of the

most recently executed plan. Based on this cost, the agents revise the

most recently executed plans. Some agents generate new plans using the

time-dependent router. The others selects an existing plan they have pre-

viously used. This plan selection is realized as a Logit model that stabi-

lizes the simulation dynamics by allowing slightly suboptimal plans to be

(re)considered for execution as well.

In the following, we discuss two di�erent cost functions that lead either to

user optimal or the system optimal routing solutions. Note that we modify

the agent's routing behavior only by adjusting the costs based on which

the routing is conducted, but we do not require to change the replanning

logic itself.

3.1 Nash equilibrium approach

In a Nash equilibrium, no agent can gain by unilateral deviation from

its current evacuation plan (Nash, 1951). The cost function provided to

replanning agents in the Nash equilibrium approach only comprises travel

times. Formally, the real-valued time is discretized into K segments (�bins�)

of length T , which are indexed by k = 0...K − 1. The time-dependent link

travel time when entering link a in time step k is denoted by τa(k). Alg. 2

drafts the Nash-equilibrium routing logic.
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Algorithm 1 Nash equilibrium routing

1. initialize τa(k) with the free-�ow travel time for all links a and time

steps k

2. repeat for many iterations:

(a) recalculate routes based on link costs τa(k)

(b) load vehicles on network, obtain new τa(k) for all a and k

3.2 System optimal approach

A system optimal routing solution minimizes the total travel time in the

system. Although a system optimum is a cooperative routing strategy, it

can be obtained by the same self-serving routing logic that is employed to

calculate a Nash equilibrium. The only di�erence is that for a system opti-

mum, the travel time based on which agents recalculate their routes needs

to be replaced by the marginal travel time (Peeta & Mahmassani, 1995).

The marginal travel time of a route is the amount by which the total sys-

tem travel time changes if one additional agent chooses that route. It is the

sum of the cost experienced by the added vehicle and the imposed on other

vehicles. The latter is subsequently denoted as the "social cost". Since

the marginal route travel time is link-additive, we derive an approximation

only for a single link. The subsequent development is based on continuous

quantities. A discretized version is given at the very end.

Assume that the �causative� agent (unit) for which we would like to calcu-

late the social cost it generates is of mass (size) dn and enters the considered

isolated link at time t0. If there is no congestion on the link, the agent can

leave the link unhindered after the free-�ow travel time τfree and does not

incur any cost on other agents further upstream. If there is congestion,

however, there also is a positive social cost, which can be calculated in the

following way.

The e�ect of the causative agent persists only as long as the queue it went

through persists � the only trace it can possibly leave in the system is a
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changed state of this queue. Assume that the queue encountered when

entering the link at t0 dissolves at t
e(t0). Now, consider another �a�ected�

agent that enters the link at t1 > t0, and assume that this agent leaves the

link before te(t0). Denote by n(t1) the occupancy (in agent units) of the

link at the a�ected agent's entry time t1 and by Qout(t) the accumulated

out�ow (in agent units) of the link until time t. The exit time t2 of the

a�ected agent solves

Qout(t2) −Qout(t1) = n(t1)⇒ t2 = (Qout)−1(n(t1) +Qout(t1)). (1)

Denote by dτ(t1) the additional travel time experienced by the a�ected

agent because of the causative agent. If the latter had not entered the link,

the following would hold:

Qout(t2 − dτ(t1)) −Qout(t1) = n(t1) − dn (2)⇒ t2 = dτ(t1) + (Qout)−1(n(t1) − dn+Qout(t1)).

A combination of (1) and (2) yields

dτ(t1) = (Qout)−1(n(t1) +Qout(t1)) − (Qout)−1(n(t1) −dn+Qout(t1)). (3)

In order to calculate the social cost C(t0) generated by the causative agent,

these terms are integrated over the entire span of entry times during which

the queue at the downstream end of the link is encountered:

C(to) =

∫ te(t0)−τfree

t1=to

dτ(t1)q
in(t1)dt1 (4)

where qin(t1) is the entry �ow rate at t1 such that qin(t1)dt1 is the a�ected

agent mass entering at t1.

In the following, a simpli�cation of (4) is presented. Stationary �ow con-

ditions are assumed in that qin(t) ≡ qout(t) ≡ 	q, which implies Qin(t) ≡
Qout(t) ≡ 	qt. A substitution of this in (3) yields dτ(t1) ≈ dn/	q and, when

substituted in (4),

C(t0) ≈ dn/	q · (Qin(te(t0) − τfree) −Qin(t0)). (5)
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This expression is straightforward to evaluated in a microsimulation con-

text, where dn = 1 corresponds to the mass of a single agent and the

di�erence in accumulated �ows is easily evaluated by counting the agents

leaving the considered link between t0 and te(t0)− tfree. A further simpli�-

cation is obtained by replacing the accumulated �ows in (5) by their linear

approximations, which results for dn = 1 in

C(t0) ≈ te(t0) − τfree − t0. (6)

An application of this result to an approximately system optimal route

assignment requires to calculate Ca(t0) for every link a and entry time t0
in the network, and to add this term to the time-dependent link travel time

that is evaluated in route replanning of every agent. Algorithm 2 outlines

the arguably most straightforward implementation of this approach in a

multi-agent simulation.

