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Abstract
Most existing synthetic data generation methods produce cross-sectional datasets
that replicate only aggregated population characteristics, limiting their ability to
capture individual-level dynamics over time. This paper introduces a simulation
framework for generating synthetic panel data that consistently tracks the same
individuals across years. The contribution of this work is threefold: (i) it defines
a universal set of time-independent variables representing life trajectories through
parametric models informed by demographic literature (ii) it establishes mapping
rules to translate these universal variables into time-dependent attributes for any
observation year and (iii) it updates model parameters via maximum likelihood
estimation using one or more cross-sectional datasets, assessing their impact on
time-dependent outcomes. Using data from the Swiss Mobility and Transport
Microcensus, we compare data-free and data-integrated implementations of the
framework. Results show that the approach produces consistent individual trajec-
tories and that data integration enhances the alignment of synthetic samples with
observed aggregates. The proposed framework provides a flexible basis for con-
structing realistic longitudinal datasets that evolve with new data sources, enabling
temporally consistent population modeling and supporting long-term behavioral
and policy analyses in the absence of real panel data.
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1 Introduction
Transportation research often relies on cross-sectional data, which capture
individual characteristics (e.g., age, income, vehicle ownership) and behaviors
(e.g., trips taken, modes used) at a single point in time (Borysov and Rich, 2021).
This type of data is easy to collect and widely used in transport and social
sciences due to its accessibility, relatively low cost, and typically large sample
sizes. While cross-sectional data provide a useful snapshot of the population, they
lack a temporal dimension, making it impossible to observe changes, establish
causal relationships, or capture the dynamic evolution of preferences and habits
(Maier et al., 2023). Instead, there is an implicit assumption that variation
across individuals reflects the same dynamics that would be observed over time
(Wooldridge, 2010).

However, understanding transportation behavior dynamics necessitates
a methodology capable of capturing temporal processes (Bhat and Koppel-
man, 1999) as travel demand is not static, i.e., it evolves in response to both
predictable events and unforeseen disruptions (Vagni and Cornwell, 2018).
Understanding these dynamics is essential for effective transportation planning
and demand forecasting (Haghighi and Miller, 2025).

In contrast, panel data, also known as longitudinal data, are designed to
capture the temporal dimension of behavior since they track the same units of
observation (e.g., individuals, households) over an extended period. This allows
the ability to study dynamic relationships and to model differences, or hetero-
geneity among the subjects (Frees, 2004). Panel data enable the modeling of
state dependence, where past behavior influences future choices, and unobserved
heterogeneity, which accounts for persistent, time-invariant differences between
individuals. This ability to track change over time provides a much stronger basis
for causal inference (Hsiao, 2014).

Although the panel approach has several theoretical advantages over the
cross-sectional approach, it is often faced with practical challenges related to
data collection. For example, respondents may drop out of the survey altogether
(e.g., attrition), provide lower-quality answers as they become tired of repeated
participation (e.g., panel fatigue), or even change their behavior and responses
because of the repeated questioning itself (e.g., panel conditioning). Also, true
panel surveys are rarely available due to high costs, and when they are, they often
cover only short periods (Deschaintres et al., 2022). The absence of rich panel
data limits the development of transportation models that depend on them, forcing
a focus on single-period rather than multi-period analyses (Kukic, Rezvany and
Bierlaire, 2024).

The pseudo-panel data are created as a compromise between cross-sectional
and panel data. Rather than tracking the same individuals over time, it constructs
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pseudo-panel data from repeated independent cross-sections by forming groups
of individuals that can be followed across periods. These groups, or cohorts, are
defined by stable socio-demographic characteristics such as birth year, gender, or
region. Each cohort is then assumed to behave like a “representative individual”
(Deaton, 1985). The visualization of these three data types is presented in
Figure 1, and their strengths and limitations are summarized in Table 1.
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Figure 1: Comparison of cross-sectional, pseudo-panel, and panel approaches

In recent years, interest in generating synthetic data has grown as a way to
address the limitations of restricted, incomplete, or sensitive real datasets. Typi-
cally, synthetic data are produced from available datasets or from combinations of
aggregated and disaggregated sources, with the aim of replicating their statistical
properties (Müller and Axhausen, 2010). Since cross-sectional data are relatively
easy to obtain, most efforts in synthetic data generation have focused on repli-
cating them, typically producing datasets for a specific region at a single point in
time. In contrast, much less attention has been given to synthetic approaches that
capture temporal dynamics. An important step in this direction is the study by
Borysov and Rich, 2021, who demonstrate how repeated cross-sectional surveys
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Cross-sectional
(Goulias and Kitamura, 1992)

Pseudo-panel
(Deaton, 1985)

Panel
(Goulias and Kitamura, 1992)

Strengths

Low cost
Easy to collect

Accessible
Large samples

Affordable
Avoids attrition

Averaging reduces noise

Tracks behavior dynamics
Captures hidden differences

Enables causal insights

Limitations

No temporal aspect
Misleading conclusions

Assumption:
Variation = Dynamics

No individual tracking
Aggregation bias

Reduced heterogeneity
Assumption:

Cohorts are stable

Expensive to collect
Attrition

Panel fatigue
Panel conditioning

Table 1: Strengths and limitations of different data types

can be combined with generative models to construct synthetic pseudo-panels.
However, to the best of our knowledge, there is no standardized approach to gen-
erating synthetic panel data.

To bridge this gap, we introduce the concept of universal time-independent
variables that characterize an individual’s life and propose a novel method
for generating panel data based solely on them. Defined in line with the
life-event variables commonly discussed in the demographic literature (Nurul
Habib, 2018; Hush et al., 2021; Simmons, 2023; Wilmoth et al., 2025), these
universal variables enable a data-free process for generating synthetic panel data
at any point in time. By construction, any information embedded in the universal
variables is automatically carried over into the derived synthetic panels, allowing
them to capture typical demographic trends even when real data are unavailable.
However, this model-based approach alone cannot reproduce the heterogeneity
and context-specific dynamics of real populations. To address this limitation,
we develop a mechanism that integrates cross-sectional data into the universal
variables and updates the synthetic panels accordingly. As a result, we provide
a flexible framework that combines model-based assumptions with data-driven
updates, allowing the fusion of diverse information sources (e.g., cross-sectional
surveys, published models, census data). In this way, we allow synthetic panels
to follow general demographic patterns while also being tailored to specific
needs (e.g., testing scenarios, assessing the potential impacts of new policies,
integrating constraints).

Our contributions are as follows:

• We introduce a framework based on a universal set of variables with pa-
rameterized distributions derived from established literature, ensuring that
life events occur in the correct order and adhere to basic demographic rules.
In addition, we define the corresponding time-dependent variables, which
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enable the construction of synthetic panel data over time, and specify rules
for deriving them from the universal variables.

• We design a mechanism to integrate information from potentially multiple
cross-sectional datasets (e.g., Swiss Mobility and Transport Microcensus
(MTMC) (Swiss Federal Office of Statistics, 2012; 2018; 2023)) into the
model using specifically tailored maximum likelihood estimation (MLE).

• We demonstrate the advantage of using estimated parameters to generate
the universal variables and examine their impact on the derived synthetic
panels, compared to generation with parameters assumed in the literature.

The remainder of this chapter is organized as follows. In the following section,
we review the relevant literature. Section 3 introduces the proposed methodology,
including the universal and time-dependent variables, estimation, and generation
procedures. In Section 4, we first present the outcomes of the generation pro-
cedure using both fixed and estimated parameters at a given point in time. We
then assess the adequacy of the assumed distributions by comparing the generated
samples with real observations from the same period. Finally, Section 5 concludes
with a discussion of the findings and potential directions for future research.

2 Literature review
To capture how individual and household mobility evolves over time, several panel
data collections have been established. In Switzerland, the Swiss Mobility Panel
(SMP, 2020) surveys about 9,500 residents every two years, while the MOBIS
GPS Panel combined daily GPS tracking with online surveys and continued during
the COVID-19 pandemic (Molloy et al., 2023). In Germany, the German Mobility
Panel has surveyed around 1,500 households annually since 1994 (Chlond et al.,
2024), and in the Netherlands the Mobility Panel has collected travel diaries since
2013 from about 2,000 households (MPN, 2024). Denmark provides a unique
case where registry data cover the entire population with daily records on health,
education, employment, and residence (Lynge et al., 2011).

In transportation literature, such data have proven essential for understanding
how life events shape travel behavior. Beige and Axhausen, 2017, for instance,
show with Swiss panel data that choices of residence, employment, and commut-
ing modes evolve jointly over time. Beige, 2008 applies event-history and dura-
tion models to retrospective panels to analyze long- and mid-term mobility deci-
sions. Similarly, Ahmed and Moeckel, 2023 find that while travel behavior is gen-
erally stable, life events such as job changes or relocations trigger gradual rather
than abrupt shifts, highlighting the value of panel data for distinguishing stable
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from changing attributes. These studies emphasize that travel demand evolves
on a yearly rather than daily basis, with habitual choices and demographic shifts
playing a central role (Gärling and Axhausen, 2003). Panel data thus provide a
valuable means of reconstructing life-course sequences to identify the events that
most strongly shape travel behavior.

Beyond transportation, panel data have also been applied in other domains.
Savcisens et al., 2024 use them in a machine learning framework to predict life
outcomes such as early mortality and personality traits from sequences of life
events, showing the importance of temporal patterns for accurate prediction. In
demography, Oshanreh et al., 2024 develop a dynamic microsimulator based on
panel surveys and Bayesian networks to model life-course transitions such as em-
ployment, household formation, and mortality.

For our purposes, these approaches are important not because of their specific
models, but because they highlight that life trajectories in panel data are best rep-
resented as sequences of events with durations. This perspective provides a simple
and coherent way to structure universal variables in a panel context. While prior
studies use such representations to estimate transition risks or predict outcomes,
we employ them as a generative structure for creating synthetic panel datasets in
situations where real panel data are unavailable.

These studies demonstrate the value of panel data for capturing life-course
dynamics, but they also underline the practical difficulties of collecting such in-
formation. In addition, restricted access limits both availability and reproducibil-
ity. Taken together, these challenges provide a strong motivation for developing
synthetic panel data approaches.

As shown in Table 2, in the field of synthetic population generation, nu-
merous techniques have mostly been focused on cross-sectional data. Follow-
ing (Yaméogo et al., 2021), these techniques can be broadly classified into three
categories: (i) statistical reconstruction (Beckman et al., 1996; Ye et al., 2009),
(ii) simulation-based methods (Farooq et al., 2013; Casati et al., 2015; Kukic,
Li and Bierlaire, 2024), and (iii) machine learning approaches (Xu and Veera-
machaneni, 2018; Borysov et al., 2019; Aemmer and MacKenzie, 2022; Lederrey
et al., 2022; Qian et al., 2024). Although these methods employ different strate-
gies for data generation, they all follow a common procedure in which they rely
on real data, either aggregated or disaggregated, as input and aim to replicate its
statistical properties. The availability of real cross-sectional samples may partly
explain why synthetic data generators have paid less attention to the creation of
pseudo-panel or panel data.

An alternative approach is proposed by Borysov and Rich, 2021, who con-
struct synthetic pseudo-panels by fixing a set of individuals with given socio-
demographics and assigning their travel preferences for each survey year using re-
peated cross-sectional surveys with a conditional variational autoencoder (CVAE).
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Cross-sectional Pseudo-panel Panel

Statistical
reconstruction

Beckman et al., 1996
Ye et al., 2009 ✗ ✗

Simulation
methods

Farooq et al., 2013
Casati et al., 2015

Kukic, Li and Bierlaire, 2024
✗ This paper

Machine
learning

Xu and Veeramachaneni, 2018
Borysov et al., 2019

Aemmer and MacKenzie, 2022
Lederrey et al., 2022

Qian et al., 2024

Borysov and Rich, 2021 ✗

Table 2: Comparison of synthetic data generation methods across different data
types

These are called pseudo-panels because socio-demographics are fixed while pref-
erences evolve across survey years, with cross-sectional data directly populating
the panel year by year. Consequently, without a survey sample, no data can be
produced for that year. By contrast, in our framework, the use of cross-sectional
data serves a different purpose. Data integration is optional, since the model can
operate in a data-free mode. When available, one or more data sources can be
integrated to calibrate the parameters of a generative model of universal variables.
The goal of this calibration is to shape the distributions in the synthetic panel so
that they resemble the patterns observed in the chosen data sources. Importantly,
even if cross-sectional data come from a single year, the calibrated model still
generates full synthetic life trajectories, allowing panel datasets to be constructed
for any year.

