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Abstract
The choice-based pricing problem (CPP) consists in optimizing product prices while ac-
counting for consumer preferences and potential capacity constraints. Demand is typically
modeled using a discrete choice model (DCM). We introduce the Breakpoint Heuristic
Algorithm (BHA) to address the CPP with and without capacity constraints as well as an
extension of the Breakpoint Exact Algorithm (BEA) to handle capacities, together with
valid inequalities for the QCQP-L (quadratically constrained quadratic program with lin-
ear objective) formulation of the uncapacitated CPP, allowing us to speed up the exact
Branch & Benders Decomposition (B&BD) approach. Capacity management is handled
by an exogenous priority queue. Results show that, in the capacitated case, the BEA
solves a larger set of instances within the time limit than the state-of-the-art MILP for-
mulation, achieving identical revenues on all completed instances and better solutions
in cases where the MILP fails to converge. The proposed BHA heuristic performs well
across both low- and high-dimensional instances, consistently producing near-optimal so-
lutions with an average gap below 0.2%. In the uncapacitated case, BHA and its ILS
extension solve all tested instances—including high-dimensional ones—for which exact
methods such as BEA and B&BD often exceed time limits. The BHA also improves the
performance of B&BD when used to guide the search and generate valid inequalities.
In mixed-logit pricing problems, both BHA and ILS solve benchmark instances signifi-
cantly faster than methods specialized for this setting, while maintaining solution quality;
the ILS matches all known optima, and the BHA maintains an average gap below 0.02%.
Keywords: discrete choice, pricing, capacity constraints, heuristic, valid inequalities

Glossary

Acronym Full term

CPP Choice-based Pricing Problem
DCM Discrete Choice Model
ML Mixed Logit
MILP Mixed Integer Linear Programming / Program
QCQP-L Quadratically Constrained Quadratic Program with Linear objective
BEA Breakpoint Exact Algorithm
BHA Breakpoint Heuristic Algorithm
ILS Iterated Local Search heuristic
B&B spatial Branch and Bound
B&BD spatial Branch and Benders Decomposition
CoBiT Convexification of a Biconvex optimization and Trust-region algorithm
LAG Lagrangian decomposition-based heuristic
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1 Introduction
Effective pricing strategies play a critical role in various industries, especially in markets
where customer preferences and product choices are diverse and complex. Discrete choice
models (DCMs), based on random utility theory, provide a robust framework for captur-
ing the impact of customer heterogeneity on demand. By modeling how individuals se-
lect among available alternatives, these models allow companies to better predict demand
and optimize their pricing strategies accordingly. Building on this foundation, we aim to
address the challenge of developing efficient algorithms for pricing with disaggregate de-
mand modeling in the form of a DCM, which we will refer to as the choice-based pricing
problem (CPP). Our central research question is how to create a scalable and computa-
tionally efficient algorithm to solve the CPP, especially for high-dimensional instances
with customer heterogeneity and when taking constraints on capacity into account.
By advancing state-of-the-art methods, we seek to provide more effective solutions for
real-world pricing challenges, where customer preferences and demand patterns can be
modeled using random utility maximization (RUM) frameworks, resulting in so-called
choice-based optimization problems. Utility maximization theory posits that individu-
als assess each option available to them and choose the one that maximizes their utility.
Key areas where these models are applied include pricing Davis et al. (2017); Gallego &
Wang (2014); Li et al. (2019); Paneque et al. (2022) and assortment optimization Liu et
al. (2020); Rusmevichientong et al. (2010), which are fundamental to strategic business
decisions. DCMs like logit and nested logit are a widely used tool to model demand in var-
ious problem settings, including facility location (Mai & Lodi, 2020; Ljubić & Moreno,
2018), railway timetabling (Cordone & Redaelli, 2011; Robenek et al., 2018), and toll
setting (Wu et al., 2012) problems, as well as revenue management and pricing (Shen &
Su, 2007; Korfmann, 2018; Gallego & Wang, 2014; Müller et al., 2021). For the latter,
however, it has been shown that the more complex mixed logit (ML) DCMs represent
the more powerful and realistic demand representation (Sumida et al., 2021; van de Geer
& den Boer, 2022; Marandi & Lurkin, 2023). Incorporating advanced discrete choice
models such as mixed logit into optimization problems introduces significant computa-
tional difficulties due to the non-convex nature of the choice probabilities (Hanson &
Martin, 1996) and the need to represent individual demand perspectives, such as capacity
allocation. As a result, only small to moderate-sized problems are typically solvable to
optimality (Benati & Hansen, 2002; Paneque et al., 2021).
To tackle these computational challenges, innovative approaches have emerged: Gilbert
et al. (2014) developed a tractable approximation for maximizing revenue through pricing
under mixed logit (ML) demand in congested networks, utilizing a two-step process com-
bining a mixed integer program with an ascent algorithm. Subsequently, Li et al. (2019)
explored a price optimization problem under discrete ML demand, introducing a pair of
concave maximization problems to bound the revenue function.
It is important to highlight that in Li et al. (2019) and van de Geer & den Boer (2022), both
of which are closely related to our work, the probability measure is considered discrete.
In Li et al. (2019), customer-specific variables are not included in the utility models, re-
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sulting in identical choice probabilities for all customers. In contrast, van de Geer &
den Boer (2022) connects only the exogenous component of the utility to the customers.
Consequently, unlike van de Geer & den Boer (2022), more recent studies, as well as
our framework, address customer heterogeneity, including variations in price sensitiv-
ity parameters. For instance, Marandi & Lurkin (2023) consider discrete ML pricing with
heterogenous price-sensitivity parameters and propose an iterative optimization algorithm
that asymptotically converges to the optimal solution. By formulating a linear optimiza-
tion problem based on the trust-region approach, they find a feasible solution and design
a convex optimization problem using a convexification technique to approximate the opti-
mization problem from above. A branching method is then used to tighten the optimality
gap. Results show that for various tested instances (up to 5 customers and 5 alternatives),
their method significantly outperforms other approaches, among which van de Geer & den
Boer (2022), in almost all cases. They furthermore successfully demonstrate the benefits
in terms of expected revenue when going from MNL to ML demand modeling, a finding
later confirmed by for example Abdolhamidi & Lurkin (2024)
One way to deal with the non-convexity arising from advanced DCMs is simulation-based
optimization (Gosavi, 2015). This framework involves optimizing stochastic simulations
to derive effective decisions or strategies. For instance, in choice-based optimization,
this method approximates demand for products or services by simulating various ran-
dom choices based on utility functions and using a sample average approximation method
Haase & Müller (2013); Legault & Frejinger (2024).
To provide a more general framework for integrating advanced choice models into opti-
mization problems, Paneque et al. (2021) proposed a simulation-based approach to for-
mulate any choice-based optimization problem as a mixed-integer linear program (MILP).
While increasing complexity due to the exponential scaling of the MILP solve time with
the number of draws, this approach guarantees convergence to globally optimal solutions
for sufficiently large numbers of draws. However, its practical applicability is limited
to small-scale instances, highlighting the need for more efficient computational strate-
gies. The authors focus on the choice-based pricing problem (CPP), where a DCM is
integrated to model the demand in a pricing optimization problem, with the goal of max-
imizing profit. They manage to solve instances with two controlled prices, 50 customers
and 250 simulation draws to optimality within two hours for the uncapacitated case and
within 21 hours when taking capacity into account.
Recognizing the issue of scale, Paneque et al. (2022) introduced a heuristic method based
on a Lagrangian decomposition scheme, where the original problem is simplified by
grouping simulation scenarios based on their similarities, allowing for a more efficient
and scalable approach to solving the aforementioned MILP formulation. However, the
efficiency of the algorithm depends heavily on the scenario grouping strategy, and its ef-
fectiveness might vary across different setups or datasets. They use the same data set
as Paneque et al. (2021) and focus on the CPP with capacity constraints. For two con-
trolled alternatives and 50 individuals, they manage to solve instances with 100 draws up
to around 3% optimality within a two-hour time limit. For four controlled alternatives
they solve instances with 25 draws in the same time limit to around 3.5% optimality. It is
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worth mentioning, however, that adding capacity constraints drastically complicates the
optimization problem.
Haering et al. (2023) introduce two exact methods for the uncapacitated CPP, the Break-
point Exact Algorithm (BEA), as well as a Spatial Branch and Benders Decomposition
(B&BD) approach. With the BEA, they solve instances with one controlled price, 50 cus-
tomers and one million simulation draws within less than two minutes to optimality, as
well as instances with two controlled prices, 50 customers and 22 thousand draws within
72 hours. With the B&BD algorithm, they manage to solve instances with four controlled
prices, 50 customers and 200 draws to 1% optimality within 24 hours. Comparing to
mixed-logit specific algorithms for the CPP, they demonstrate that they outperform the
work from Marandi & Lurkin (2023) by a factor of 300x for two-price optimization using
the BEA and an average factor of 3x for larger numbers of alternatives when using the
spatial Branch and Bound (B&B) algorithm.
These results show that the BEA and B&B / B&BD approaches are efficient methods
for solving the CPP without capacity constraints. However, the curse of dimensionality
is a strong limiting factor even for the Branch and Bound approaches, and none of their
algorithms are capable of handling capacity constraints.