Algorithm 2 System optimum approach

1. initialize Ca(k) ≡ 0 and τa(k) ≡ τfreea for all links a and time steps k

2. repeat for many iterations:

(a) recalculate routes based on link costs τa(k) + Ca(k)

(b) load vehicles on network, obtain new τa(k) for all a and k

(c) for all links a, identify congestion durations:

i. ke = K

ii. for k = K− 1...0:

A. if τa(k) = τfreea then ke = k

B. Ca(k) = max{0, (ke − k) · T − τfreea }

4 Experimental results

This section presents the result of a simulation-based comparison of the

two presented routing approaches. The simulation setup is based on a real
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world evacuation scenario for the Indonesian city of Padang. Padang faces

high risk of being inundated by a tsunami wave. The city has approximately

1,000,000 inhabitants, with more than 300,000 people living in the highly

endangered area with an elevation of less then 10 m above see level. An

overview map of the city is shown in �g. 1 (left). The area higher than 10

m above sea level is assumed to be safe and colored green in the map. A

detailed description of the evacuation scenario can be found in (Lämmel

et al., 2008b; Lämmel & Nagel, 2009).

3000
METERS

SAFE AREA

SAFE AREA

Time difference     in mind

d≥10min

10mind≥5min
5mind≥1min

1mind≥−1min

−1mind≥−5min

Figure 1: Left: Overview map of downtown Padang. The safe area with

an elevation of more than 10 m is colored green, all other area is de�ned

as unsafe. Right: Di�erences in evacuation time between Nash equilibrium

approach and system optimal approach. In green parcels, the system opti-

mal approach evacuates faster than the Nash approach, whereas red parcels

indicate the opposite.

Two di�erent runs are conducted: Run 1 implements the Nash equilibrium
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Figure 2: Left: Average evacuation time per agent over the learning iter-

ation number. Upon convergence, the system optimal approach performs

106 seconds better than the Nash equilibrium approach. Right: Compar-

ison of the evacuation curves of run 1 and run 2. Run 2 generates a a

steeper gradient (higher out�ow rate) than run 1 and also an about 3 min

shorter overall evacuation time.

approach described in sec. 3.1. Run 2 implements the system optimal ap-

proach described in sec. 3.2. Both simulations run on a network with 6,289

nodes and 16,978 unidirectional links. The synthetic population consists of

321,281 agents. This is the number of people living less than 10 m above see

level. Both simulations are run for 200 iterations on a 3 GHz CPU running

JAVA 1.5 on Linux. For run 1 the overall runtime was 9:31 hours and for

run 2 17:00 hours. The system optimal routing is computed roughly half

as fast a Nash solution because of the more complex calculations that have

to be performed to calculate the social costs. However, the current im-

plementation of the system optimal approach is not optimized for runtime

performance and is likely to be improved in future versions.

Fig. 2 (left) compares the learning progress of both approaches. In run

1, the average evacuation time per agent converges to 1718 seconds, and

in run 2 it converges to 1612 seconds. This means that in the system

optimal approach, each agent gains on average 106 seconds. In both cases,

the average evacuation time drops very fast in the �rst iterations, but
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from iteration 10 on it increases again. This e�ect is caused by the fact

that in the �rst iterations not all agents manage to escape the tsunami,

agents that caught in the �oodwave are not considered for the evacuation

time calculation. Since in the early iterations many agents starting in

the coastal area (longer evacuation routes) do not manage to escape, the

average evacuation time is lower than during mid-iterations, where these

�costal agents� have learned better evacuation routes.

Fig. 2 (right) compares the evacuation curves of run 1 and run 2 after

200 iterations of learning. The evacuation curve of run 2 is steeper than

the evacuation curve of run 1, which implies a higher out�ow rate. The

overall evacuation time of run 2 is about 66 min, which is 3 min faster

than in run 1. Not all agents gain by applying the marginal cost approach.

For example, some agents may make detours in order clear some roads for

other agents. Fig. 1 (right) shows that mainly agents in the hinterland of

Padang lose time in the system optimal approach, whereas many agents in

the costal area of the city bene�t by more than 10 min.

5 Conclusion and outlook

This article demonstrates that multi-agent simulations can be used to iden-

tify e�cient evacuation strategies. Our results show that mathematically

motivated cooperative routing solutions can be obtained with an accept-

able computational overhead even in a purely simulation-based system.

The presented cooperative routing approach, which is an approximation of

the "system optimal routing" well known in the �eld of dynamic tra�c as-

signment, generates a substantially higher evacuation throughput than an

alternative non-cooperative routing strategy. The presented experiments

with more than 300,000 evacuees show the feasibility of our approach even

for large evacuation scenarios.

Our current work focuses on a less approximate computation logic for the

social costs required in the system optimal approach. This approach is

likely to have some similarities with Reinforcement Learning (Sutton &

Barto, 1998).
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