As shown in Table 2, to the best of our knowledge, no existing method can gen-
erate synthetic panel data without access to real panel data. Our aim is therefore to
develop a framework that combines the strengths of model-based and data-driven
mechanisms for panel data generation. While Borysov and Rich, 2021 integrate
repeated cross-sections by directly filling in pseudo-panels year by year, no pub-
lished work has introduced a method for incorporating new cross-sectional data
into a generative framework that produces full synthetic life trajectories. Our
approach allows such integration, enabling synthetic panels to be continuously
updated and enriched as new data sources become available. This gap motivates
the methodological framework presented in the following section.
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3 Methodology
In this section, we formally introduce the components of the framework shown in
Figure 2.

Assumed models

Generate Universal Variables
e.g., (e1) Year of birth, (d1) Lifespan

Synthetic Data at Year t1
ID Alive Age
1 1 25
2 1 18
3 0 –

Synthetic Data at Year t2
ID Alive Age
1 1 30
2 1 23
3 0 –

Synthetic Data at Year t3
ID Alive Age
1 0 –
2 1 30
3 0 –

Fixed parameters Estimated parameters

Figure 2: Overview of the framework

The central methodological idea of this work is to characterize the synthetic
population using universal time-independent descriptors rather than varaibles that
evolve over time. These time-independent variables define individual life trajec-
tories from birth to death. Formally, for each individual i, they are represented
by a set of life events, each defined by its starting year e and the corresponding
duration d. In contrast, time-dependent variables such as age, income, or driving
license ownership change with time. Instead of updating these variables dynami-
cally, our approach generates a fixed set of time-independent descriptors, collec-
tively referred to as the universal dataset, only once at the beginning and then uses
them to reconstruct time-dependent variables at any point in time. These descrip-
tors should enforce consistency during the reconstruction phase, and any changes
made to them will automatically propagate to all derived datasets.

The selection of universal variables focuses on capturing socio-demographic
attributes that usually appear in synthetic populations (e.g., age, driving license,
education, employment) (Hradec et al., 2022). Thus, for these attributes, we de-
fine their corresponding universal counterparts, allowing us to reconstruct their
value at any year of observation. The choice of variables that is considered in
our framework is motivated by their relevance in the context of activity-based
models (Ahmed and Moeckel, 2023) and aligns with our previous efforts in this
domain (Kukic, Li and Bierlaire, 2024; Kukic and Bierlaire, 2025).

As an illustration of the relationship between universal and time-dependent
variables, consider the process of generating the age variable, shown in Figure 2.
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Age clearly varies with time and is therefore time-dependent. However, in the
context of our universal dataset, we can replace it with two time-independent
variables: the individual’s year of birth e1 and her lifespan d1, instead of treat-
ing it directly. These two descriptors do not change over time, yet they allow us
to deduce both whether the individual is alive at a given point in time and what
her exact age is. For all other time-dependent variables, we can establish a similar
event-duration model.

Generally speaking, the universal variables are assumed to be unobserved,
meaning that we do not have access to real panel data describing their joint distri-
bution. Therefore, these variables must be generated either from existing models
with parameters reported in the literature or by extracting information from cross-
sectional datasets. Building on this idea, in this work we use parametrized models
as the foundation and propose a method to integrate real data through parameter
estimation. The complete procedure consists of:

1. Design of universal variables: Constructing a fully data-free model by
extracting and adapting relevant parametric models from the demographic
literature to describe universal variables with available models, and assign-
ing noninformative models to those without.

2. Specification of time-dependent variables: Defining the relationship be-
tween universal variables and the corresponding time-dependent variables.

3. Cross-sectional data integration: Integrating information from multiple
cross-sectional datasets into initial distributions of universal variables via
maximum likelihood estimation (MLE).

In what follows, we formally introduce the building blocks of our framework.

3.1 Design of universal variables
In our framework, we adopt one year as the unit of time, following evidence that
key life events shaping demographic and mobility patterns typically evolve at this
temporal scale (Ahmed and Moeckel, 2023). We further define a universal time
horizon spanning from ymin to ymax, representing the predefined lower and upper
bounds of individuals’ birth years.

Within this temporal setting, an individual’s life course is represented as a se-
quence of universal time-independent variables, each defined by an event and its
duration, capturing key milestones from birth to death. The term time-independent
reflects the idea that all individuals conceptually exist throughout the entire uni-
versal time horizon, and all information about their lives is encoded within it.
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However, whether an individual is alive, deceased, or not yet born becomes mean-
ingful only relative to a specific observation year t. To illustrate, consider a uni-
versal dataset {(1920, 60), (1950, 60), (2010, 70)} representing three individuals
characterized by their universal variables: year of birth and lifespan, as shown in
Figure 3. In this example, if we observe the population in 1950, individuals 1
and 2 are alive, while individual 3 has not yet been born. By contrast, in 2010,
individuals 1 and 2 are no longer alive, whereas individual 3 still is.

In addition to the temporal dimension, universal variables can also be associ-
ated with a spatial component. In the context of synthetic individuals, this spatial
dimension typically corresponds to a specific country divided into administrative
units. In this paper, we focus on Switzerland, which is partitioned into 26 cantons.
However, the level of granularity (for both space and time) can be adapted to suit
the specific context.

Time

1920 1980 2040 2080

Observe
t = 1950
0 dead
2 alive
1 not born

Observe
t = 2010
2 dead
1 alive
0 not born

Individual 1
(1920, 60)

Individual 2
(1950, 60)

Individual 3
(2010, 70)

Figure 3: Modeling context
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Universal variables Name

u1 = (e1, d1)
Year of birth

Lifespan

u2 = (e2, d2)
Licence acquisition year

Validity

u3 = {(e3, d3), (e4, d4)}
Educational phase

Duration of a phase

u4 = {(em, dm, incm)}m
m ∈ {5, · · · ,M+ 4}

Employment phase
Duration of a phase

Initial income

u5 = (eM+5, dM+5, c
h
0 )

eM+5 = e1
Duration of residence

Birthplace

u6 = {(en, dn, c
h
n)}n

n ∈ {M+ 6, · · · ,M+N+ 5}

Moving year
Duration of a phase

Location

u7 = {(eq, dq, c
w
q )}q

q ∈ {M+N+ 6, · · · ,M+N+ J+ 5}

Starting year of work
Duration of a phase

Location

Table 3: Set of universal variables

Formally speaking, let the set of universal variables u = {uj}
7
j=1 be given by

tuples summarized in Table 3. For consistency, within each tuple, the variable
e denotes the starting year of a life-course event, d represents its duration, and
additional elements may also appear depending on the variable. Unlike u1, u2, and
u5 which consist of a single tuple, the other variables represent sets of sequential
periods corresponding to distinct phases of life. These periods are guaranteed to
be non-overlapping by construction, as they are generated sequentially according
to predefined rules that enforce continuity. For example, the number of education
phases in u3 corresponds to different education levels (secondary and tertiary),
the number of employment phases in u4 to the total number of jobs held over a
lifetime, and the number of home and work phases, u6 and u7, to the number of
relocations or workplace changes.

An example of an individual’s life sequence is shown in Figure 4. We illustrate
the case of an individual born in 1995 who lived for 30 years and obtained their
driving licence in 2015. After completing secondary and tertiary education in
2010 and 2014, respectively, they became employed in 2018. After spending 24
years in their birth canton, they relocated to another canton for work.

We define a set of parametric models for each universal variable to represent
individual life-course trajectories. These models serve to illustrate the proposed
framework through concrete and interpretable examples rather than to reproduce
highly detailed, context-specific formulations. Drawing on simple distributions
from demographic research, they capture the essential regularities of population
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(e1,d1) (e2,d2) (e3,d3) (e4,d4) (e5,d5,inc5) (e6,d6, ch0 ) (e7,d7,ch1 ) (e8,d8,cw1 )

(1995, 30) (2015, 10) (2010, 4) (2014, 4) (2018, 6, 100) (1995, 24, H0) (2018, 6, H1) (2018, 6, W1)

u1 u2 u3 u4 u5 u6 u7

Figure 4: One row of the universal dataset

dynamics while keeping the approach general, transparent, and easily adaptable
across regions and time periods through parameter estimation from available data.

In the following subsections, we describe how we model each universal vari-
able introduced in Table 3. For each variable, a probabilistic model is introduced,
followed by a specification of its parameter values and a related discussion.

3.1.1 Year of birth and lifespan

Probabilistic model. The year of birth e1 is treated as a discrete random variable
drawn from a uniform distribution over the possible birth years:

e1 ∼ Uniform{ymin, ymin + 1, . . . , ymax},

with the probability mass function

P(e1 = l) =
1

ymax − ymin + 1
, ymin ≤ l ≤ ymax, (1)

where ymin and ymax denote the minimum and maximum possible birth years.
Standard demographic survival models assume a continuous two-parameter

Weibull distribution for lifespan d1:

fp(d1) =


k

λ

(
d1

λ

)k−1

exp

[
−

(
d1

λ

)k
]
, d1 ≥ 0,

0, d1 < 0.

(2)

The shape parameter k > 0 controls how mortality risk changes with age, and the
scale parameter λ > 0 determines the characteristic lifespan. Given that we model
the year of birth as a discrete random variable and adopt a yearly time granularity,
we adapt the existing continuous lifespan model from the literature into a discrete
version d̂1. To this end, we define the lifespan probability mass function as:

P(d̂1 = l) = Fd1
(l+ 0.5) − Fd1

(l− 0.5),

where Fd1
is the CDF of fp(d1) introduced in (2). Consequently, we let Fd̂i

denote
the CDF of d̂1.
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Parameters. The parameters with their default values are based on Weon, 2004
and given in Table 4.

Parameter Meaning Default value

ymin Lower bound of possible birth years 1920

ymax Upper bound of possible birth years 2050

k Weibull shape parameter 3

λ Weibull scale parameter 85 years

Table 4: Parameter definitions and default values for year of birth and lifespan.

Discussion. The year of birth e1 and lifespan d1 define the temporal span of an
individual’s life and constitute the foundation for all subsequent universal vari-
ables. The uniform specification of e1 represents a non-informative assumption,
assigning equal probabilities to all potential birth years within the range (Ciganda
and Todd, 2024; Wilmoth et al., 2025). We adopt this as a starting point due to
the absence of information about the global distribution of birth years. In practice,
however, real populations exhibit non-uniform birth year distributions shaped by
fertility, mortality, survivorship, historical events, and the sampling frame. Con-
sequently, a uniform prior may differ from empirical data in terms of realism. The
Weibull specification for d1 is in line with (Mahevahaja and Josoa Michel, 2023)
and captures realistic survival behavior observed in human populations, ensur-
ing internally consistent demographic structure while keeping the model simple
(Weon, 2004). Larger values of λ imply longer expected lifetimes, while k > 1

aligns with biological aging, where mortality increases with age. Finally, official
population projections (e.g., (Eurostat, 2025)) could provide a valuable founda-
tion for developing more sophisticated models, making this a promising direction
for future research.

3.1.2 Licence acquisition year and validity

Probabilistic model. The year of licence acquisition, denoted by e2, can be
expressed as

e2 = e1 + adl,

where the additional universal variable adl represents the age at which an individ-
ual obtains their driving licence. The support of adl is given by

adl ∈ [Amin,∞) ∪ {∞}
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where Amin is the legal minimum driving age and adl = ∞ corresponds to individ-
uals who never obtain a driving licence. As a result, we can adopt the following
mixed distribution:

adl ∼


∞, d1 < Amin,

∞, d1 ≥ Amin with probability π,

logN (µ, σ2) truncated to [Amin, d1], d1 ≥ Amin with probability 1− π.