To summarize, we find that for the CPP, there are no solution approaches in the literature
that are at the same time general, flexible, and capable of solving realistic instances in a
reasonable amount of time, especially for high numbers of prices and when constraints
on capacity are introduced. Our aim is to address this gap by extending the BEA al-
gorithm to handle capacity constraints, developing an efficient and flexible heuristic for
high-dimensional problems, the Breakpoint Heuristic Algorithm (BHA), and enhancing
the capabilities of the B&B and B&BD procedures by adding valid inequalities. The BHA
exploits the fact that the BEA performs exceptionally well for one-dimensional instances
but scales exponentially for more prices. Our coordinate descent approach optimally ex-
ploits this characteristic. Furthermore, we show how the solution from the BHA can
be used to speed up the exact spatial B&BD approach for the non-capacitated problem
by guiding the pruning and introducing valid inequalities for the QCQP-L formulation
of the problem, which the B&BD is based on. The goal in this context is to addition-
ally demonstrate that a simulation-based method with a larger number of samples can be
solved more efficiently than an approach that directly employs nonlinear choice functions
but is restricted to a smaller number of classes or breaking points, as shown in Legault
& Frejinger (2024). This provides a strong motivation for using a purely simulation-
based approach with deterministic customers rather than approximating ML models with
a smaller sample of customers following a logit model. By using a larger number of sam-
ples, the simulation-based method can more accurately capture the diversity of customer
preferences and behaviors, thereby enhancing the robustness of the results and providing
a more comprehensive understanding of complex customer heterogeneity.
The paper is structured as follows: Section 2 describes the choice-based pricing problem
and its formulation as a mathematical program. In Section 3, we introduce the Breakpoint
Heuristic Algorithm (BHA), as well as an extension with an iterated local search (ILS)
to escape local optima. In Section 4 we demonstrate how to guide the B&BD algorithm
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using the solution from the BHA together with new valid inequalities, followed by Section
5 presenting the computational experiments. Finally, we conclude the paper and present
its essential takeaways in Section 6.

2 Problem definition
Consider a competitive market with multiple products, of which J products are controlled
by a supplier who wants to identify the set of prices that maximizes their revenue. We
number the controlled alternatives from 1 to J, and the competitors’ alternatives using
non-positive numbers, from 1−K to 0. Denote C1 = {1, . . . , J} the set of all offered alter-
natives by the supplier and C = C1∪{1−K, . . . , 0} the set of all alternatives available. We
consider N customers choosing one product among all offered alternatives. Each individ-
ual n ∈ N = {1, . . . ,N} may furthermore have a different set of considered alternatives,
denoted by Cn ⊂ C. We need to assume that each individual has at least one uncontrolled
alternative in the choice set. If not, the problem is unbounded. An individual’s considered
set of alternatives that are offered by the supplier is denoted by C1

n = {i ∈ Cn|i ∈ C1}.
The behavior of the customers is captured by a random utility model: each alternative
i ∈ Cn is associated with a stochastic utility Uin, which depends on socioeconomic
characteristics of individual n, alternative-specific attributes, and the controlled prices for
alternatives i ≥ 1. It can be defined as follows:

Uin = Vin + εin ∀i ∈ Cn \ C1
n,

Uin = Vin + βin
p pi + εin ∀i ∈ C1

n,

where Vin represents the deterministic part of the utility that is observed by the analyst,
which can take any form and be non-linear in the explanatory variables, and εin is the
unobserved error term (and thus a random variable). It is furthermore worth noting that
the price variable pi can be separated into multiple pic for different customer segments
c. For the sake of readability, we adhere to the global price notation pi. The probability
Pn(i) that individual n chooses alternative i ∈ Cn can now be written as follows:

Pn(i) = P(Uin ≥ Ujn ∀j ∈ Cn) ∀i ∈ Cn

The controlled prices pi, i ∈ C1 are decision variables that need to be optimized in order
to maximize the expected revenue, expressed as each product’s price times the probability
the product is bought by an individual, summed up over all individuals. We assume each
price pi to be bounded within a continuous domain [pL

i , p
U
i ]. In general, the mathematical

expression for Pn(i) is complex. Advanced models, such as mixtures of logit and hybrid
choice models lack a closed form and are expressed using integrals (Hanson & Martin,
1996).

2.1 Problem formulation
To address the lack of closed-form expressions for the probability functions, we employ
the simulation approach of Paneque et al. (2021): We take R draws εinr from the distri-
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bution of the error terms to generate R scenarios (the terms “scenario” and “draw” will
henceforth be used interchangeably) with deterministic utilities Uinr:

Uinr = Vin + βin
p pi + εinr ∀i ∈ C1, n ∈ N, r ∈ R,

= cinr + βin
p pi ∀i ∈ C1, n ∈ N, r ∈ R,

Uinr = Vin + εinr ∀i ∈ C \ C1, n ∈ N, r ∈ R,

= cinr ∀i ∈ C \ C1, n ∈ N, r ∈ R,

where R = {1, . . . , R} and cinr contains all terms of the utility function independent from
the price. As now all uncontrolled alternatives i ∈ C \ C1 have a utility that is constant
given an individual n and a scenario r, we can gather them for each tuple (n, r) as a single
opt-out alternative, corresponding to the best of them:

c0nr = max
i∈C\C1

cinr ∀n ∈ N, r ∈ R.

We thus redefine C = C1 ∪ {0} and impose 0 ∈ Cn ∀n ∈ N, as otherwise, the problem
is unbounded. The choice of individual n in scenario r is then modeled with the choice
variable ωinr, which is equal to 1 if alternative i is chosen and 0 otherwise. Subsequently,
the probability of an individual n ∈ N choosing alternative i ∈ Cn can be approximated
by the sample average 1

R

∑
r∈Rωinr.

This framework leads to the formulation of the uncapacitated choice-based pricing prob-
lem (CPP) as a quadratically constrained quadratic program with linear objective (QCQP-
L), presented in Haering et al. (2023), given in Formulation 1.
The objective function is equal to the expected revenue and is thus defined as the ap-
proximated choice probability of individual n selecting alternative i ∈ Cn multiplied
by the alternative’s price pi, summed over all individuals. The constraints define the in-
dividual choices: Constraints (µnr) guarantee that exactly one alternative is chosen per
individual and scenario. Constraints (κinr) model the utility Uinr of each alternative i for
individual n in scenario r. Constraints (ζnr) and constraints (αinr) enforce the optimality
conditions for the customer utility maximization problem. Note that this is a continuous,
but non-convex, reformulation of the original mixed-integer linear program (MILP) ap-
proach. Indeed the previously integer ω variables are relaxed to be in [0, 1] instead, at
the cost of non-convex choice constraints. More precisely, the utility maximization prob-
lem at the individual level resembles a knapsack problem, where the choice variable of
the most attractive alternative is forced to take the value 1. However, the inclusion of an
endogenous variable in the “weights” of the knapsack transforms the problem from linear
to bilinear, as it involves the product of two continuous variables: the price pi and the
choice variable ωinr, as isolated in the constraints (λinr). Finally, the price variables may
also depend on the individuals (or groups of individuals), thus allowing for segmented
targeting of the population.
Formulation 1 can be extended to incorporate capacity constraints on the alternatives, as
demonstrated in Paneque et al. (2021). However, adding these constraints makes it no
longer possible to relax the domain of the ω variables, meaning the problem has to be
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max
p,ω,η,U,h

1

R

∑
r∈R

∑
n∈N

∑
i∈C1

n

ηinr

s.t.∑
i∈Cn

ωinr = 1 ∀n ∈ N, r ∈ R (µnr)

hnr = c0nrω0nr

+
∑
i∈C1

n

[cinrωinr + βin
p ηinr] ∀n ∈ N, r ∈ R (ζnr)

hnr ≥ c0nr ∀n ∈ N, r ∈ R (α0nr)

hnr ≥ Uinr ∀n ∈ N, i ∈ C1
n, r ∈ R (αinr)

Uinr = cinr + βin
p pi ∀n ∈ N, i ∈ C1

n, r ∈ R (κinr)

ηinr = piωinr ∀n ∈ N, i ∈ C1
n, r ∈ R (λinr)

ω ∈ [0, 1](J+1)NR

p ∈ [pL
1, p

U
1 ]× . . .× [pL

J , p
U
J ]

η ∈ [0, pU
1 ]× . . .× [0, pU

J ]

U,h ∈ RJNR,RNR

(1)

Formulation 1: QCQP-L model for the uncapacitated CPP
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max
p,ω,η,U,h

1

R

∑
r∈R

∑
n∈N

∑
i∈C1

n

ηinr

s.t.∑
i∈Cn

ωinr = 1 ∀n ∈ N, r ∈ R, (µnr)

hnr ≤ zinr +M(1−ωinr) ∀n ∈ N, i ∈ Cn, r ∈ R, (ζnr)

hnr ≥ zinr ∀n ∈ N, i ∈ Cn, r ∈ R, (αinr)

Uinr = cinr + βin
p pi ∀n ∈ N, i ∈ C1

n, r ∈ R, (κinr)

ηinr ≤ ωinrp
U
i ∀n ∈ N, i ∈ C1

n, r ∈ R, (λ1inr)

ηinr ≤ pi ∀n ∈ N, i ∈ C1
n, r ∈ R, (λ2inr)

ηinr ≥ pi − (1−ωinr)p
U
i ∀n ∈ N, i ∈ C1

n, r ∈ R, (λ3inr)

z0nr = c0nr ∀n ∈ N, r ∈ R, (anr)

zinr ≤ Uinr ∀n ∈ N, i ∈ C1
n, r ∈ R, (binr)

zinr ≥ Uinr −M(1− yinr) ∀n ∈ N, i ∈ C1
n, r ∈ R, (cinr)

zinr ≤ M/2+Myinr ∀n ∈ N, i ∈ C1
n, r ∈ R, (dinr)

ωinr ≤ yinr ∀n ∈ N, i ∈ C1
n, r ∈ R, (einr)

n∑
m=1

ωimr ≤ (ci − 1)yinr

+ (n− 1)(1− yinr) ∀n > ci ∈ N, i ∈ C1
n, r ∈ R, (finr)n∑

m=1

ωimr ≥ ci(1− yinr) ∀n > 1 ∈ N, i ∈ C1
n, r ∈ R, (ginr)

ω ∈ {0, 1}(J+1)NR,

y ∈ {0, 1}JNR,

p ∈ [pL
1 , p

U
1 ]× . . .× [pL

J , p
U
J ],

η ∈ [0, pU
1 ]× . . .× [0, pU

J ],

U, z, h ∈ RJNR,R(J+1)NR,RNR.

(2)

Formulation 2: MILP model for the capacitated CPP
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written as a MILP. Furthermore, some constraints presented in Formulation 1 have to be
adjusted. For the sake of clarity, we present the full MILP formulation for the CPP with
capacity constraints, as it represents the state-of-the-art to model and solve the problem.
First, we assume a set of given capacities ci, i ∈ C1. We now introduce two new sets
of variables, the binary yinr variables, which indicate the availability of alternative i ∈
C1 for individual n in scenario r, and the discounted utility variables zinr, which are
equal to the utilities Uinr if alternative i ∈ C1 is available (i.e. yinr = 1) and set to
a low enough value otherwise, thus embedding the concept of unavailable alternatives
in the customer subproblem. We note that individuals are assumed to be numbered in
the order of their priority to access the market. This numbering can follow any rule,
including being random, but must be exogenous, as without it, the solver would be allowed
to endogenously prioritize customers to maximize overall revenue, leading to unrealistic
and biased outcomes. In many applications (such as ticket sales, online bookings, or real-
world markets), customers arrive or are served according to an exogenous order that the
supplier cannot control. Simply imposing a total capacity constraint like

∑
n∈N yinr ≤ ci

would eliminate the sequential nature of access and would substantially alter the modeled
problem.

Lastly, as the choice variables are now again binary, the product piωinr can be modeled in
a linear way using big-M constraints, where the optimal big M is the largest possible value
taken by said product, i.e. pU

i . The full MILP formulation for the capacity-constrained
CPP is given in Formulation 2, where M is a large enough constant. Constraints (ζnr)
and (αinr) have been adjusted to incorporate the newly added z variables. The non-
convex constraints (λinr) have been replaced by a set of linear constraints (λ1inr), (λ

2
inr)

and (λ3inr), modeling the big-M linearization of the aforementioned product. Constraints
(ainr − dinr) define the discounted utility zinr, ensuring that in case of yinr = 0, zinr
takes on a small enough value to not compete with any available alternative’s utility, and
is set to be equal to Uinr otherwise. Constraint (einr) enforces that an alternative can only
be chosen if it is available to that individual in that scenario. Lastly, constraints (finr) and
(ginr) define the y variables: Constraint (finr) sets yinr to 0 whenever the capacity of
alternative i is reached and constraint (ginr) makes sure that, if an alternative is no longer
available, there have to be enough people choosing the alternative to fill it.

It is furthermore worth noting that, if the prices are all fixed to constant values, it is trivial
to find the optimal values of all variables. To see this, it is enough to remember that with
fixed prices p, the problem reduces to solving a utility maximization knapsack problem,
this time with constant weights, for each customer n and scenario r. As the prices are
the only connecting variables, this can be done separately for every tuple (n, r), giving
an efficient way to evaluate the objective function for a given feasible solution. The same
procedure can be applied to the capacitated version of the problem, taking a priority queue
into account.
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3 Methodology
In this section, we extend the BEA to incorporate capacity constraints, introduce the
Breakpoint Heuristic Algorithm (BHA), which can be applied to solve both the uncapaci-
tated and capacitated version of the CPP, as well as an iterated local search (ILS) heuristic
to improve the solution quality. Lastly, we demonstrate how to guide exact methods using
the heuristic result together with newly developed valid inequalities for the CPP.

3.1 Extending the BEA for capacity constraints
The Breakpoint Exact Algorithm (BEA) is an efficient exact method for solving the
Choice-based Pricing Problem (CPP) when the number of alternatives is small. It sys-
tematically explores all local optima by enumerating candidate solutions over structured
subsets of the feasible space. As shown in Algorithm 1, the BEA iterates over all J!
permutations of the ordering of price variables. We denote by S the set of all possible
permutations s of {1, . . . , J}. For a given permutation s ∈ S, the jth element of the or-
dered list s in denoted by sj. For each ordering, the algorithm initializes the price vector
and customer utilities, then calls a recursive procedure enumerate that incrementally
sets prices according to the given order. At each step, customer choices and accumulated
revenues are tracked, and the best solution across all permutations is retained. The algo-
rithm’s worst-case time complexity is O(J!(NR)J log(NR)), which is exponential in the
number of alternatives J, but polynomial in the number of individuals N and simulation
draws R.
The recursive function enumerate constructs solutions by fixing one price at a time
and solving the resulting subproblem. A key feature is that, at the final level of recur-
sion—when the last alternative is introduced—the profit can be dynamically updated with-
out recomputing customer utility maximizations from scratch. Thanks to the assumption
of non-decreasing price ordering, previously computed customer decisions remain valid
unless the new alternative becomes more attractive. This allows for fast, incremental
updates to the total revenue by tracking customer switches, leading to significant compu-
tational savings.
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Algorithm 1: Breakpoint Exact Algorithm (BEA) to solve the CPP
Result: optimal solution p∗ and objective value o∗ for Formulation 1.
p∗
j ← 0 ∀j ∈ {1, . . . , J};

o∗ ← 0;
for s in S do

psj ← 0 ∀j ∈ {1, . . . , J};
hs1
nr ← c0nr ∀(n, r) ∈ N × R;

η̄nr ← 0 ∀(n, r) ∈ N × R;
(p̂, ô)← enumerate(s, p, hs1 , η̄, 1);
if ô > o∗ then

p∗ ← p̂;
o∗ ← ô;

end
end
return (p∗, o∗);

To incorporate capacity constraints into the BEA, we employ a streamlined variant that
systematically explores each valid combination of breakpoints in sequence. As for the
uncapacitated case, the optimal price ensures that the utility of a product matches the
utility of the next cheapest alternative for at least one customer and scenario, maximizing
revenue without unnecessary customer loss. Specifically, for an optimal price pi, i ∈ C1,
there exists a customer n ∈ N and scenario r ∈ R such that any increase in pi by
ε > 0 would lower the utility Uinr below that of cheaper alternatives or the opt-out
option, deterring that customer and decreasing overall revenue. Hence, this price acts as a
“breakpoint” or “indifference point” in the customer’s decision-making, representing the
maximum price before their interest shifts to more affordable options.
The outer level algorithm (see Algorithm 3) remains the same as for the BEA, with the
only difference being that the recursive enumerate function is replaced by a function
enumerate cap, described in Algorithm 4. At its deepest level, it invokes the func-
tion compute objective value that calculates the objective value for a set price
variables fixed to a combination of breakpoints, taking capacity restrictions into account.
Due to interdependent choices potentially leading to recursive substitution, continuously
updating choices and revenues becomes impractical. Additionally, when adding a new
product, calculating breakpoints for each simulated customer from their previous prefer-
ence to the new option is insufficient in this problem setting. Instead, breakpoints must
be computed from any possible previous product to the new one, as capacity limits may
force customers to choose an alternative other than their most preferred. This adjustment
accounts for decision breakpoints involving switches from any introduced product to the
new one. The process of sequentially introducing alternatives remains the same as in the
original BEA, as the order in which alternatives are introduced to customers alters their
decision making breakpoints. A diagram visualizing the BEA with capacity constraints is
shown in Figure 1.
These two changes, compared to the BEA without capacity constraints, increase the algo-

11



rithm’s computational complexity. However, directly evaluating the objective function at
each breakpoint combination also enhances flexibility in revenue computation methods.
Indeed, this allows to add any type of constraint to the problem without adjusting the algo-
rithm. In our case, we only consider capacity constraints, implemented with an exogenous
priority queue. Algorithm 2 lays out the evaluation of revenue given such a queue, where
individuals are assigned the highest utility alternative with positive remaining capacity.