The first case corresponds to individuals who die before reaching the legal mini-
mum age Amin, the second to those who live longer but never obtain a licence, and
the third to individuals who do. For the third case, the corresponding truncated
log-normal component has the probability density function:

f∆(adl;d1) =


1

adlσ
√
2π

exp

−
(lnadl − µ)2

2σ2


Φ

(
ln d1−µ

σ

)
−Φ

(
ln Amin−µ

σ

) , Amin ≤ adl ≤ d1

0, otherwise ,

(3)

where Φ(·) is the standard normal cumulative distribution function and (3) is
rescaled to ensure that it integrates to 1. Analogous to lifespan, we define the
discrete version of âdl via

P(âdl = ∞ | d̂1) =

{
1, d̂1 ≤ Amin

π, d̂1 ≥ Amin,
(4)

P(âdl = l | d̂1) =

{
0, d̂1 ≤ Amin,

(1− π)
[
F∆(l+ 0.5; d̂1) − F∆(l− 0.5; d̂1)

]
, d̂1 ≥ Amin,

(5)
where l ∈ {Amin, · · · , d̂1} and F∆(adl;d1) is the CDF of the truncated log normal
introduced in (3).

Since licences are assumed to be irrevocable, the duration of holding is defined
as d2 = d̂1 − âdl, while it is set to zero for non-holders.

Parameters. All parameters with their default values are based on Federal Sta-
tistical Office (FSO), 2017 and given in Table 5.
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Parameter Meaning Default value

µ Log-location parameter ln(20.5)

σ Log-scale parameter 0.15

Amin Minimum legal age 18 years

π Probability of never obtaining a licence 0.15

Table 5: Parameter definitions and default values for age of driving licence acqui-
sition based on Federal Statistical Office (FSO), 2017.

Discussion. Inspired by empirical distributions shown in Nurul Habib, 2018, we
introduce adl as an additional universal variable that accounts for both individuals
who acquire a licence during their lifetime and those who never do. This vari-
able is defined conditional on lifespan d1, since a person cannot obtain a driving
licence before the legal minimum age or after death. The model differentiates
between two population groups: a point mass at adl = ∞, representing individ-
uals who never obtain a driving licence, and a truncated log-normal distribution
describing the age of licence acquisition among holders. The parameter π denotes
the probability of never obtaining a licence.

3.1.3 Education phases

Probabilistic model. We represent secondary and tertiary education as event-
duration pairs, (e3, d3) and (e4, d4), respectively, and assume that individuals
pursue each level with a certain probability. To fully model the level of educa-
tion individuals achieve during their life, we introduce the following variables:

ZL
i ∈ {0, 1} – education level attendance indicator for individual i,

aS
end = aS

start + d3 – age at the end of secondary education,

gT – non-negative gap between secondary and tertiary education,

where L ∈ {S, T }, L = S refers to secondary, L = T to tertiary education, and aS
start

is the starting age of secondary education.

Indicators ZL
i are defined via following distributions:

ZS
i ∼ Bernoulli(pS), ZT

i ∼

{
0 , if ZS

i = 0,

Bernoulli(pT) , if ZS
i = 1,

,
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where pS is the probability of attending secondary education, and pT is the prob-
ability of attending tertiary education conditional on completing secondary edu-
cation. If ZS

i = 0, we have e3 = d3 = e4 = d4 = 0; if ZT
i = 0, we have

e4 = d4 = 0. The models of all other variables are presented in what follows.

Duration of secondary education:

d3 ∼ N
(
µS
d, σ

S
d

)
truncated to [dS

min, d
S
max], (6)

where µS
d and σS

d represent the mean and standard deviation of the secondary edu-
cation duration, while [dS

min, d
S
max] specifies the plausible range of program lengths

across different types of secondary schooling. The corresponding discretized ver-
sion d̂3 is given by:

P(d̂3 = l) = Fd3
(l+ 0.5) − Fd3

(l− 0.5),

where Fd3
(d3) is the CDF of the truncated normal distribution in (6).

Gap between secondary and tertiary education:

gT ∼ Exponential
(
µT
g

)
, (7)

where µT
g is the expected length of the gap before entering tertiary education. The

corresponding discrete version ĝT is given by:

P(ĝT = l) = FgT (l+ 0.5) − FgT (l− 0.5),

where FgT denotes the CDF of the exponential distribution in (7).

Duration of tertiary education:

d4 ∼ Weibull
(
kT , λT

)
, (8)

where kT and λT are the shape and scale parameters defining the duration of ter-
tiary studies. Its discrete counterpart d̂4 is given by:

P(d̂4 = l) = Fd4
(l+ 0.5) − Fd4

(l− 0.5),

where Fd4
denotes the CDF of the Weibull distribution in (8).

The starting years of the education phases are then given by

e3 = e1 + aS
start, e4 = e1 + aS

end + ĝT .
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Parameters. All introduced parameters with their assumed values are described
in Table 6.

Parameter Meaning Default value

pS Probability of attending secondary education 0.95

pT Conditional probability of attending tertiary education 0.60

aS
start Starting age of secondary education 15

µS
d Mean duration of secondary education 4 years

σS
d Standard deviation of secondary duration 0.5 years

dS
min Min. duration of secondary education 3 years

dS
max Max. duration of secondary education 5 years

µT
g Mean gap between secondary and tertiary education 1 years

kT Weibull shape parameter 3.5

λT Weibull scale parameter 4.5 year

Table 6: Parameter definitions and default values for education phases based on
Organisation for Economic Co-operation and Development, 2021a; Organisation
for Economic Co-operation and Development, 2021b

Discussion. Secondary education follows compulsory schooling and typically
includes high school or vocational programmes, while tertiary education encom-
passes studies beyond the secondary level, such as university or other higher ed-
ucation institutions, and usually spans several years. These definitions are con-
sistent with the international standard classification of education (OECD, 2021).
Both phases are optional, and individuals typically attend them with certain
country-specific probabilities (Härkönen and Sirniö, 2020). Moreover, both
phases may be truncated by lifespan d1, meaning that if death occurs before or
during schooling, the phase is truncated accordingly. In this formulation, the du-
ration of secondary education d3 follows the parametric formulation proposed by
Mills, 2011. The variable ĝT may take the value 0, corresponding to an immediate
transition between education levels without any gap, or a positive value, corre-
sponding to a delayed entry into tertiary education.

3.1.4 Employment phases

Probabilistic model. We model an individual’s employment history as a se-
quence of phases, each defined by a start year em and a duration dm, for m ∈
{5, . . . ,M + 4}, where M is the maximum number of jobs a person can have.
Each job phase m is constrained by lifespan and retirement such that:

em + dm ≤ min(e1 + d1, aret),
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where e1 + d1 is the year of death and aret is the retirement year. To fully model
an individual’s employment phases, we introduce the following variables

g - transitional gap between education and first employment,

dm - age dependent job durations,

bm - breaks between consecutive jobs.

Entry into the labor market:
The start of the first employment phase is dictated by the completion of the indi-
vidual’s highest level of education and a transitional gap, resulting in the starting
age of the first employment

a1 = aedu,end + g, (9)

where aedu,end is the age at the end of the highest completed education and g is the
exponentially distributed transitional gap with mean µg

g ∼ Exponential(µg), (10)

representing the expected waiting time before the first job. Given the yearly time
granularity, we discretize g into ĝ ∈ {0, 1, 2, . . . } and define:

P(ĝ = l) = Fg(l+ 0.5) − Fg(l− 0.5),

where Fg denotes the CDF of the exponential distribution in (10).
If no secondary education is attended, entry into the labor market is allowed

from the legal minimum working age, i.e., aedu,end = awork
min . The initial employ-

ment start year is then
e5 = e1 + aedu,end + ĝ,

where e1 is the year of birth.

Age dependent job durations:

dm ∼ Exponential(λ(am)), (11)

where am = em − e1 is the individual’s age at the start of job m, and λ(am) is a
piecewise age dependent mean parameter:

λ(am) =



1.5, am < 25,

2.5, 25 ≤ am < 35,

3.5, 35 ≤ am < 45,

4.5, 45 ≤ am < 55,

9.0, am ≥ 55.
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The corresponding discrete exponential d̂m is given by

P(d̂m = l) = Fdm(l+ 0.5) − Fdm(l− 0.5),

where Fdm(dm) is the CDF of the exponential distribution in (11).

Breaks between jobs:
bm ∼ Exponential(µb), (12)

where µb is the mean expected break between the jobs. The correspondig dis-
cretized variable b̂m ∈ {0, 1, ...} is given by

P(b̂m = l) = Fbm(l+ 0.5) − Fbm(l− 0.5),

where Fbm denotes the CDF of the exponential distribution in (12). The start year
of the next phase is then

em+1 = em + d̂m + b̂m.

Parameters. The list of all introduced parameters with their corresponding val-
ues is shown in Table 7. All defaults are based on empirical evidence from Bureau
of Labor Statistics, 2019.

Parameter Meaning Default value

M Maximum number of jobs 12

aret Retirement age 65 years

awork
min Minimum legal working age 15 years

µg Mean of exp. dist. for gap before first job 1 year

µb Mean of exp. dist. for break between jobs 1 year

Table 7: Parameter definitions and default values used in the employment history
model based on Bureau of Labor Statistics, 2019.

Discussion. We assume a person can have at most M jobs in their lifetime
(Bureau of Labor Statistics, 2019). We define the retirement age aret such that
no new employment phase can begin after this threshold. If a phase extends be-
yond retirement or death, its duration is truncated accordingly. If an individual
reaches M jobs before retirement, the final job continues until the earlier of re-
tirement or death. The transitional gap gT is modeled based on Edemealem, 2022.
In this formulation, ĝ may take the value 0, corresponding to an immediate tran-
sition to the labor market without any gap, or a positive value, corresponding to a
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delayed entry into employment. Since research from labor economics shows that
job tenure increases with age, i.e., young adults often change jobs while older in-
dividuals stay in positions longer (Employee Benefit Research Institute, 2025), we
modeled the job duration dm as a sample drawn from an exponential distribution
with an age-dependent mean. Moreover, after each job phase ends, the individual
may experience a gap bm before the next job (Simmons, 2023). As before, b̂m

may take the value 0, representing an immediate transition between jobs without
breaks, or a positive value, corresponding to a period of unemployment.

3.1.5 Initial income per employment phase

Probabilistic model. To model the initial income per employment phase, i.e.,
income at the time of recruitment, we first introduce:

edu = d̂3 + d̂4, workm =
∑

5≤r<m

d̂r, (13)

where edu is the total number of schooling years, workm is the total accumulated
work experience up to the beginning of the employment phase indexed by m,
and r indexes all preceding phases. Then, we can adopt a Mincer-type specifica-
tion (Polachek, 2007):

ln(incm) = β0 + ρ edu + β1 workm + β2 work2
m + εm,

where:

β0 represents the baseline log-income for an individual with no schooling
and no experience,

ρ denotes the marginal return to education,

β1 and β2 determine the shape of the experience–earnings profile,

εm ∼ N (0, σ2
ε) is a normally distributed error term capturing unobserved

heterogeneity in income across individuals.

This gives the income at the beginning of the employment phase m:

incm = exp
(
β0 + ρ edu + β1 workm + β2 work2

m + εm
)
. (14)

Parameters. Table 8 lists the parameters of the Mincer specification with their
default values calibrated to the Swiss case.
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Parameter Meaning Default value

β0 Intercept 7.8

ρ Return to schooling 0.10

β1 Linear effect of experience on income 0.025

β2 Quadratic effect of experience on income -0.0004

σ2
ε Standard deviation of the error term 0.3

Table 8: Parameter definitions and default values based on Patrinos, 2016.