Algorithm 2: Compute objective value with priority queue
Function compute objective value(p, c, prio queue):

σ← (0)i∈C
for idx ∈ prio queue do

u← [Ui
idx for i ∈ C]

a← sort(u, descending)
φ← false
j← 1

while j ≤ C− 1 and !φ do
if σaj

≤ caj
− 1 then

σaj
+= 1

φ← true
end
else

j += 1

end
end

end
o←∑i∈C σi · pi

return o
end

Algorithm 3: Breakpoint exact algorithm (BEA) to solve the capacitated
CPP

Result: optimal solution p∗ and objective value o∗ for the capacitated CPP.
p∗
j ← 0 ∀j ∈ {1, . . . , J}

o∗ ← 0

for s in S do
psj ← 0 ∀j ∈ {1, . . . , J}

(p̂, ô)← enumerate cap(s, p, 1)
if ô > o∗ then

p∗ ← p̂;
o∗ ← ô;

end
end
return (p∗, o∗)

Algorithm 3, like Algorithm 1 iterates over all possible orderings of prices ps1 ≤ ps2 ≤
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· · · ≤ psJ , s ∈ S. Each restricted problem is addressed by the recursive enumerate cap
function. This function accepts as arguments the current permutation s ∈ S of alternatives,
a partially filled vector of prices p, with components ps1 ≤ · · · ≤ psj−1

already set, and
the depth j of the current permutation’s exploration.
The function enumerate cap solves the capacitated CPP, restricted to a specific order-
ing of prices, in a recursive manner.

Algorithm 4: Recursive enumeration function within the BEA, when
taking capacities into account

Function enumerate cap(s, p, j):

p̄nrsi
sj ← U

si
nr−csjnr

β
sjn

p

∀(n, r) ∈ N × R, i < j ∈ C ∪ {0}

N2 ← {(n, r, si)|p
L
sj
< p̄nrsi

sj < pU
sj
}

N2 ← N2 ∪ {pL
sj
, pU

sj
∀i ∈ C}

Sort the elements of N2 from largest to smallest
if j ≤ J− 1 then

for p̄nrsi
sj ∈ N2 do
psj ← p̄nrsi

sj

(p̂, ô)← enumerate cap(s, p, j+ 1)
if ô > o∗ then

o∗ ← ô

p∗ ← p̂
end

end
end
else

for p̄nrsi
sj ∈ N2 do
psj ← p̄nrsi

sj

o← compute objective value(p)
if o > o∗ then

o∗ ← o

p∗ ← p
end

end
return (p∗, o∗)

end
end

The exponential growth in BEA’s complexity with the number of controlled alternatives
J is illustrated in the tree diagram in Figure 1, where each branch represents a call to the
recursive enumerate cap function.

13



Introduce
alternative 1,
compute ps

1.

Introduce
alternative 2,
compute ps

2,1.

Compute capacitated profit. Compute capacitated profit.

Fix
p 1
=
p
1
1
.

Introduce
alternative 2,
compute ps

2,2.

Fix
p
1
=

p
21 .

Introduce
alternative 2,
compute ps

2,3.

Compute capacitated profit.

Fix p
1 =

p 3
1 .

Compute the breakpoints ps
1

(from U0s = U1s)
for all simulated customers s.

Compute breakpoints ps
2

(from U0s = U2s and
U1s = U2s).

From lowest
to highest price.

Figure 1 – BEA with capacity constraints for three simulated customers and
two alternatives.

3.2 Breakpoint heuristic algorithm (BHA)
The BHA is based on the exact Breakpoint Exact Algorithm (BEA) and capitalizes on
the idea of decision-making breakpoints. Given a fixed state of the market—a set of
controlled and competing alternatives, all with fixed prices—we can compute, for each
customer and each simulation scenario, a breakpoint at which the utility of a newly in-
troduced alternative becomes the largest, thus altering the current decision. These break-
points represent a set of local optima that can be enumerated. The algorithm’s complexity
is O(J!(NR)Jlog(NR)), and thus polynomial in N and R, but exponential in the number
of prices.
The BHA can be summarized as a coordinate descent (ascent), iteratively optimizing one
price at a time while fixing all other prices, terminating once no coordinate can be im-
proved further. This approach leverages the fact that the BEA can solve instances in-
volving a single price variable very efficiently, while its computational time increases
exponentially with the number of price variables. By iteratively treating all but one price
as fixed, the BHA is able to navigate the search space more effectively and maintain com-
putational traceability. It is described in the following procedure:

1. Choose a starting point for the heuristic. As any combination of prices is feasible,
the simplest choice here can be to choose the middle of the price bounds, p∗ =

(
pLi +pUi

2 )i∈C1 .

2. Evaluate the objective function for price p∗, giving objective value o∗.

3. Set j = 1.
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4. Solve the problem using the BEA but with modified bounds p̄L, p̄U, where, p̄L
i =

p̄U
i = pi ∀i ̸= j and p̄L

j = pL
j , p̄U

j = pU
j . We refer to these new bounds as

p̄L(p, j, pL) and p̄U(p, j, pU). All bounds, except for alternative j, are thus tight,
greatly simplifying the problem. We thus iterate over all relevant breakpoints for all
simulated customers, evaluating the objective value at each combination of break-
points and updating the highest objective o∗ and the best prices p∗ whenever a
better solution is found.

5. Set j = j+ 1 and repeat from step 4. In the case of j = D, we reset it to j = 1.

6. Terminate once no change in the optimal solution is observed over D iterations.

The pseudocode for the BHA is provided in Algorithm 5.

Algorithm 5: Breakpoint Heuristic Algorithm (BHA)
Function BHA(pstart; c, prio queue):

o∗ ← compute objective value(pstart)
p∗ ← pstart

p← p∗

j← 1

σ← 0

while σ < D do
p̂j, ô← BEA(p̄L(p, j, pL), p̄U(p, j, pU); c, prio queue)
pj ← p̂j

if ô > o∗ then
o∗ ← ô

p∗ ← p̂

σ← 0
else

σ += 1

end
j += 1

if j > D then
j← 1

end
end
return o∗, p∗

end

3.3 Iterated local search heuristic (ILS)
The iterated local search algorithm is an iterative enhancement to the BHA, aimed at
escaping local optima through adaptive step size adjustments. Initiated with a set of initial
prices p and an objective value o∗, the algorithm takes as additional inputs an initial step
size δ, the number of steps to be taken in each direction (increase and decrease) k, a step
increase factor γ, and a maximum step size ∆max. Each iteration consists of the following
steps:
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• Exploring both increase and decrease directions for each price component i ∈ C1,
the algorithm tests k increment steps, each being a multiple of δ. At each step,
a new candidate solution p̄ is generated by adjusting the i-th component of p by
±kδ.

• For each candidate solution, the objective function is evaluated, and o∗ is updated
when a new best solution is found.

• If there was no improvement in objective value after completing the line search on
all components of p, the step size δ is increased by the factor γ, enlarging the scope
of the line search in the next iteration.

The algorithm continues until δ ≥ ∆max. The pseudocode for the ILS can be found in
Algorithm 6.

16



Algorithm 6: Iterated Local Search Algorithm (ILS)
Function
iterated local search(pstart, δ, k, γ, ∆max; caps, prio queue):

o∗ ← compute objective value(pstart)
p∗ ← pstart

φ← true
σ← 0

while δ < ∆max do
φ← false
for j ∈ 1 : D do

for d ∈ [−1, 1] do
for l ∈ 1 : k do

pnew ← p

pnew
j += d · l · δ

if pL
j ≤ pnew

j ≤ pU
j then

onew, pnew,← BHA(pnew; c, prio queue)
if onew > o∗ and pnew ∈ [pL, pU] then

o∗ ← onew

p∗ ← pnew

φ← true
σ← 0

end
end

end
end

end
if !φ then

σ += 1

δ ·= γ
end
else

σ← 0

end
p← p∗

o← o∗

end
return o∗, p∗

end

4 Guiding the exact algorithm
As shown in Section 5, the heuristics introduced above provide very good solutions in a
short amount of time. However, they do not provide a guarantee of optimality. Therefore,
we also investigate the possibility of solving the problem exactly. In this context, we use
the heuristic to help an exact algorithm. We consider as a starting point a spatial Branch
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& Benders algorithm for the uncapacitated CPP. We give a brief overview of the method
and then explain how we can speed up its convergence. The main strategy for accelerat-
ing the performance of Branch and Bound algorithms hinges on improving the bounds.
Specifically, using a heuristic such as the BHA to find an initial feasible solution gen-
erates a strong lower bound (for a maximization problem) on the objective, significantly
reducing the number of nodes explored in the search tree by enabling more effective prun-
ing. Additionally, the upper bounds, needed to prove optimality, can be improved through
the incorporation of valid inequalities. Lastly, we incorporate knowledge of the heuris-
tic solution into the enumeration strategy to break ties between nodes with equal upper
bound.

4.1 Spatial Branch and Benders algorithm
The spatial Branch and Benders (B&BD) algorithm solves the mathematical program
stated in Formulation 1 by first employing the McCormick envelope (McCormick, 1976)
to relax the bilinear constraints defining ηinr, and then tightens that relaxation by finding
the best set of bound via a spatial branch and bound tree. In each child node, the length
of the interval between the price bounds for a selected price is halved, guaranteeing con-
vergence. The relaxation in each node is then solved using Benders decomposition.
Given a set of bounds pi ∈ [pL

i , p
U
i ] ∀i ∈ C1, the McCormick envelop used to relax the

constraints ηinr = piωinr is given by:

ηinr ≥ pL
iωinr

ηinr ≥ pU
i ωinr + pi − pU

i

ηinr ≤ pL
iωinr + pi − pL

i

ηinr ≤ pU
i ωinr

This yields the linear McCormick relaxation of the QCQP-L shown in Formulation 3.
It is worth noting that the constraint (λ1inr), i.e., ηinr ≥ pL

iωinr, is theoretically redun-
dant given the bounded domain of pi and the presence of the other McCormick envelope
constraints. However, we observed empirically that its inclusion improves solver perfor-
mance in several instances, likely due to enhanced propagation of variable bounds during
presolve. For this reason, we have retained it in the formulation. Furthermore, constraint
(λ3inr) can be replaced with the simpler bound ηinr ≤ pi without loss of tightness. This
holds because the constraint (λ4inr), which enforces ηinr ≤ pU

i ωinr, already ensures that
ηinr ≤ 0 when ωinr = 0. Thus, when combined with (λ4inr), the proposed constraint
ηinr ≤ pi is equivalent to (λ3inr) in all relevant cases. Although this is equivalent, keeping
(λ3inr) in its current form does not alter the feasible region and may be beneficial for solver
symmetry and structure.
A spatial Branch and Bound algorithm, see for example Liberti (2008), is employed to
find the globally optimal values for all the prices. A conceptual outline of the method is
given below:

1. Solve the McCormick relaxation (Formulation 3) using the initial bounds.
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2. From the solution value of the prices, compute the corresponding choices and con-
struct a feasible solution.

3. Choose a price to branch on, then split the search interval for that price, i.e., its
bounds, into two, while all other price bounds remain the same. Add two new
nodes to the Branch and Bound tree, each corresponding to one set of the new
bounds.

4. Choose the next node from the tree based on the achieved objective value in its par-
ent node (best-first-search), and solve the relaxation with the bounds corresponding
to that node.

5. Continue until the relative gap between the objective value of the tightest relaxation
is close enough (up to a predefined relative optimality gap) to the objective value
of the best feasible solution found.

In every node of the Branch and Bound tree, Formulation 3 needs to be solved with a given
set of price bounds, which may be time-consuming due to a large number of variables η
and ω. However, Formulation 3 is highly separable: indeed, if all variables pi are fixed
to a certain value, the utility maximization problem can be solved for every individual
and scenario independently. This is why a Benders decomposition approach is considered
to speed up the solution of the McCormick relaxation in each node of the Branch and
Bound tree. Benders decomposition works by decomposing the original problem into a
master problem and a subproblem, where the master problem is a relaxation of the original
problem that iteratively is improved by the addition of optimality and feasibility cuts, see
for example Rahmaniani et al. (2017).
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max
p,ω,η,U,h

1

R

∑
r∈R

∑
n∈N

∑
i∈C1

n

ηinr

s.t.∑
i∈Cn

ωinr = 1 ∀n ∈ N, r ∈ R (µnr)

hnr = c0nrω0nr

+
∑
i∈C1

n

[cinrωinr + βin
p ηinr] ∀n ∈ N, r ∈ R (ζnr)

hnr ≥ c0nr ∀n ∈ N, r ∈ R (α0nr)

hnr ≥ Uinr ∀n ∈ N, i ∈ C1
n, r ∈ R (αinr)

Uinr = cinr + βin
p pi ∀n ∈ N, i ∈ C1

n, r ∈ R (κinr)

ηinr ≥ pL
iωinr ∀n ∈ N, i ∈ C1

n, r ∈ R (λ1inr)

ηinr ≥ pU
i ωinr + pi − pU

i ∀n ∈ N, i ∈ C1
n, r ∈ R (λ2inr)

ηinr ≤ pL
iωinr + pi − pL

i ∀n ∈ N, i ∈ C1
n, r ∈ R (λ3inr)

ηinr ≤ pU
i ωinr ∀n ∈ N, i ∈ C1

n, r ∈ R (λ4inr)

ω ∈ [0, 1](J+1)NR

p ∈ [pL
1 , p

U
1 ]× . . .× [pL

J , p
U
J ]

η,U, h ∈ RJNR,RJNR,RNR

(3)

4.2 Valid inequalities
A first general set of valid inequalities can be derived by observing that, given a set of
bounds [pL

i , p
U
i ]i∈C1 , i.e. at each node in the tree, for each simulated customer (n, r) ∈

N× R and alternative i ∈ C1
n, there exists a minimal breakpoint p̌nr

i (assuming strongest
competition) and a maximal breakpoint p̂nr

i (assuming weakest competition), defined as
follows:

p̌nr
i =

maxj∈C1
n\{i}

Ujnr(p
L
j ) − cinr

βin
p

∀n ∈ N, i ∈ C1
n, r ∈ R,

p̂nr
i =

maxj∈C1
n\{i}

Ujnr(p
U
j ) − cinr

βin
p

∀n ∈ N, i ∈ C1
n, r ∈ R,

where the Uinr(p) = cinr + βin
p p ∀n ∈ N, i ∈ C1

n, r ∈ R are seen as functions in the
price p. For the strongest competition, we compute the maximum utility among all other
controlled alternatives, given their lowest possible prices given the current bounds. As we
assume βp < 0 in all cases, this corresponds to the strongest possible competition. On the
other hand, taking the maximum utility among all other controlled alternatives, given their
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highest possible prices corresponds to the breakpoint assuming the weakest competition.
These breakpoints exhibit the following properties:

pi ≤ p̌nr
i =⇒ (n, r) is guaranteed to select i

=⇒ ωinr ≥ 1 ∀n ∈ N, i ∈ C1
n, r ∈ R,

pi ≥ p̂nr
i =⇒ (n, r) is guaranteed to not select i

=⇒ ωinr ≤ 0, ηinr ≤ 0 ∀n ∈ N, i ∈ C1
n, r ∈ R,

which can be integrated into Formulation 1 by use of the following valid inequalities:

pi + (p̌nr
i − pL

i )ωinr ≥ p̌nr
i ∀n ∈ N, i ∈ C1

n, r ∈ R,

and

pi + (pU
i − p̂nr

i )ωinr ≤ pU
i ∀n ∈ N, i ∈ C1

n, r ∈ R,

pi + (pU
i − p̂nr

i )ηinr ≤ pU
i ∀n ∈ N, i ∈ C1

n, r ∈ R,

respectively. If pi ≤ p̌nr
i and ωinr = 0 we have that pi ≤ p̌nr

i and pi ≥ p̌nr
i has to hold

at the same time, which is a contradiction, thus ωinr = 1 is enforced. In the same way, if
pi ≥ p̂nr

i then ωinr has to be set to 0 by the solver, as otherwise:

pi + (pU
i − p̂nr

i ) ≤ pU
i =⇒ pi − p̂nr

i ≤ 0 =⇒ pi ≤ p̂nr
i ,

which again leads to a contradiction. The inequality for ηinr is derived in the same way.
Note that in case of the upper bound with p̌nr

i , we cannot deduce a bound on the revenue
ηinr except that it is less than or equal to p̌nr

i which is already covered by the McCormick
constraints.
Given a feasible solution p∗ to the CPP, we can furthermore derive the following relations:

pj ≥ p∗
j ∀j ̸= i, pi ≤ p∗

i =⇒ ωinr ≥ ω∗
inr ∀n ∈ N, i ∈ C1

n, r ∈ R

pj ≤ p∗
j ∀j ̸= i, pi ≥ p∗

i =⇒ ωinr ≤ ω∗
inr ∀n ∈ N, i ∈ C1

n, r ∈ R

We describe how to convert the first relation into linear constraints, as the second follows
symmetrically. As the left-hand side consists of J individual conditions that all need to
be verified, we introduce an auxiliary variable zinr ∈ [0, 1] for each such condition i and
simulated customer (n, r). Note that these variables are indicators for whether or not a
condition holds, and as such are binary in nature. However, including them as binary vari-
ables would inevitably slow down the computation of the relaxation significantly, which is
why we relax their domain. For each i ∈ C1, we model the z variables with the following
constraints:

Constraints for alternative i:

pi + (p∗
i − pL

i )zinr ≥ p∗
i ∀n ∈ N, r ∈ R
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Constraints for alternatives j ̸= i:

pj − (pU
j − p∗

j )zjnr ≤ p∗
j ∀n ∈ N, r ∈ R

Additionally, we add constraints to ensure the relationship between the z variables and the
choice variables ω:

ωinr ≥
J∑

j=1

zjnr − (J− 1) ∀n ∈ N, r ∈ R

These constraints ensure that ωinr ≥ 1 if all conditions hold, i.e., zinr = 1 ∀i ∈ C1
n.

Although the relaxation of the z variables’ domain makes these inequalities less tight, they
remain valid, as each individual inequality still holds for fractional values of z. However,
this change makes the computational gain of their addition to the relaxation dependent on
the problem instance.

The valid inequalities developed in this subsection can directly be integrated in Formula-
tion 3.