Discussion. Note that income is calculated only for employed individuals. Edu-
cation is assumed to be completed before the onset of the first employment period,
and the total number of schooling years, i.e., edu, is deterministically derived from
the duration of education. Moreover, we set work5 = 0 for the first employment
phase (indexed by m = 5), since no experience is accumulated beforehand. In
our framework, both edu and workm can be derived from the previously defined
universal variables that describe periods of education and employment. Once
education and work experience have been defined, the initial income for each
employment phase, incm, can be computed using a Mincer-type specification as
in Polachek, 2007. In this model, β0 corresponds to a baseline monthly income
of approximately 2,400 CHF for an unskilled, inexperienced worker. The initial
income does not explicitly depend on earnings from the previous job but is indi-
rectly influenced by accumulated experience. Parameter ρ dictates the increase in
income per additional year of education, whereas β1 and β2 generate a concave
earning profile reflecting increasing and then diminishing returns to work experi-
ence, while εm is the stochastic term used to produce realistic income dispersion.
In the future, this framework could also be extended by explicitly incorporating
job type as a universal variable (for example, using ISCO groups reported in Swiss
labor statistics), which would allow income to depend directly on factors such as
education and age rather than solely through accumulated work experience.

3.1.6 Birthplace

Probabilistic model. We model the birthplace of each individual by setting the
starting year eM+5 and the duration of residence dM+5 as

eM+5 = e1, dM+5 = max(afm, a1), (15)

where a1 is the starting age of the first job defined in (9), and afm is a parameter
representing the typical age at which individuals leave home for the first time.
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Locations are modeled at the canton level, with C = {1, . . . , 26} denoting
the set of Swiss cantons with population sizes Nc. Birthplaces ch0 are sampled
proportional to Nc, i.e.,

P(ch0 = c) =
Nc∑

c ′∈C Nc ′
. (16)

Parameters. Parameter afm is set to 18.

Discussion. The birthplace variable ch0 is introduced to ensure that each individ-
ual is assigned a place of residence prior to their first employment. It is sampled
from empirical population data (Moralti et al., 2023), with probabilities propor-
tional to Nc. For simplicity, we assume that individuals who never enter employ-
ment remain in their birth canton throughout their lives.

3.1.7 Home and work location phase

Probabilistic model. Home phases are defined via tuples:

(en, dn, c
h
n), n = M+ 6, . . . ,M+N+ 5,

where en and dn denote the start year and duration of each subsequent residence
chn after ch0 , and N denotes the total number of moves. Similarly, work location
phases are defined as:

(eq, dq, c
w
q ), q = M+N+ 6, . . . ,M+N+ J+ 5,

where eq, dq, and cwq denote the start time, duration, and work canton, respec-
tively. We assume that individuals relocate only for employment purposes. With
a slight abuse of notation, this implies that the timing of employment periods and
residential phases is coupled as follows:

(em, dm) = (en, dn) = (eq, dq).

Each residential chn and workplace cwq phase associated with employment phase
m is assigned probabilistically as:

P(chn = c) =
wc(m)∑

c ′∈C wc ′(m)
,

with employment-specific weights wc(m) given by

wc(m) =

{
Nc · δ, if c ∈ U and incm > y∗,

Nc, otherwise,
δ > 1,
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where incm is the expected income at the start of employment phase m given
by (14), y∗ is the income threshold above which individuals are considered high
earners, and U ⊂ C is the set of urban cantons.

Once chn is drawn, the work canton cwq is assigned to match the home canton
with probability ph or to a neighbouring canton, based on a predefined adjacency
list, with probability pw.

Parameters. All parameters and their assumed default values are given in Ta-
ble 9.

Parameter Meaning Default value

y∗ Income threshold 6000 CHF

U Urban cantons {ZH, GE, BS, VD}

δ Urban boost factor 1.5

ph Prob. work equals home canton 0.95

pw Prob. work in neighbouring canton 0.05

Table 9: Parameter definitions and values based on Moralti et al., 2023. Urban
cantons: ZH (Zürich), GE (Geneva), BS (Basel-Stadt), VD (Vaud).

Discussion. Home and work phases describe the spatial dimension of an indi-
vidual’s life course. To ensure temporal consistency, home and work phases repli-
cate the start and duration of each employment phase m. Hence, the correspond-
ing triplets could be written compactly as (em, dm, c

h
m) and (em, dm, c

w
m). The

construction of P(chn = c) is inspired by gravity-based migration models (Reina
et al., 2024). Here, each canton is weighted by its population, with urban cantons
receiving an additional boost for high-income individuals. As a result, this rule
captures both population size effects and the observed tendency of higher-income
individuals to cluster in urban cantons. Finally, the assignment of work locations
cwq captures the empirical tendency for most individuals to live and work in the
same canton, while still allowing for cross-border commuting. During periods
without employment (i.e., before the first job, between jobs, or after retirement),
work location remains undefined.

3.2 Specification of time-dependent variables
We construct eight time-dependent variables to describe each individual i at time
t, as shown in Figure 5: life indicator x1(t), age y1(t), driving licence y2(t),
education y3(t), employment y4(t), income y5(t), and two spatial variables ch(t)
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and cw(t) representing home and work cantons. Indicator x1(t) specifies whether
the individual is alive at time t. The following section outlines the mapping rules
used to derive these variables from the universal ones. With a slight abuse of
notation, we introduce an additional subscript to universal variables to indicate
their association with individual i.

Universal
variables

Year of Birth
+ Lifespan

Licence Year
+ Validity

Education
phases

Employment
phases

Home
phases

Work
phases

Alive(t)
Age(t)

Driving
Licence(t) Education(t) Income(t) Employment(t) Home

canton(t)
Work

canton(t)

Time
dependent
variables

Figure 5: The generated sequence of time-dependent variables

Life-indicator and age: If e1,i and d1,i denote the year of birth and lifespan, we
first define the indicator x1,i(t) for an individual i, as follows:

x1,i(t) =

{
1, if e1,i ≤ t < e1,i + d1,i,

0, otherwise.

The rest of the variables are defined only for individuals that are alive at the
moment t (i.e., x1,i(t) = 1). Consequentially, the age of an individual i that is
alive at time t is y1,i(t) = t− e1,i.

Driving license status: If e2,i is the year of license acquisition and d2,i is the
length of its validity, and an indivdiual i is alive at moment t (i.e., x1,i = 1), then
the driving license status of individual is defined as:

y2,i(t) =

{
1, if e2,i ≤ t < e2,i + d2,i and e2,i < ∞
0, otherwise.

Education status: Education status is defined only for individuals who are alive
at time t (i.e., x1,i(t) = 1). For such individuals, let e3,i and d3,i denote the
start year and duration of secondary education, and e4,i and d4,i the start year and
duration of tertiary education. Then, the education status of individual i at time t

is a categorical variable defined as:

y3,i(t) =



Compulsory, if t < e3,i,

No secondary, if e3,i = 0,

Secondary, if e3,i ≤ t < e3,i + d3,i,

or (t ≥ e3,i + d3,i and (e4,i = 0 or t < e4,i)),

Tertiary, if e4,i ≤ t and e4,i > 0,
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Note that the category “Under 15” comprises individuals below the typical age for
secondary education, whereas “No secondary” refers to those old enough to have
attended but who did not. These categories are in line with the available categories
in the real dataset.

Employment status: Employment status is defined only for individuals alive at
time t. Based on this, we can define the following auxiliary variable:

Employedi(t) = 1{∃m ∈ {5, · · · ,M+ 4} s.t. em,i ≤ t < em,i + dm,i}

Then, for individual i alive at t, employment status is a categorical variable:

y4,i(t) =



Under 15, if t− e1,i < 15,

Retired, if t− e1,i ≥ aret,

In education, (e3,i > 0 and d3,i > 0 and e3,i ≤ t < e3,i + d3,i)

or (e4,i > 0 and d4,i > 0 and e4,i ≤ t < e4,i + d4,i),

Employed, Employedi(t) = 1,

Unemployed, otherwise.

These categories are in line with the available categories in the real dataset.

Income: At the time-dependent level, income is evaluated deterministically for
each year t when the individual is alive and employed. To do so, we calculate
how much the income of individual i has increased up to time t, relative to their
initial income in the current employment phase. Let m∗

i (t) denote the index of
the employment phase at time t, defined as

m∗
i (t) = arg min

m∈{5,...,M+4},t−em,i≥0

t− em,i.

Additionally, we calculate worki(t), which represents the number of years since
the beginning of the first employment period, up to time t, as follows:

worki(t) =

Mi∑
m=1

min
(
dm,i,max(0, t− em,i)

)
.

Following the same formulation of the effect of work experience as in Mincer’s
equation (14), and using the previously defined m∗

i (t) and worki(t), we compute
the income at time t as:

ln(y5,i(t)) = ln(incm∗
i (t)

) + β1∆worki(t) + β2∆worki(t)
2,
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where ∆worki(t) = worki(t) − workm∗
i (t)

and workm∗
i (t)

is given in (13).
In other words, the income y5,i(t) value expressed in CHF:

y5,i(t) =

{
e

ln(incm∗
i
(t))+β1 ∆worki(t)+β2 ∆worki(t)2 if x1,i(t) = 1 and Employedi(t) = 1,

0, otherwise,

can be evaluated for any year within an active employment phase, based on the
cumulative work experience up to that moment, with the parameters defined in the
same way as in Section 3.1.5.

Although age does not appear explicitly in the equation, income is age-
dependent because education and work experience accumulate over time. More-
over, the stochasticity comes implicitly from εm∗

i (t)
that is embedded in incm∗(t).

Spatial variables: At the time-dependent level, home and work locations are
obtained from the corresponding spatial phases. For each individual, the home
canton at time t is defined as

chi (t) = chn,i if en,i ≤ t < en,i + dn,i,

and the work canton as

cwi (t) =

{
cwq,i, if eq,i ≤ t < eq,i + dq,i,

undefined, otherwise.

Before the first employment, the home canton equals the birthplace ch0 , while after
the last employment, it remains fixed at the final home canton.

3.3 Sampling scheme
In order to generate synthetic panel data, we need to sample the joint distribution
of the universal variables and map to different time steps. The sampling process
is guided by the observation that life-course events unfold sequentially, with each
stage depending on the previous one. By following this natural order (e.g., birth
precedes schooling, which in turn precedes employment), we ensure that the gen-
erated data remain consistent and realistic.

Figure 6 illustrates our model as a directed graph, where each variable is rep-
resented by a node and incoming edges indicate the variables from which it is
derived. The graph distinguishes between two types of nodes: random and de-
rived, with edges labeled either as deterministic or conditional. In line with Sec-
tion 3.1, random nodes without parent variables are sampled independently from

26



their parameterized distributions, while those with parents are sampled condition-
ally, once the values of their parent variables are known. On the other hand, de-
rived nodes are not sampled directly. Instead, they are computed as simple func-
tions (i.e., sums or differences) of their parent variables, once those have been
determined. As a result of our simplifying assumptions, random variables are
sampled in a sequential order which, together with the introduced deterministic
links, yields a tractable model that preserves the temporal structure of life events
and generates internally consistent life trajectories.

Because this factorized structure is explicitly defined, synthetic data can be
generated by sequentially drawing and computing variables in the order defined
by the graph. This process corresponds to forward sampling (Koller and Fried-
man, 2009), where each step uses the outputs of the previous ones. Starting with
independent random nodes (e.g., birth and lifespan), the procedure sequentially
samples variables describing subsequent life phases, resulting in a synthetic pop-
ulation where each individual is defined by a vector of time-independent vari-
ables (see Figure 4). Once this so-called universal dataset is constructed, it can
be mapped to a synthetic panel population at any point in time using the rules
outlined in Section 3.2.

d2

e2

adl

d1

am

e1

e3

ZS
i

em
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e5

gT

e4
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ϵk

ZT
i

d4

edu

dm

workm

incm

u5
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Random

Derived

Deterministic
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Figure 6: Sampling scheme

3.4 Cross-sectional data integration
Generally speaking, Sections 3.1 and 3.2 provide a complete, data-free frame-
work for generating synthetic panel data at any point in time. However, because
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general parametric models for certain universal variables are lacking in the liter-
ature, we must rely on uninformative assumptions such as uniform distributions
(e.g., for the year of birth). Consequently, this generation process may yield ag-
gregated properties that deviate from those observed in real cross-sectional data.
Our objective, therefore, is to develop a mechanism that incorporates information
from potentially multiple cross-sectional datasets into the parameters governing
universal variables. Specifically, we propose integrating information from cross-
sectional datasets using Maximum Likelihood Estimation (MLE). To do so, we
first define a model that captures the probability of an individual being sampled
in a survey at a given time t. This model establishes a mapping from the univer-
sal dataset to the cross-sectional data, enabling us to construct the likelihood of
the observed variables by marginalizing over the unobserved components of the
universal dataset.

Namely, let T denote the set of years for which cross-sectional datasets Dt are
available, where each Dt represents a sample of the population at time t ∈ T . At
each t, we assume the observed individuals i ∈ Dt are described by a subset zi,t
of all time-dependent variables, i.e.,

zi,t ⊆ {x1,i(t), y1,i(t), y2,i(t), y3,i(t), y4,i(t), y5,i(t), c
h
i (t), c

w
i (t)}.

To integrate information from cross-sectional datasets Dt, we aim to optimize all
or a selected subset of the parameters collected in the vector θ, which govern the
probability distributions describing the universal variables.

Since cross-sectional datasets typically do not track the same individuals over
time, we treat observations from different datasets as independent. Under this as-
sumption, the combined likelihood of multiple datasets simplifies to the product of
their individual likelihoods. Moreover, to account for the fact that cross-sectional
datasets include only living individuals who were sampled according to specific
survey protocols, we introduce a simplified surrogate sampling model that maps
universal variables to a particular point in time. Based on these considerations,
we define the likelihood L(θ) of observing all cross-sectional datasets as:

L(θ) =
∏
t∈T

∏
i∈Dt

P(si,t = 1, zi,t | θ) =
∏
t∈T

∏
i∈Dt

∑
uθ

P(si,t = 1, zi,t, uθ | θ), (17)

where P(si,t = 1, zi,t | θ) =
∑

uθ
P(si,t = 1, zi,t, uθ | θ) is an individual’s

contribution to the joint likelihood, uθ is a subset of relevant universal variables
parametrized by θ, and si,t = 1 indicates that the individual i was sampled for
survey at time t. In the following subsections, we first formally introduce the
adopted sampling model and then show how the likelihood is derived for the joint
distribution of age and driving license status, i.e., zi,t = {y1,i(t), y2,i(t)}.
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3.4.1 Mapping universal dataset to a specific cross-sectional via sampling
mechanism

To introduce the sampling model and illustrate its relationship to the actual pop-
ulation and the cross-sectional data at time t, we consider a motivating example
shown in Figure 7. In this example, the real population consists of three individ-
uals whose driving license status evolves over time. At time steps t ′, t ′′, and t ′′′,
two of these individuals are included in the cross-sectional datasets Dt ′ , Dt ′′ , and
Dt ′′′ according to a specified sampling protocol. As illustrated in Figure 7, at time
steps t ′ and t ′′′, the distribution of driving license status in the cross-sectional data
matches that of the true population, while at time t ′′ a discrepancy arises between
the two. To correctly update the parameters of the universal dataset based on the
cross-sectional data at time t ′′, it is necessary to ensure that information is propa-
gated consistently with the sampling protocol and that the parameters are adjusted
accordingly.

timet ′

Dt ′

t ′′

Dt ′′

t ′′′

Dt ′′′Sampled
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Figure 7: Illustration of sampling probabilities

To model the probability that an individual is sampled for a cross-sectional
dataset at moment t, we propose a simple surogate function that reflects empirical
sampling bias across different age groups. We assume that adults, especially those
of working age, are more frequently sampled, while children and the elderly tend
to be underrepresented. To capture this trend, we divide the population into three
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smoothly transitioning age groups: young individuals, adults, and old individuals,
and introduce two threshold parameters:

τ1: the age boundary between young and adult individuals,

τ2: the boundary between adult and old individuals,

with τ1 < τ2. Thus, the final sampling probability is defined as follows:

P(st = 1 | e1) = αy · s1(t− e1)︸ ︷︷ ︸
young contribution

+ 0.5 · αa · (2− s1(t− e1)) − s2(t− e1))︸ ︷︷ ︸
adult contribution

+

(18)

+ αo · s2(t− e1)︸ ︷︷ ︸
old contribution

where:
s1(t− e1) =

1

1+ exp(−γ(τ1 − (t− e1)))

s2(t− e1) =
1

1+ exp(−γ((t− e1) − τ2))
.

The sigmoid functions s1(t− e1) and s2(t− e1) define smooth transitions across
age groups, allowing individuals near age thresholds to partially contribute to mul-
tiple categories. The α parameters then control how much each group contributes
to the overall sampling probability, reflecting real differences in how often differ-
ent age groups are sampled. In other words, the parameters αy, αa, and αo repre-
sent the mixing coefficients for individuals in the young, adult, and old age groups,
respectively. These parameters are constrained such that αy, αa, αo ≥ 0, and
αy+αa+αo = 1. The parameter γ > 0 controls the sharpness of the sigmoid tran-
sition, with larger values producing steeper transitions and smaller values yielding
smoother, more gradual changes around the threshold age. Note that s1(t − e1)
and s2(t − e1) are sigmoid functions and therefore always lie within the interval
[0, 1], which makes the expression 0.5 · (2− s1(t−e1)− s2(t−e1)) also bounded
between 0 and 1. Since all three terms in the expression for P(st = 1 | e1) are
multiplied by non-negative weights αy, αa, αo that sum to 1, the total is always
greater than or equal to 0 and cannot exceed 1, which makes the model valid.

We initially considered a step-function model, assigning fixed weights to dis-
crete age bins. However, this approach produced unnatural discontinuities and
sharp jumps in the distribution at the group boundaries. To make these transitions
smoother, we decided to use a sigmoid formulation instead. In Figure 8, we il-
lustrate the differences between the sampling probability distributions generated
using a step function and a sigmoid-based formulation.
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Figure 8: Comparison of sampling probability using step and sigmoids

Apart from enabling us to link universal variables with cross-sectional data
observed at different points in time, the parameterized sampling model also adds
flexibility by allowing us to correct irregularities that may arise from initially as-
sumed uninformative distributions of certain universal variables. In Section 4.1,
we show that this is particularly the case for the uniform distribution of the year
of birth variable.

In the following section, we demonstrate how the likelihood in (17) for the
joint observation of age and licence status in cross-sectional data can be com-
puted, with the goal of calibrating the parameters of the corresponding universal
variables that govern these time-dependent variables.

3.4.2 Estimating parameters based on observed age and licence status in
cross-sectional data

With the sampling procedure defined, we can now express individual i’s contri-
bution to the likelihood in (17) for the case of jointly observed age and driving
license status in cross-sectional dataset Dt, i.e., for zi,t = {y1,i(t), y2,i(t)}:

P(si,t = 1, zi,t | θ) = P(si,t = 1, y1,i(t), y2,i(t) | θ).

This likelihood enables a direct calibration of the parameters of the universal vari-
ables uθ = {e1, d̂1, âdl} that are used to derive zi,t, i.e.,

θ = (k, λ, αy, αa, αo, τ1, τ2, π, µ, σ).

For notational simplicity, in the following derivation of the likelihood, we omit
explicitly indicating the dependence of y1,i and y2,i on time t, as well as the fact
that all universal variables refer to individual i, when this is clear from the context.
We start by writing:
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P(si,t = 1, zi,t | θ) =
∑
uθ

P(si,t = 1, y1,i, y2,i | e1, d̂1, âdl; θ)P(e1, d̂1, âdl | θ). (19)

Next, based on the Bayes formula, we can write (19) as follows:∑
e1,d̂1,âdl

P(y1,i, y2,i | si,t = 1, e1, d̂1, âdl; θ)P(si,t = 1 | e1, d̂1, âdl; θ)P(e1, d̂1, âdl | θ)

(20)
Under the assumption that e1 is independent of both d̂1 and âdl, and based on our
sampling model (18), the expression (20) can be further simplified:

∑
e1,d̂1,âdl

P(y1,i, y2,i | si,t = 1, e1, d̂1, âdl; θ)P(si,t = 1 | e1; θ)P(e1)P(d̂1, âdl | θ) =

∑
e1,d̂1,âdl

P(y1,i, y2,i, si,t = 1, e1, d̂1, âdl; θ)P(si,t = 1 | e1; θ)P(e1)P(âdl | d̂1; θ)P(d̂1 | θ)

(21)

As e1 = t− y1,i is fixed, (21) simplifies to:

∑
d̂1,âdl

P(y1,i, y2,i | si,t = 1, e1 = t− y1,i, d̂1, âdl; θ)

P(si,t = 1 | e1 = t− y1,i; θ)︸ ︷︷ ︸
sampling model

P(e1 = t− y1,i)︸ ︷︷ ︸
constant

P(âdl | d̂1; θ)P(d̂1 | θ)

= P(si,t = 1 | e1 = t− y1,i; θ)P(e1 = t− y1,i)∑
d̂1,âdl

P(y1,i, y2,i | si,t = 1, e1 = t− y1,i, d̂1, âdl; θ)P(âdl | d̂1; θ)P(d̂1 | θ) (22)

Observe that the second term represents the previously defined sampling model
from (18), while P(e1 = t − y1,i) is fixed to 1

ymax−ymin+1
= 1

100
based on (1). We

can distinguish between two cases based on the value of y2,i, one for y2,i = 0 and
another for y2,i = 1.

Case y2,i = 0 :

P(y1,i, y2,i = 0 | si,t = 1, e1 = t− y1,i, d̂1, âdl; θ) =

{
1, d̂1 ≥ y1,i and âdl > y1,i,

0, otherwise.

Then, after splitting the sum over âdl in two parts, equation (22) becomes:∑
d̂1≥y1,i,
âdl>y1,i

P(âdl | d̂1; θ)P(d̂1 | θ) =
∑

d̂1≥y1,i,
âdl=∞

P(âdl | d̂1; θ)P(d̂1 | θ)

+
∑

d̂1≥y1,i,
y1,i<âdl<∞

P(âdl | d̂1; θ)P(d̂1 | θ)
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= P(âdl = ∞ | d̂1; θ)
∑

d̂1≥y1,i

P(d̂1)︸ ︷︷ ︸
π(1 − Fd̂1

(y1,i − 1))

+
∑

d̂1≥y1,i

y1,i<âdl≤d̂1

P(âdl|d̂1; θ)P(d̂1 | θ)

where, in the first summation, P(âdl | d̂1; θ) = π is constant based on (4), and
the summation over d̂1 can be reformulated using the CDF of d̂1. To calculate the
second term, we consider two cases based on the ordering of y1,i and Amin:

1. If Amin < y1,i ≤ d̂1 then,
∑

d̂1≥y1,i

y1,i<âdl≤d̂1

P(âdl|d̂1; θ)P(d̂1 | θ) simplifies to:

∑
d̂1≥y1,i

y1,i<âdl≤d̂1

(1− π)
[
F∆(âdl + 0.5; d̂1) − F∆(âdl − 0.5; d̂1)

]
P(d̂1 | θ)

= (1− π)
∑

d̂1≥y1,i

P(d̂1 | θ)
∑

y1,i<âdl≤d̂1

[
F∆(âdl + 0.5; d̂1) − F∆(âdl − 0.5; d̂1)

]
= (1− π)

∑
d̂1≥y1,i

P(d̂1 | θ)
[
F∆(d̂1 + 0.5; d̂1) − F∆(y1,i + 0.5; d̂1)

]
(23)

where, in the first line, we substitute P(âdl | d̂1; θ) from (5), and the last
line follows from simplifying the telescoping sum over âdl.