4.3 Improving price bounds
Given a set of price bounds [pL

i , p
U
i ]i∈C1 at a node in the branch and bound tree, we

can look to improve the price bounds further before solving the relaxation. For this, we
consider the lowest minimal breakpoint p̌i and highest maximal breakpoint p̂i for each
i ∈ C1 over all individuals and scenarios:

p̌i := min
n∈N,r∈R

p̌nr
i ∀i ∈ C1

p̂i := max
n∈N,r∈R

p̂nr
i ∀i ∈ C1

From their derivation, we can infer certain conditions based on these values. If pi > p̂i,
this implies that no customer will choose alternative i. Conversely, if pi < p̌i, it indicates
that every customer will choose alternative i, provided it is within their choice set.
Additionally, we can refine these bounds to aim for target-specific outcomes, if desired.
For instance, if pi exceeds the m-th highest maximal breakpoint p̂nr

i,m, it suggests that
at most m simulated customers will choose alternative i. Similarly, if pi is below the
m-th lowest minimal breakpoint p̌nr

i,m, it implies that at least m simulated customers will
choose alternative i. In our case, we assume that for each product, there should be at
least one customer or scenario in which the product is chosen. If this assumption does not
hold, the product can be considered as having no effect on the choice and can be removed
from the set of offered products entirely. Consequently, we update the upper bound pU

i by
replacing it with p̂i whenever p̂i < pU

i , for all i ∈ C1.
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4.4 Node enumeration
Finally, when multiple nodes in the branch and bound tree have an identical upper bound,
we can use the knowledge of a good solution to determine the next node to explore.
Specifically, we select the node that contains the highest number of price values of the
provided solution within its bounds, exploring promising areas first. Let Ω denote the set
of all active nodes in the tree, where a node j consists of a set of bounds ∆j and its upper
bound on the objective value ôj. Furthermore, denote p∗ as the provided starting solution.
The next node to be selected from the tree can now be written as:

j∗ := arg max
j∈Ω

{|{k ∈ C1 s.t. p∗
k ∈ [pL

k(j), p
U
k (j)]}| s.t. ôj = max{ôi | {∆i, ôi} ∈ Ω}}}

implying that, among the nodes that reach the highest upper bound on their potential
objective value, we choose the one that contains the highest number of price values of the
initial solution in its bounds. In general, it is advisable to set p∗ to the best incumbent
solution identified up to that point.

5 Results and discussion
In this section, we apply the introduced methodology to a parking choice case study,
evaluating its performance across various instance sizes. We explore the limits of solvable
instances, compare the results to state-of-the-art methods for choice-based pricing and
mixed logit-specific pricing, and assess the computational efficiency and solution quality.

5.1 Case study
To test the presented methodology we rely on the same mixed logit (ML) case study as var-
ious other studies, among which Bortolomiol et al. (2021); Paneque et al. (2022); Marandi
& Lurkin (2023), establishing itself as a popular benchmark data set for ML-based pricing
policies. The case study concerns a parking services operator, motivated by the published
disaggregate demand model for parking choice by Ibeas et al. (2014). The choice set con-
sists of three services: paid on-street parking (PSP), paid parking in an underground car
park (PUP), and free on-street parking (FSP), presenting the opt-out. We artificially add
more PSP or PUP options by duplicating the respective alternative and increasing the ac-
cess time from the parking space to the desired destination by three minutes per duplicate,
starting with duplicating the PUP alternative, and then the PSP alternative. For example:
if we consider five offered alternatives, three of those will be PUP and two will be PSP.
This extension corresponds to augmenting the parking space facilities in size and offering
separate prices depending on proximity to the desired destination.

5.2 Description of experiments
The methods used in our experiments and their abbreviations are: Mixed-integer lin-
ear programming (MILP), Branch and Benders Decomposition (B&BD), B&BD without
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Benders decomposition (B&B), Breakpoint Exact Algorithm (BEA), Breakpoint Heuris-
tic Algorithm (BHA), Iterated Local Search (ILS), the state-of-the-art heuristic for the ca-
pacitated CPP, the Lagrangian decomposition approach presented in Paneque et al. (2022),
which we will refer to as LAG, and finally the state-of-the-art exact method for ML-based
pricing without capacities, the convexification of a biconvex optimization and trust-region
algorithm (CoBiT), presented by Marandi & Lurkin (2023). The goal of our experiments
is to answer the following set of questions:

1. How does the BEA, adapted to capacity constraints, compare in terms of the CPP
instances we are able to solve to the state-of-the-art exact MILP approach when an
exogenous priority queue is set in place?

2. How do the BHA and ILS compare to the MILP and BEA approaches on instances
with capacity constraints and a priority queue?

3. What are the largest instances we can solve within 72 hours using the BHA with
capacity constraints?

4. How do the BHA and ILS compare to the state-of-the-art exact B&BD and BEA
approaches on pricing instances without capacity constraints?

5. How does the number of alternatives impact the optimality gap for the BHA?

6. What are the largest instances we can solve within 72 hours using the BHA without
capacity constraints?

7. To what extent are we able to speed up the B&BD method using the solution from
the BHA for guidance, together with the derived valid inequalities?

8. How do the proposed general solution methods compare to the mixed-logit specific
LAG and CoBiT algorithms?
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Table 0 – Summary of Tests

Test 1 Test 2 Test 3 Test 4

J 2 2, 4 2, 4 2, 3, 4, 5, 6
N 50 50 50 50
R 2, 5, 10, 25, 50,

100, 250
2, 5, 10, 25, 50,
100, 200, 250

2, 5, 10, 25, 50,
100, 200, 250

1,000, 2,000,
3000

Capacities [20, 20] [20, 20], what
[15, 15, 15,
15]

[20, 20], what
[15, 15, 15, 15]

[20] ∀i ∈ Cn

Methods MILP, BEA BEA,
BEA-M,
BEA-R

MILP, BEA,
BHA, ILS

BHA

Test 5 Test 6 Test 7 Test 8

J 4 3, 4, 5, 6, 7, 8,
9, 10

2, 3, 4, 5, 6 2, 3, 4, 5, 6

N 20 20 50 10, 50, 100,
150, 197

R 100, 200, 300,
500, 1,000

20 500,000,
1,000,000

25, 50, 100,
200, 400

Capacities [∞, ∞, ∞,∞]
[∞] ∀i ∈ Cn [∞] ∀i ∈ Cn [20], [40], [60],

[80], [∞]
∀i ∈ Cn

Methods B&BD, BEA,
BHA, ILS

B&BD, BHA BHA LAG, CoBiT,
BEA, BEA,
BHA, ILS,
B&B, B&BD

To investigate these eight issues we perform the tests described in Table 0, where N de-
notes the number of randomly sampled individuals, R the number of scenarios generated
and J the number of controlled alternatives. The limits for capacities are adapted from
Paneque et al. (2021), as are the bounds for all prices, which are defined to be [0.5, 0.7]
for PSP alternatives and [0.65, 0.85] for PUP alternatives. The initial starting point for the

BHA in all cases is the mean of the bounds, i.e. pstart
i =

pLi +pUi
2 ∀i ∈ C1. For the ILS, we

use the following hyperparameter inputs: δ = 0.005, k = 3, γ = 2, ∆max = 0.05. Both
the MILP and B&BD experiments are performed using GUROBI 12.0.1 (Gurobi Opti-
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mization, LLC, 2021). All methods are run on a single thread in a computational cluster
node with two 2.4 GHz Intel Xeon Platinum 8360Y processors, where we utilize 16 cores
with a total of 32 GB of RAM.

5.3 Numerical results and analysis

Table 1 – Test 1: MILP vs. BEA in the capacitated case

MILP BEA

N R J Time (s) Revenue Time (s) Revenue

50 2 2 4.17 27.61 0.43 27.61
50 5 2 46.95 26.51 1.72 26.51
50 10 2 180.85 27.06 11.42 27.06
50 25 2 3,119.66 27.08 169.08 27.08
50 50 2 >5 hours ≥25.15 1,272.68 26.85
50 100 2 >25 hours ≥25.11 9,928.57 26.85
50 250 2 >45 hours ≥23.45 >45 hours ≥26.37

Table 1 presents the results of Test 1, comparing the exact MILP approach with the BEA
extended to capacity constraints with a fixed priority queue. For small instances (up to
R = 25), both methods were able to solve the instances within the time limit and achieved
identical revenues, indicating that the BEA reliably recovers optimal solutions in these
cases. As R increases, the MILP approach exceeds the time limit of 5 hours starting
from R = 50, while the BEA continues to return feasible solutions within a reasonable
timeframe. Notably, for larger instances (R = 100 and R = 250), the BEA produces
higher revenues than the best solutions reported by the MILP before timeout, suggesting
that the heuristic is able to identify high-quality solutions even when the exact method
fails to converge.
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Table 2 – Test 2: BHA and ILS vs. MILP and BEA in the capacitated case

MILP BEA BHA ILS

N R J Time (s) Revenue Time (s) Revenue Time (s) Revenue Time (s) Revenue

50 2 2 4.17 27.61 0.43 27.61 0.22 27.61 1.03 27.61
50 5 2 46.95 26.51 1.72 26.51 0.32 26.46 5.91 26.51
50 10 2 180.85 27.06 11.42 27.06 0.58 27.05 20.34 27.06
50 25 2 3,119.66 27.08 169.08 27.08 3.40 27.05 129.66 27.08
50 50 2 >5 hours ≥25.15 1,272.68 26.85 8.31 26.53 559.04 26.85
50 100 2 >25 hours ≥25.11 9,928.57 26.85 51.77 26.72 2,791.28 26.85
50 250 2 >45 hours ≥23.45 >45 hours ≥26.37 455.37 26.66 15,867.67 26.71
50 10 4 >10 hours ≥22.21 >10 hours ≥25.10 7.08 26.78 527.34 26.83
50 50 4 >20 hours ≥22.19 >20 hours ≥25.19 166.21 27.00 7,234.88 27.00
50 100 4 >45 hours ≥20.50 >45 hours ≥26.09 866.97 26.67 34,050.57 26.67
50 200 4 >72 hours ≥20.32 >72 hours ≥24.79 2,762.39 26.70 106,286.13 26.70