2. If y1,i ≤ Amin ≤ d̂1 then,
∑

d̂1≥y1,i

y1,i<âdl≤d̂1

P(âdl | d̂1; θ)P(d̂1 | θ) simplifies to:

∑
d̂1≥y1,i

y1,i<âdl≤Amin

P(âdl | d̂1; θ)P(d̂1 | θ)

︸ ︷︷ ︸
:=0

+
∑

d̂1≥y1,i

Amin≤âdl≤d̂1

P(âdl | d̂1; θ)P(d̂1 | θ)

=
∑

d̂1≥y1,i

P(d̂1 | θ)
∑

Amin≤âdl≤d̂1

P(âdl | d̂1; θ)︸ ︷︷ ︸
:=1

= (1− π)(1− Fd̂1
(y1,i − 1))

where, in the first sum, we have P(âdl | d̂1; θ) = 0 based on (5), and the
sum over âdl is equal to 1 by definition of âdl’s support.

Case y2,i = 1 :

P(y1,i, y2,i = 1 | si,t = 1, e1 = t− y1,i, d̂1, âdl; θ) =

{
1, d̂1 ≥ y1,i and âdl ≤ y1,i,

0, otherwise.

Then, the sum in equation (22) becomes:
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∑
d̂1≥y1,i

âdl≤y1,i

P(âdl | d̂1; θ)P(d̂1 | θ)

which simplifies to:∑
d̂1≥y1,i

P(d̂1 | θ)
∑

Amin≤âdl≤y1,i

(1− π)
[
F∆(âdl + 0.5; d̂1) − F∆(âdl − 0.5; d̂1)

]
= (1− π)

∑
d̂1≥y1,i

P(d̂1 | θ)
∑

Amin≤âdl≤y1,i

[
F∆(âdl + 0.5; d̂1) − F∆(âdl − 0.5; d̂1)

]
= (1− π)

∑
d̂1≥y1,i

P(d̂1 | θ)[F∆(y1,i + 0.5; d̂1) − F∆(Amin − 0.5; d̂1)] (24)

where, in the first line, we substitute P(âdl | d̂1; θ) from (5), and the last line is
again obtained by canceling out terms in the telescoping sum over âdl.

The parameters θ are estimated using Maximum Likelihood Estimation
(MLE). To evaluate the infinite sums in (23) and (24), we approximate them by
truncating at d̂1 = 130, as P(d̂1 | θ) becomes negligible beyond this age. To iden-
tify the optimal parameter values, we employ differential evolution, a population-
based global optimization algorithm well suited to non-convex problems. This
procedure yields the parameter set that maximizes the log-likelihood given the
empirical data.
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4 Results
In this section, we compare data-free and data-integrated generation processes. To
this end, we generate a universal dataset of 100,000 individual life sequences fol-
lowing the sampling procedure described in Section 3.3. In the data-free approach,
we use the assumed distributions and parameter values defined in Section 3.1. In
contrast, the data-integrated approach estimates the parameters via MLE using
one or multiple datasets and then constructs the corresponding distributions based
on the estimated values.

With that in mind, in Section 4.1, we first examine how different models, i.e.,
a data-free model, a model with parameters estimated using a single dataset, and
a model with parameters estimated using multiple datasets, affect the generation
of synthetic panels at both aggregate and individual levels. In these experiments,
we focus specifically on generating year of birth and lifespan, and on how these
variables shape the time-dependent age distribution. Subsequently, in Sections 4.2
and 4.3, we extend the analysis by comparing the data-free model with the model
whose parameters are estimated using all cross-sectional datasets, focusing on
their impact on the generation of the universal dataset as well as on the result-
ing aggregate and disaggregate properties of the complete set of time-dependent
panel distributions. In Section 4.4, we demonstrate the framework’s capability
to test hypothetical scenarios by designing a pandemic case study and showing
how changes in universal variables automatically propagate to the derived, time-
dependent datasets. Finally, as an illustrative example, Appendix A presents the
step-by-step development of a model for generating year of birth and lifespan,
along with its impact on the resulting age distribution.

4.1 Comparison of data-free and data-integrated generation
processes

In this section, we demonstrate both the data-free generation of synthetic panel
data and the capability of the proposed framework for data integration. By data
integration, we refer to the use of real cross-sectional datasets to estimate the
parameters of the universal variables, which are then employed to derive corre-
sponding synthetic time-dependent panel data. To evaluate the effect of integrat-
ing different amounts of information, we compare four models that differ in their
level of data integration:

• Model 1 (data-free baseline): Parameters are fixed to values reported in
the literature, without using empirical data for calibration.

• Model 2 (one-dataset integration): Parameters are estimated using the
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2010 cross-sectional dataset, while the 2015 and 2021 datasets are used for
validation.

• Model 3 (two-dataset integration): Parameters are estimated jointly using
the 2010 and 2015 datasets, with 2021 kept for validation.

• Model 4 (all-dataset integration): Parameters are estimated using all three
datasets (2010, 2015, and 2021), leaving no data for external validation.

Through this comparison, we aim to assess how the progressive integration of
additional data sources affects both the estimated parameters of the universal vari-
ables and the resulting synthetic panel distributions. For the likelihood derived in
Section 3.4.2, we estimate the parameter vector

θ = (k, λ, αy, αa, αo, τ1, τ2, π, µ, σ),

which governs the generation of the year of birth, lifespan, and the age of driving
licence acquisition. The parameters are updated through maximum likelihood es-
timation (MLE) when data are integrated, while the remaining model components
retain their literature-based default values, following the procedure described in
Section 3.4.

Parameter Meaning Model 1 Model 2 Model 3 Model 4

k Shape (lifespan) 3.00 2.84 3.44 3.37

λ Scale (lifespan) 85.00 69.28 77.36 74.41

αy Weight of young group – 0.02 0.16 0.06

αa Weight of adult group – 0.95 0.79 0.84

αo Weight of old group – 0.04 0.05 0.10

τ1 Young–adult threshold – 33.98 38.06 37.73

τ2 Adult–old threshold – 84.89 82.50 87.76

π Prob. no licence 0.15 0.17 0.19 0.21

µ Log-mean (licence age) 3.02 2.89 2.87 2.90

σ Log-sd (licence age) 0.15 0.13 0.11 0.11

Table 10: Parameter values and meaning for the four models

Table 10 summarizes the parameter values obtained for the four tested mod-
els. Model 1 does not include any parameters related to the sampling function,
as it represents the data-free baseline. In this case, the year of birth is drawn
uniformly from ymin = 1920 to ymax = 2050, and lifespans are generated from
a Weibull distribution. The resulting derived age distribution is therefore deter-
mined solely by the survival model and the uniform distribution of birth years. In
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contrast, in Models 2–4, the birth-year distribution is additionally influenced by
the sampling mechanism introduced in Section 3.4.1. If we were interested only
in a single point in time, we could simply sample from the empirical age distribu-
tion. However, to enable the universal birth-year distribution to capture multiple
observed age distributions, we have to account for its mapping to cross-sectional
data through the sampling mechanism.

The parameter estimates across Models 2–4 appear to differ only slightly,
likely because the datasets used for estimation share a similar structure and de-
scribe the same underlying population. This consistency demonstrates that data
integration is robust across datasets and yields parameter values close to those re-
ported in the demographic literature. In contexts where demographic parameters
are well documented, such as Switzerland, literature values can be used directly.
Where such information is unavailable, the results suggest that the proposed pro-
cedure can infer these parameters from any available data.

Four universal datasets, one for each model, were generated, from which we
derived synthetic panel data for t = 2010, 2015, and 2021, as shown in Figure 9.
When the universal dataset is generated under a uniform birth-year distribution,
no constraint is imposed on individuals’ presence at a specific point in time. As
a result, the dataset may include individuals who are alive, already deceased, or
not yet born in a given reference year. As we can see in Figure 9, for the data-
free model, newborns appear in each snapshot, reflecting the continuous inflow of
new individuals over time. When the year of birth is generated from a uniform
distribution, sampling probabilities are not incorporated, leading to a differently
shaped age distribution compared to other models.

On the other hand, when the universal distribution is calibrated using cross-
sectional data, the sampling mechanism better aligns the birth-year distribution
with the observed age structure at time t. This means that only birth years feasible
for that period are generated, and no individuals are born after the reference year.
However, since lifespans are sampled independently according to the assumed
survival model, some of these individuals may already be deceased by time t. As
a result, the calibrated universal dataset contains only individuals who could have
existed at that moment, without newborns appearing in later snapshots.

For Models 2–4, when the panel is projected forward to 2015 and 2021,
the same individuals are retained and simply age over time. Consequently, the
shape of the resulting distribution reflects the model formulation: the Weibull sur-
vival function emphasizes younger ages, while the sampling function redistributes
probability across young, adult, and old groups. Over time, this distribution shape
changes due to mortality.
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Figure 9: Comparison between the derived age panel distribution and the observed
age distribution over time.

To evaluate the quality of the aggregated properties of the synthetic panels,
we compare the real and synthetic age distributions based on their normalized
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frequencies (i.e., probabilities across age bins). Let p(t)
real,j and p

(t)
synth,j denote the

relative frequencies of age bin j in year t for the real and synthetic datasets.
To obtain an overall measure of fit across multiple periods, we concatenate the

normalized yearly distributions into a single vector and compute the joint stan-
dardized root mean squared error (joint SRMSE):

SRMSEjoint =

√
1
N

∑
t∈T

∑nt

j=1

(
p
(t)
synth,j − p

(t)
real,j

)2
preal,all

,

where nt is the number of bins in year t, N =
∑

t∈T nt, and preal,all denotes the
average bin probability across all years (equal to 1/nt when all distributions are
normalized and share the same bin structure).

When the evaluation concerns a single period (|T | = 1), the joint SRMSE
reduces to the independent SRMSE:

SRMSEt =

√
1
nt

∑nt

j=1

(
p
(t)
synth,j − p

(t)
real,j

)2
p
(t)
real

.

The independent SRMSE therefore measures the fit for a single year, while the
joint SRMSE generalizes this metric to capture the overall agreement between
real and synthetic distributions across multiple years.

Model Calibration data
Unseen data

2010 2015 2021

Model 1 x 0.45 0.48 0.54
Model 2 0.38 (0.38) 0.43 0.50
Model 3 0.40 (0.30) (0.36) 0.48
Model 4 0.39 (0.47) (0.39) (0.39)

Table 11: Model evaluation through SRMSE

Table 11 summarizes the results of generating time-dependent age distribu-
tions under different model specifications, evaluated using the joint SRMSE on
the estimated data and the independent SRMSE on unseen data. SRMSE values
reported in parentheses correspond to the independent SRMSE calculated for the
calibration year, providing a reference for model fit within the estimation period.
From these results, several observations can be made:

• Based on the performance on the calibration data, Model 2 appears to
achieve the best fit. However, its low error likely indicates overfitting, as

39



its performance on the unseen datasets is worse than that of the other mod-
els. When looking at Models 3 and 4, we observe that incorporating more
data generally improves the fit.

• The independent SRMSE on unseen data provides additional insight. Exam-
ining the results across rows, Model 1 consistently exhibits the weakest fit in
all years, as expected, since it is not calibrated using observed data. Look-
ing down the columns, SRMSE values generally decrease as more data are
incorporated into model estimation, indicating that additional information
improves generalization. Across all models, however, the fit deteriorates as
the projection horizon extends further into the future.

• Overall, the results show a clear incremental development: starting from a
data-free baseline with a weak fit (Model 1), through single-dataset calibra-
tion (Model 2), to joint calibration on multiple datasets (Model 3), each step
reduces error and increases robustness, confirming that integrating more in-
formation leads to a better fit across time.

Additionally, to demonstrate that the method can generate synthetic panels
for years outside of the observed range, Figure 10 displays age distributions of
living individuals for 1985 and 2035, alongside the reference year 2015, across
Models 1–4. As expected, the backward projection to 1985 yields more young
individuals, while the forward projection to 2035 shifts the distribution toward
older ages, with its shape evolving over time due to aging and rising mortality.
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Figure 10: Synthetic panel 1985, 2015, 2035
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4.2 Derivation of time-dependent panel synthetic samples from
universal variables: aggregated level

In this section, we generate a universal dataset using two approaches: (i) a data-
free approach with fixed parameters and (ii) a data-integrated approach with pa-
rameters estimated from three cross-sectional datasets. From these universal
datasets, we derive time-dependent data for t = 2010 and compare it with real
data from the same period.

The objectives of this experiment are threefold: (i) to assess whether the model
can reproduce the marginal and conditional distributions of the real data (i.e., ag-
gregated properties) at a specific point in time, (ii) to evaluate the validity of the
assumed universal variable models, and (iii) to examine how simplifications at the
universal level affect the resulting time-dependent distributions. Our analysis fo-
cuses on the discrete distributions of age, driving licence ownership, employment
status, and education level.

First, using the fixed parameters introduced in Section 3.1, we generate the
universal dataset and derive the age, driving licence, employment, and education
status for t = 2010, as shown in Figure 11. In our model, most universal variables
are derived from the year of birth. Consequently, any discrepancy in the age
distribution propagates to other variables. In this case, the uniform prior for the
year of birth results in an unrealistically flat age distribution. As a result, for
example, there is an excessive share of individuals under 15 in both education and
employment categories.

Next, we generate a universal dataset using the estimated parameters for
Model 4 in Table 10. We start by generating the year of birth and driving li-
cence using the previously obtained estimates, while all other universal variables
(i.e., education and employment phases) remain based on the assumed parameters.
As shown in Figure 12, the synthetic age distribution now follows the empirical
shape more closely. However, the model still underestimates the number of older
individuals and overestimates younger ones. This could stem from simulating
lifespans using a Weibull distribution, which assigns higher survival probabilities
to younger ages. Moreover, since the lifespan and year of birth are generated in-
dependently, the synthetic population includes fewer elderly individuals than in
the observed data. The improvement in the age distribution, particularly the more
realistic share of adults, directly translates into better alignment of the education
and employment structures with the observed data. Nevertheless, some discrep-
ancies remain: the underrepresentation of older adults results in fewer individuals
classified as retired, while the excess of youth increases the shares in the “under
15” and “in education” categories. In contrast, the “employed” and “unemployed”
groups are generated directly from the employment model and align well with the
observed data, suggesting that the employment-phase generator performs as in-
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tended. Overall, these results show that even with simple models, it is possible
to reproduce the main demographic trends. However, achieving a closer fit would
require more advanced demographic formulations.
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Figure 11: Comparison of marginal distributions of synthetic time-dependent vari-
ables derived from simple models and real data in 2010 - data-free approach
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Figure 12: Comparison of marginal distributions of synthetic time-dependent vari-
ables derived from simple models and real data in 2010 - data-integrated approach
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Since we also estimate parameters related to driving licence ownership, we
further examine the performance in this category. Figures 13 and 14 show the
conditional probability of age given licence possession for both data-free and data-
integrated approaches. These plots provide a clearer view of how distortions in the
age distribution propagate to licence status. For instance, in Figure 14, we observe
that the sample includes too many individuals without a licence and too few with
one. This discrepancy arises because licence status is generated conditional on the
simulated age, which already underestimates the proportion of older individuals
and overestimates that of younger ones.
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Figure 13: Comparison of real and synthetic age distribution of people having and
not having a driving licence in 2010 - data-free approach
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Figure 14: Comparison of real and synthetic age distribution of people having and
not having a driving licence in 2010 - data-integrated approach
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However, this behavior may also partly stem from the simplified model used
to generate e2 and d2 in Section 3.1.2. As we see in Figure 14, after the legal
threshold (i.e., Amin = 18), the model produces a decline in the share of non-
holders. This is because it relies solely on the parameter π, which determines the
overall fraction of individuals who never obtain a licence but does not account
for age or socio-demographic factors. Moreover, the assumption that licences are
irrevocable might prevent the model from generating additional non-holders at
older ages, further reinforcing the misfit among the elderly.

To further investigate this, we additionally calculate the license possession rate
by age group, as shown in Figure 15. The license possession rate is defined as the
proportion of individuals with a driving license within each age group, relative to
the total number of individuals in that group. This measure is important because it
normalizes license holding by age, allowing us to assess how likely it is for some-
one of a given age to possess a license. Consistent with the previous results, the
synthetic data shows too few licence holders among young and middle-aged adults
(i.e., an excess of non-holders in Figure 14) and too many licence holders among
the elderly (i.e., too few elderly non-holders in Figure 14), confirming the same
deviations observed in the separate “with” and “without license” distributions.
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Figure 15: License possession rate by age group

To assess whether this behaviour persists using different datasets, Figure 16
presents the conditional distribution of birth year at time t, given driving licence
possession, for 2010, 2015, and 2021. These distributions are generated inde-
pendently using the estimated parameters for the corresponding year. The figure
shows that the systematic deviations observed for 2010 reappear in later years.
In other words, the synthetic population consistently underrepresents older indi-
viduals without a licence and overrepresents younger cohorts, indicating that the
mismatch stems from structural limitations of the model rather than from year-
specific effects. These results suggest that a model relying solely on literature
values can approximate the overall distributions reasonably well. However, its
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Figure 16: Conditional distribution of birth year at time t, given driving licence
possession, generated for 2010, 2015, and 2021 using estimated parameters

simplifying assumptions lead to noticeable discrepancies in the marginal distri-
butions of certain variables, indicating the need for more refined demographic
models to better capture the underlying relationships.

4.3 Derivation of time-dependent panel synthetic samples from
universal variables: disaggregated level

In this section, we illustrate (i) the panel effect of the synthetic time-dependent
dataset and its evolution over time, and (ii) the relevance of the correlations inte-
grated into the model (e.g., between income and education). To this end, we se-
lect individuals born in 1985 from the universal dataset and derive time-dependent
data for 2005, 2015, 2025, and 2035. To highlight the panel effect, we focus on
income and spatial evolution, meaning that all figures track the same individuals
over time. Note that we do not have access to real panel data, therefore, compari-
son with observed data is not possible in this case.

Figure 17 shows how income evolves for employed individuals and how it
varies across education levels. The simulated incomes follow a log-normal distri-
bution that is strictly positive, right-skewed, and age-dependent. To avoid unreal-
istic outliers, monthly incomes above CHF 20,000 are truncated.

In 2005 (age 20), most individuals with tertiary education were still study-
ing and not yet active in the labor market, while employed individuals were pre-
dominantly secondary graduates with entry-level earnings. By 2015, as tertiary-
educated individuals entered employment, their earnings surpassed those of peo-
ple with secondary or no education, shifting the overall income distribution up-
ward. At age 40, incomes continued to rise, and the gap between education groups
widened, with tertiary graduates concentrated at the upper end of the distribution.
By age 50, some individuals had left the workforce due to retirement or mortality,
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the mean income stabilized, and education-related differences remained evident.

Figure 17: Tracking the income and education distributions of individuals born in
1985 over the years 2005, 2015, 2025, and 2035

To illustrate the dynamics of spatial mobility, we track the home distribution
of the same 1985 birth cohort at four points in time: 2005, 2015, 2025, and 2035.
At birth, the spatial distribution of this cohort reflects only birthplace sampling,
which follows cantonal population shares (Figure 18). We then derive the spatial
shares of these individuals for each subsequent year, as shown in Figure 19.
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Figure 18: The cantonal home distribution of people born in 1985
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2025 2035

Figure 19: Swiss canton shares across years

In 2005 (age 20), most individuals still live in their birth canton. By 2015,
as more people entered the labor market, the first signs of concentration appeared
in metropolitan cantons, particularly Zürich. This pattern reflects the income-
dependent urban boost, which increases the likelihood that higher earners relo-
cate to major economic centers. By 2025, clustering in Zürich (over 21% of the
cohort) and Bern (around 12%) becomes more pronounced, revealing the cumu-
lative effect of repeated employment-related moves. Other cantons, such as Aar-
gau, continue to retain notable shares, while the relative weight of smaller cantons
declines. By 2035, mobility slows as individuals approach the later stages of
their careers. These results confirm that the model effectively captures the income
boost mechanism, whereby higher earners increasingly concentrate in urban can-
tons over time, while the rest of the population remains distributed according to
baseline demographic patterns.

Additionally, to illustrate the relationship between home and work locations,
Figure 20 presents the cantonal distributions of residents and workers over time
for the same cohort. The observed evolution aligns with the expected modeling
dynamics. At the age of 20, most individuals still reside in their birth canton,
as many are not yet employed, resulting in a lower frequency of work locations,
particularly in smaller cantons. By the age of 30, employment becomes more
widespread, especially in larger cantons, and most individuals live where they
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work. By the age of 40, the gap between home and work locations narrows further,
while urban cantons account for a larger share of both residence and employment.
Conversely, some smaller cantons (e.g., Jura) lose relative weight, reflecting mid-
career migration toward economic centers. By the age of 50, the home and work
distributions remain consistent, reflecting the model assumption that 95% of indi-
viduals live and work in the same canton, while the remaining 5% are employed
in neighbouring cantons.

(a) 2005 (b) 2015

(c) 2025 (d) 2035

Figure 20: Home and work canton distribution for the 1985 cohort over time

4.4 Scenario testing
In this section, we want to demonstrate how changes can be applied to the univer-
sal dataset and reflected in all derived datasets, which opens the door for testing
the impact of hypothetical scenarios in both short-and long-term simulations. In
Figure 21, we illustrate the steps of the performed case study.

First, we generate a universal dataset using Model 4, introduced in Section 4.1.
Next, we simulate a hypothetical 2025 pandemic on this dataset, targeting older
individuals. Specifically, we randomly select people aged over 50 and apply a
70% mortality rate. To assess the impact, we compare two scenarios: (i) normal,
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Figure 21: Hypothetical scenario setting

where we derive synthetic panels for t = 2021 and t = 2035 directly from the
original universal dataset, and (ii) hypothetical, where the same panels are derived
after applying the pandemic simulation. By contrasting these two scenarios, we
aim to evaluate whether we can capture a disruptive demographic event between
2021 and 2035. In Figure 22, we compare the normal and disaster scenarios. The
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Figure 22: Age distribution of synthetic panels from 2021 and 2030

normal scenario shows the expected age distribution shift due to natural aging and
mortality. In the disaster scenario, the 2021 sample remains unchanged, while
by 2035 a larger share of older individuals has died as a result of the simulated
pandemic. Comparing these two time-dependent datasets allows us to observe the
impact of the demographic event that occurred between them.

Figure 23 illustrates the setup for testing how the choice of time step s affects
the visibility of pandemic effects relative to the year t in which the pandemic
occurred. By comparing death rates at t− s and t+ s (see Table 12), we analyze
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t = 20252020 20302015 20352010 2040

s = 5s = 5

s = 10s = 10

s = 15s = 15

· · · · · ·

Figure 23: The effect of time step s on identifying pandemic impacts around t

the extent to which the disaster’s impact can be identified over varying temporal
distances. We calculate the death rate for both scenarios as the difference between
the death percentage at t + s and t − s, divided by the time step s. Since no
pandemic has occurred before t, the death percentage at t − s is the same for
both scenarios. The disaster becomes evident through the highest number in the
death rate for smaller time steps (e.g., s = 5), with the death rate in the disaster
scenario being 2.06 times higher than in the normal scenario. For larger steps
(e.g., s ≥ 25), the natural rise in deaths hides short-term effects, making the
disaster harder to detect.

Time Step
s

Death % at
t− s

Death % at
t+ s

Normal

Death % at
t+ s

Disaster

Death Rate
Normal
(DRn)

Death Rate
Disaster
(DRp)

DRp
DRn

5 38.99 51.09 63.93 2.42 4.99 2.06

10 33.12 57.24 67.55 2.41 3.44 1.43

15 27.59 63.15 71.22 2.37 2.91 1.23

20 22.73 68.82 75.00 2.30 2.61 1.13

25 18.30 74.05 78.66 2.23 2.41 1.08

30 14.36 78.84 82.17 2.15 2.26 1.05

35 11.01 83.13 85.45 2.06 2.13 1.03

40 8.28 86.81 88.38 1.96 2.00 1.02

45 6.02 89.94 90.95 1.86 1.89 1.01

Table 12: Comparison of cumulative death percentages and death rates for t =
2025 for different time steps in normal and disaster scenarios.