Table 2 compares the performance of the MILP, BEA, BHA, and ILS approaches on
capacitated instances with a fixed priority queue. For small instances (R ≤ 25), all four
methods are able to solve the problem within the time limit and achieve similar revenues,
indicating that the heuristic methods match the performance of the exact methods in these
cases. As the instance size increases, the MILP and BEA approaches begin to exceed the
time limit, while both BHA and ILS continue to return high-quality solutions. Notably,
for all instances up to R = 250 and J = 2, the BHA completes in under one hour, and its
solutions are consistently close in value to those found by ILS, which itself aligns with
the best-known solutions reported by the exact methods. In the larger four-price cases,
neither MILP nor BEA solve any instance within the time limit, whereas BHA and ILS
are able to return solutions throughout. In these settings, BHA requires significantly less
computation time than ILS while still producing solutions of comparable quality.
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Table 3 – Test 3: Limits of the BHA in the capacitated case

N R J BHA (s)

50 1,000 2 15,093
50 1,000 3 25,326
50 1,000 4 69,134
50 1,000 5 112,042
50 1,000 6 178,923
50 2,000 2 51,637
50 2,000 3 84,231
50 2,000 4 150,132
50 2,000 5 193,233
50 3,000 2 164,922
50 3,000 3 184,293
50 3,000 4 >259,200

Table 3 explores the scalability of the BHA heuristic on increasingly large instances under
capacity constraints. All instances were run with a time limit of 72 hours. The results
show that the BHA successfully solves instances with up to 1,000 simulated draws and
6 offered prices, up to 2,000 draws for up to 5 prices, and up to 3,000 draws for up
to 3 prices. The only configuration that exceeds the time limit corresponds to the most
complex tested setting: 3,000 draws and 4 prices. These results demonstrate the ability of
the BHA to handle significantly larger instances than previously reported in the literature,
for example, compared to the maximal number of 200 draws for two offered alternatives
in Paneque et al. (2022).

Table 4 – Test 4: BHA and ILS vs. B&BD and BEA in the uncapacitated case

B&BD BEA BHA ILS

N R J Time (s) Revenue Time (s) Revenue Time (s) Revenue Time (s) Revenue

20 100 4 12,478 10.14 61,139 10.14 0.00 10.14 0.14 10.14
20 200 4 29,213 10.40 >24 hours ≥10.21 0.01 10.40 0.41 10.40
20 300 4 >24 hours ≥10.38 >24 hours ≥9.84 0.02 10.24 0.64 10.24
20 400 4 >24 hours ≥9.81 >24 hours ≥9.82 0.05 10.26 0.78 10.26
20 500 4 >24 hours ≥10.01 >24 hours ≥9.80 0.13 10.24 1.37 10.24

For the uncapacitated case, Haering et al. (2023) have shown that instances with two or
fewer prices can easily be solved with the BEA algorithm, whereas for instances with
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at least three alternatives, the B&BD approach is the fastest method. We thus consider
only instances with at least three offered alternatives. Table 4 presents results comparing
the performance of BHA and ILS to the exact B&BD and BEA approaches in the unca-
pacitated setting. For the smallest instance (R = 100), all methods converge within the
time limit and produce identical revenues. At R = 200, the BEA fails to solve the in-
stance within 24 hours, while both BHA and ILS match the solution obtained by B&BD.
For larger instances (R ≥ 300), neither B&BD nor BEA complete within the time limit,
whereas BHA and ILS return feasible solutions in under two seconds and two minutes, re-
spectively. In all unterminated cases, the heuristic methods produce solutions with higher
objective values than those reported by the exact methods before timeout. BHA continues
to match the performance of ILS with significantly shorter runtimes, and both heuristics
recover the best known solution for all instances tested.

Table 5 – Test 5: BHA optimality gap when increasing dimensions

N R J BHA B&BD Gap (%)

20 20 3 10.281 10.281 0
20 20 4 10.271 10.28 0.09
20 20 5 10.283 10.294 0.11
20 20 6 10.290 10.302 0.12
20 20 7 10.292 10.306 0.14
20 20 8 10.330 10.336 0.06
20 20 9 10.329 10.335 0.06
20 20 10 10.293 10.300 0.07

Table 5 depicts the outcomes of the analysis of the behavior of the optimality gap when
the number of offered alternatives is increased. The instance size is kept small in order
to be able to compute the global optimum with the B&BD algorithm within a reasonable
time. We observe that generally, the mean of the bounds as a starting point does not lead
to convergence to the global optimum, especially if the number of dimensions increases.
However, the optimality gap is continuously very small and never reaches values bigger
than 0.14%. We conclude that the BHA manages to deliver very high-quality solutions
even for high-dimensional instances.
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Table 6 – Test 6: Testing BHA limits without capacity constraints

N R J BHA (s)

50 500,000 2 56
50 500,000 3 77
50 500,000 4 187
50 500,000 5 163
50 500,000 6 194
50 1,000,000 2 68
50 1,000,000 3 132
50 1,000,000 4 312
50 1,000,000 5 300
50 1,000,000 6 412

The next test, whose results are found in Table 6, aims to understand the limits in terms
of instance size for the BHA when no capacity constraints are set in place. Although a
72 hour time limit was set in place, the largest instance, N = 50, R = 1, 000, 000, J = 6

was solved in less than seven minutes, demonstrating that the BHA is capable of tackling
much larger instances than the ones available from our current dataset.

Table 7 – Test 7: B&BD with Guidance - 10% gap

N R J
normal

w/out VIs (s)
normal

w VIs (s)
Guided

w/out VIs (s)
Guided

w VIs (s)
Speedup

from just VIs (%)
Add. Speedup
from Sol. (%)

Total
speedup (%)

50 1,000 3 987 1,132 731 816 -14.69 27.92 17.33
50 2,000 3 2,878 3,490 2,513 2,693 -21.26 22.84 6.43
50 3,500 3 10,325 12,919 6,390 7,454 -25.12 42.3 27.81
50 1,000 4 4,662 3,311 3,705 2,472 28.98 25.34 46.98
50 2,000 4 17,599 12,068 10,868 8,288 31.43 31.32 52.91
50 3,500 4 48,445 31,210 40,061 29,504 35.58 5.47 39.1
50 1,000 5 8,242 5,428 5,664 3,914 34.14 27.89 52.51
50 2,000 5 25,842 16,641 17,420 12,268 35.6 26.28 52.53
50 3,500 5 114,216 81,826 85,083 58,754 28.36 28.2 48.56

The outcomes of Test 7 are displayed over the next three tables, Tables 7, 8 and 9 re-
spectively. They each depict the impact on computational time coming from adding the
valid inequalities (VIs) to the McCormick relaxation in each node, the BHA solution as
a starting point for the B&B search (referred to as “guided”) and the two enhancements
combined, for achieving different optimality gaps. Table 7 shows that to reach an opti-
mality gap of 10%, the total speedup from the enhancements over the unmodified B&BD
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reaches up to 50%, especially for instances with higher dimensions. Going further to 5%
optimality in Table 8, the speedup reduces slightly and varies between 25-40%, decreas-
ing further when looking at the computational time needed to reach 1% optimality gap
in Table 9, which is reduced by 10-20% when using the enhancements. These speedups,
where observable, remained stable until full convergence to the optimal solution (not de-
picted as only a fraction of these large instances were solved to optimality within the time
limit). Two tendencies are clearly shown: For three alternatives, the VIs in fact seem to
slow down the computation, however, increasing the number of alternatives shows that
the more alternatives are being controlled, the larger the observed increase in speed when
adding both the VIs or the heuristic starting point.

Table 8 – Test 7: B&BD with Guidance - 5% gap

N R J
normal

w/out VIs (s)
normal

w VIs (s)
Guided

w/out VIs (s)
Guided

w VIs (s)
Speedup

from just VIs (%)
Add. Speedup
from Sol. (%)

Total
speedup (%)

50 1,000 3 2,372 2,454 1,933 2,245 -3.46 8.52 5.35
50 2,000 3 7,883 8,359 7,106 7,342 -6.04 12.17 6.86
50 3,500 3 51,964 57,229 42,991 47,282 -10.13 17.38 9.01
50 1,000 4 12,062 10,668 10,490 8,934 11.56 16.25 25.93
50 2,000 4 43,829 36,524 36,222 32,929 16.67 9.84 24.87
50 3,500 4 259,200 240,767 238,777 198,981 7.11 17.36 23.23
50 1,000 5 24,371 20,590 19,519 16,930 15.51 17.78 30.53
50 2,000 5 84,104 60,814 70,676 48,541 27.69 20.18 42.28
50 3,500 5 259,200 259,200 259,200 247,944 - - -

Table 9 – Test 7: B&BD with Guidance - 1% gap

N R J
normal

w/out VIs (s)
normal

w VIs (s)
Guided

w/out VIs (s)
Guided

w VIs (s)
Speedup

from just VIs (%)
Add. Speedup
from Sol. (%)

Total
speedup (%)

50 1,000 3 15,840 16,933 13,239 14,594 -6.9 13.81 7.87
50 2,000 3 42,261 45,223 35,882 37,137 -7.01 17.88 12.12
50 3,500 3 183,696 195,743 152,833 162,594 -6.56 16.93 11.49
50 500 4 47,101 46,719 47,963 43,190 0.81 7.55 8.3
50 1,000 4 131,122 135,564 107,288 105,596 -3.39 22.11 19.47
50 1,500 4 229,620 230,187 203,348 202,560 -0.25 12 11.78
50 2,000 4 259,200 259,200 259,200 259,200 - - -
50 500 5 139,618 125,755 115,783 109,084 9.93 13.26 21.87
50 1,000 5 259,200 259,200 259,200 259,200 - - -
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Table 10 – Test 8: Runtime (seconds) comparison to LAG

N R J LAG BEA BHA x Sp. ILS x Sp.