This example serves as a foundation for extending the framework to other
types of simulations, such as changes in legislation, wars, or migration crises.
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5 Conclusion
This paper introduced a framework for generating synthetic panel data based on
the event–duration approach in the absence of real panel data. The central idea is
to generate a single set of universal variables from which time-dependent variables
can be derived at any point without recalibration. This provides (i) disaggregated
longitudinal information about the same individual, offering richer insights than
aggregated sociodemographic marginals alone, (ii) internal consistency across
time by relying on one set of universal variables, (iii) flexibility, as changes to
the universal dataset are automatically reflected in all derived datasets, and (iv)
efficiency, since time-dependent data are derived directly rather than regenerated.

This work introduces a framework that combines a data-free generative ap-
proach with the adaptation of synthetic panel data to observed cross-sectional in-
formation. The proposed methodology enables the generation of synthetic panel
datasets that exploit available cross-sectional observations while remaining adapt-
able to diverse application contexts. The version presented here is deliberately
simple and illustrated through examples designed to clarify the essential building
blocks of the approach.

Future developments may refine the methodology by extending the framework
from individuals to households, or by adopting Bayesian approaches that allow
continuous updating as new data become available. Potential applications include
scenario testing through the integration of multiple datasets, improvements in de-
mographic modeling, additional parameterizations of behavioral models, and the
use of alternative estimation procedures. These avenues highlight the flexibility
and extensibility of the framework, and its potential to evolve in step with ad-
vances in data availability, statistical methods, and application needs.
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A From Survival Probability to Sampling-Based
Likelihood Integration

We initially explored whether the empirical age distribution observed in the cross-
sectional data could be reproduced using only the survival component of the
model, i.e., by combining the distributions of birth year e1 and lifespan d1. The
idea was that, if lifespans follow a realistic distribution and births are uniformly
distributed across years, then survival probability alone might capture the overall
age structure.

Formally, we define the probability that an individual is alive at time t = 2010,
given their year of birth e1 = y, as

P(x1,2010 = 1 | e1 = y) = P(d1 ≥ y1,2010) = 1− Fd1
(y1,2010), (25)

where x1,2010 = 1 denotes that the individual is alive in 2010, d1 represents the
lifespan, and y1,2010 = 2010−e1 is the age of the individual in 2010. The function
Fd1

(·) is the cumulative distribution function (CDF) of the Weibull distribution
assumed for lifespan:

Fd1
(y1,2010) = 1− exp

[
−
(y1,2010

λ

)k
]
, (26)

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the
Weibull distribution.

We then performed a sensitivity analysis by testing various combinations of
the parameters k and λ to identify those that best fit the real data. To evaluate
the fit, we use two metrics: Mean Squared Error (MSE) and Kullback-Leibler
(KL) divergence. MSE measures the average squared difference between the real
and synthetic distributions, capturing overall differences in shape and magnitude.
KL divergence quantifies the information loss when the synthetic distribution ap-
proximates the real one, placing greater weight on regions with high probabil-
ity mass in the empirical data. Since KL divergence is not symmetric, that is,
DKL(P ||Q) ̸= DKL(Q ||P), it is essential to define the direction of comparison.
When P is the real distribution (i.e., observed data) and Q the synthetic one (i.e.,
given by the model), we use the following expression:

DKL(P ||Q) =
∑
i

pi · log
(
pi

qi

)
We tested these metrics with a random set of parameters k and λ for the

Weibull distribution using datasets from 2010, 2015, 2021. The results of the
comparison are presented in Table 13 and Figure 24.
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Year Shape (k) Scale (λ) MSE KL Divergence

2010 3.0 80 7.4× 10−5 9.76× 10−2

2010 3.0 85 7.3× 10−5 1.02× 10−1

2010 3.0 90 7.0× 10−5 1.06× 10−1

2015 3.0 80 3.9× 10−5 6.38× 10−2

2015 3.0 85 3.3× 10−5 6.63× 10−2

2015 3.0 90 3.4× 10−5 7.61× 10−2

2021 3.0 80 4.5× 10−5 7.50× 10−2

2021 3.0 85 4.1× 10−5 8.18× 10−2

2021 3.0 90 4.2× 10−5 9.55× 10−2

Table 13: Top 3 Weibull parameter combinations per year, selected based on MSE
and KL divergence.
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Figure 24: Sensitivity analysis of birth year given t = 2010 generated using
Weilbull distribution with different k and λ compared to real sample

The results show that, although different parameter combinations produce
varying degrees of fit, none of them are able to reproduce the shape of the em-
pirical distribution. The generated data systematically overrepresented younger
individuals and underrepresented older individuals, resulting in a flatter and unre-
alistic age profile.

While KL divergence and MSE serve as distance measures between distri-
butions, they are not suitable for parameter estimation. MLE instead provides
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a systematic approach by choosing the parameters k, λ that maximize the likeli-
hood of the observed data under the model. We choose KL divergence as the pri-
mary evaluation metric because, in theory, maximum likelihood estimation MLE
minimizes the KL divergence between the empirical distribution and the model
(Murphy, 2012). Accordingly, we expect the parameter set obtained via MLE to
achieve the lowest KL divergence, and potentially also the lowest mean squared
error, when compared to alternative parameter sets. Thus, we estimate parameters
k and λ using MLE for data from 2010, 2015, and 2021 and obtain the results
presented in Table 14 and Figure 25.

Year k λ

2010 2.16 48.74
2015 2.24 50.16
2021 2.23 51.12

Table 14: Weibull parameter estimates by year
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Figure 25: Comparison of real data from 2010 and generated data using estimated
k and λ of the Weilbull distribution.

Parameter estimates from KL divergence and MLE differ significantly, with
MLE yielding an unrealistic lifespan (λ = 48), suggesting a poor model fit. Al-
though MLE theoretically minimizes KL divergence under ideal conditions, this
discrepancy indicates that the Weibull distribution is insufficient to fully capture
the true structure of the birth year distribution.

The results from both the sensitivity analysis and the MLE estimation confirm
that a survival-only model cannot reproduce the empirical birth year structure at
moment t. To address this limitation, we extend the model by introducing an
explicit age-dependent sampling probability, as described in Section 3.4. Build-
ing on this extension, we now present the estimation results obtained using the
maximum likelihood framework, which integrates empirical information into the
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assumed distributions and calibrates their parameters to better reflect the observed
data.

Two likelihood formulations are considered. First, we estimate a simplified
version of the likelihood that focuses solely on calibrating the parameters govern-
ing the year of birth (e1) and lifespan (d1). This specification captures the joint
effect of survival and sampling and yields the optimal parameter set

θ∗
1 = (k, λ, αy, αa, αo, τ1, τ2),

representing the combination of survival and sampling parameters that best ex-
plain the observed birth year structure for a given year t.

The second formulation extends the likelihood to also account for driving li-
cence acquisition, as presented in Section 3.4. In this case, licence acquisition is
modeled jointly with survival and sampling, enabling the estimation to integrate
information from one or multiple cross-sectional datasets simultaneously. The
corresponding parameter vector is expanded to

θ∗
2 = (k, λ, αy, αa, αo, τ1, τ2, µ, σ, π),

where (µ, σ, π) describe the parameters of the licence acquisition process.
The optimization returns the parameter values that maximize the log-

likelihood on the empirical data. We perform the estimation independently for
years t = 2010, 2015, 2021, and report the resulting optimal parameters and max-
imum log-likelihood values. Table 15 reports the estimation results obtained from
the likelihood defined in Section 3.4.2. The distribution generated using these
estimates is also visualized in Figure 26, alongside real data. We notice that we
obtain realistic parameters (e.g., average life expectancy λ). This shows that mod-
eling survival and sampling probabilities leads to more realistic results compared
to modeling the survival component only.

Year k λ αy αa αo τ1 τ2

2010 2.84 69.28 0.002 0.95 0.04 38.51 88.21
2015 3.43 74.25 0.019 0.933 0.048 31.75 89.21
2021 3.42 78.12 0.031 0.922 0.047 32.71 86.98

Table 15: Estimated model parameters θ∗
1 using maximum likelihood

Additionally, we perform a sensitivity analysis by testing various combina-
tions of the parameters to identify those that best fit the real data using MSE and
KL divergence. To assess this, we generated a large number of random parameter
sets drawn uniformly from plausible ranges. For each year, we evaluated the em-
pirical fit of all random sets using both KL divergence and MSE. From these, we
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Figure 26: Birth year distributions given t = 2010, t = 2015, and t = 2021

generated using the estimated parameters from Table 15.

retained (i) the best-performing random set according to KL divergence and (ii)
the best-performing random set according to MSE. Separately, we included the
MLE-optimized parameter set (reported in Table 15), which was excluded from
the random pool but evaluated in the same way, ensuring a fair comparison under
the same model specification.

As shown in Table 16, the MLE solution consistently achieves the lowest KL
divergence and, in most cases, also the lowest MSE across all three years. This
supports the idea that the survival and sampling model not only maximizes likeli-
hood, but also produces age distributions that closely align with the observed data
under multiple evaluation criteria. Figure 27 further illustrates this by compar-
ing, for each year, the distributions obtained from the best KL-divergence-based
random solution with those from the MLE solution.

Year Metric KL
10−4

MSE
10−4 k λ αy αa αo τ1 τ2

2010 Random by KL 1.20 0.06 2.98 72.35 0.0044 0.9874 0.0082 32.83 81.80

2010 Random by MSE 1.20 0.06 2.98 72.35 0.0044 0.9874 0.0082 32.83 81.80

2010 MLE Solution 0.84 0.05 3.40 70.65 0.0452 0.9465 0.0084 38.51 88.21

2015 Random by KL 1.79 0.08 2.78 74.61 0.0282 0.9559 0.0159 33.88 78.46

2015 Random by MSE 1.89 0.08 3.09 79.24 0.1018 0.8605 0.0377 34.84 76.51

2015 MLE Solution 1.32 0.08 3.43 74.25 0.0192 0.9328 0.0480 31.76 89.21

2021 Random by KL 1.49 0.08 3.09 79.69 0.1078 0.8874 0.0048 31.44 85.19

2021 Random by MSE 2.08 0.07 3.38 75.68 0.0463 0.4891 0.4646 30.04 52.68

2021 MLE Solution 1.35 0.07 3.42 78.12 0.0307 0.9224 0.0469 32.71 86.98

Table 16: Comparison of KL divergence and MSE between best random samples
and MLE solution for each year
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Figure 27: Comparison of birth year distributions given t = 2010, 2015, 2021

generated using the paramaters of best KL-divergence-based and the MLE-based
solution

We now turn to the second estimation problem, introduced in Section 3.4. In
this extended framework, the joint likelihood incorporates additional information,
such as licence acquisition, and the parameter vector is augmented accordingly
to include (µ, σ, π). The results of this extended estimation are presented in Ta-
ble 17.

Year k λ αy αa αo τ1 τ2 π µ σ Log-Likelihood
2010 3.17 70.67 0.045 0.767 0.189 39.18 57.10 0.200 2.95 0.092 −265,776.00

2015 2.86 73.87 0.088 0.889 0.024 31.44 80.32 0.252 2.97 0.056 −242,626.21

2021 3.37 80.24 0.073 0.925 0.002 35.79 85.54 0.148 2.86 0.111 −234,659.54

Table 17: Estimated model parameters θ∗
2 using the joint likelihood formulation.

From these results, several findings can be highlighted. First, the estimated
survival and sampling parameters are consistent with those obtained in the pre-
vious procedure (see Table 15), and their values are interpretable and fall within
realistic ranges. This indicates that the estimation procedure produces stable re-
sults, and the joint likelihood is well defined. Second, the similarity of the es-
timates across different years is expected. Although the cross-sectional samples
are assumed to be independent (i.e., they do not track the same individuals), they
are all drawn from the same underlying population (i.e., some dependencies may
arise because surveys often stem from the same region or sampling frame), which
naturally leads to consistent parameter values. Third, for the licence-related pa-
rameters (π, µ, σ), our estimates are close to the fixed values reported for Switzer-
land (see Section 3.1). This confirms the validity of our estimation procedure and
highlights the advantage of the updating approach, since in countries where such
reference values are not available, they can be directly inferred from the data.
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