50 50 2 >7,200 3,109 24 300 841 9
50 100 2 >7,200 >7,200 96 75 3,640 2
50 200 2 >7,200 >7,200 459 16 >7,200 -

100 100 2 >7,200 >7,200 554 13 >7,200 -
150 100 2 >7,200 >7,200 1166 6 >7,200 -
197 100 2 >7,200 >7,200 1617 4 >7,200 -
50 25 4 >7,200 >7,200 31 230 2,711 3
50 50 4 >7,200 >7,200 148 49 7,157 1
50 100 4 >7,200 >7,200 591 12 >7,200 -

Regarding Test 8, we first compare our methods with the state-of-the-art heuristic method
for general capacitated choice-based pricing, the LAG algorithm by Paneque et al. (2022).
Unfortunately, the authors were not able to provide us with their code, which is why we
replicate their experimental environment (12 threads on a 3.33 GHz Intel Xeon X5680
server running a 64-bit Ubuntu 16.04.2) in order to be able to compare with the runtimes
they provide in their paper. In their experiments, they run tests on the same parking
space operator case study (with capacity constraints) in the following way: a time limit
of two hours is set and the achieved optimality gap after the time limit is reported, but no
objective values or optimal prices. This makes the comparison to our approaches difficult,
as neither the exact BEA nor the heuristic BHA and ILS procedures report an optimality
gap. Table 10 shows the comparison between the LAG, the BEA, the BHA and the ILS in
terms of runtimes.

Table 11 – Test 8: Objective value comparison to LAG (with a two-hour time limit)

LAG BEA BHA ILS

N R J Gap (%) Revenue Gap∗ (%) Revenue Gap∗ (%) Revenue

50 50 2 2.02 26.243 0.00 26.237 0.02 26.243
50 100 2 2.80 26.560 1.28 26.906 0.00 26.906
50 200 2 3.67 26.250 1.14 26.530 0.09 26.553

100 100 2 1.98 52.780 0.53 53.028 0.06 53.059
150 100 2 1.91 80.370 0.33 80.640 0.00 80.640
197 100 2 - 104.640 0.70 105.181 0.19 105.381
50 25 4 3.34 25.728 4.26 26.873 0.00 26.873
50 50 4 4.57 25.180 3.52 26.099 0.00 26.099
50 100 4 5.19 26.090 2.90 26.870 0.00 26.870

* relative gap compared to ILS revenue.
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The time limit is set to two hours and the instance sizes and capacity limitations are cho-
sen in accordance with the tests conducted in Paneque et al. (2022). The LAG does not
solve any of the instances to optimality within the time limit, the BEA manages to solve
the smallest one (N = 50, R = 50, J = 2), the BHA converges for all instances and the
ILS does so for four out of the nine tested instances. The BHA on average is at least 78x
faster than the LAG, with the ILS on average being at least 4x faster. These factors are
likely many times higher in reality, since closing the last few percentages of the optimal-
ity gap notoriously takes very long, which was also reported to be the case by Paneque
et al. (2022). Comparing the numerical results is difficult, since for the LAG, we only
have the achieved optimality gap. Table 11 thus shows the reported optimality gap for
the LAG, the achieved revenues for the BEA, BHA and ILS, as well as the relative gap
between the revenues of the BEA and BHA compared to the ILS, as we cannot report the
real optimality gap. We note that within this time limit, both heuristic procedures pro-
duce better solutions than the exact BEA approach, with the average relative gap between
BEA and ILS being 1.63%, and the average relative gap between the BHA and ILS being
0.04%. This further demonstrates that, although the BHA is significantly more efficient
in terms of computational time, there is only a small loss in terms of solution quality
when compared to the ILS algorithm. The average reported optimality gap of the LAG is
with 3.19% pronouncedly larger than the average relative gap from BHA to ILS, however,
the comparison should be contextualized carefully, considering the lack of an optimality
certificate for the ILS.

Table 12 – Test 8: Runtime (seconds) comparison to CoBiT

N n2 R J CoBiT B&B x Sp. B&BD x Sp. BEA x Sp. BHA x Sp. ILS x Sp.

10 9 100 2 69 17 4 83 0.83 1 69 0.002 4 · 104 0.086 971
10 9 100 3 607 124 5 623 0.97 10 61 0.001 4.5 · 105 0.117 5,343
10 9 100 4 6,439 985 7 4,791 1.34 5727 1 0.002 3.2 · 106 0.216 2.2 · 104
10 9 100 5 34,409 4,017 9 18,644 1.85 >86,400 - 0.001 27 · 106 0.250 7.4 · 104
10 9 100 6 39,164 6,015 7 27,758 1.41 >86,400 - 0.002 15 · 106 0.254 1.1 · 105
10 64 400 2 270 128 2 620 0.44 1 270 0.003 8.6 · 104 0.139 4,461
10 64 400 3 4,234 783 5 3,174 1.33 560 8 0.005 9.2 · 105 0.244 1.2 · 104
10 64 400 4 37,384 8,895 4 34,503 1.08 >86,400 - 0.010 3.8 · 106 0.460 7.5 · 104
10 64 400 5 38,090 25,367 2 >86,400 - >86,400 - 0.010 3.6 · 106 0.658 1.3 · 105
10 64 400 6 39,424 >86,400 - >86,400 - >86,400 - 0.012 3.4 · 106 0.650 1.3 · 105

We next compare to the state-of-the-art algorithm for (uncapacitated) mixed-logit-basing
pricing, the CoBiT algorithm presented by Marandi & Lurkin (2023). The authors use the
same parking choice case study as we do to illustrate their algorithm, and they have made
their code available on GitHub. In their experiments, they address cases with N = 10 cus-
tomer classes and two controlled prices, achieving optimal solutions. They approximate
the continuous distributions of price sensitivity and arrival times with discrete distribu-
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tions and report the runtimes based on varying numbers of breakpoints in their approxi-
mations.
Differing from our approach, their model assigns each pair of customer class and break-
point to a customer under the MNL model, leading to nonlinear choice probabilities with
respect to prices. Our method simulates each customer with deterministic preferences
based on scenario draws. As a result, the problem we address for a given (N,R) dif-
fers and may not approximate the original model in the same way as their model with
identical N and R = n2 (number of breakpoints). According to numerical experiments
conducted in Haering et al. (2023), R = 400 draws in sample average simulation achieve
similar accuracy to n2 = 64 in Marandi & Lurkin (2023). Therefore, we consider good
approximations with n2 = 64 or R = 400, and smaller instances with n2 = 9 or R = 100.
We employ the same 10 customer classes as used in Marandi & Lurkin (2023), utilizing
Julia version 1.8.0 and a computational cluster node with identical specifications to our
other experiments, with all price bounds set to the closed unit interval [0, 1] as per the
authors’ specifications, as well as no limitations on capacity. To ensure accurate runtime
comparisons, we rerun the authors’ method and successfully replicate their results. Addi-
tionally, we increase the number of controlled alternatives to up to six, as described in our
previous experiments, to assess the impact of a larger choice set.
Table 12 reports the runtimes of all methods on instances solvable by CoBiT, an exact
method specifically tailored to mixed-logit pricing. In contrast to the specialized ap-
proach, the BHA and ILS—despite being general-purpose heuristics—consistently solve
all instances within a fraction of the time. While CoBiT exceeds 24 hours on several of
the more complex cases (J ≥ 4), the BHA returns solutions in under a second, and the
ILS does so within two minutes. On all instances where the optimal value is known (i.e.,
when CoBiT terminates), the ILS recovers the same revenue, while the BHA’s average
deviation remains within 0.02%. These results indicate that the proposed heuristics are
effective not only in terms of computational efficiency but also in recovering near-optimal
solutions even in the specific mixed-logit context for which CoBiT is designed. Numeri-
cal results are detailed in the Appendix in Tables A1, A2, A3 and A4. It is important to
mention a difference in how the price sensitivity parameters are generated between their
framework and ours: in order to ensure behavioral realism, we opt to draw the factors βin

p

multiplying the prices using a truncated normal distribution, to guarantee that they are
always negative. This additional step in the simulation procedure was not performed by
Marandi & Lurkin (2023). Furthermore, the size of the confidence set for evaluating the
integral (they chose a 99% set) influences the numerical value of the obtained revenue. It
is for these reasons that there is a discrepancy in the optimal values for the prices and the
objective between our approaches and CoBiT.

34



5.4 Summary of results
We summarize our findings as follows: The BEA, adapted to capacity constraints, is able
to solve a broader set of capacitated CPP instances than the MILP formulation within the
time limit, achieving identical revenues on all completed instances and returning better
solutions in cases where the MILP times out (R = 250). The BHA and ILS heuristics
show strong computational performance in these settings: while ILS consistently finds
globally optimal solutions, the BHA returns near-optimal solutions with an average devi-
ation below 0.2%, and both methods successfully solve instances that are out of reach for
exact approaches when R ≥ 50.
The BHA scales well to large capacitated instances, handling up to 1,000 simulation draws
with 6 prices and up to 3,000 draws for 3 prices within the 72-hour limit. In the uncapaci-
tated case, BHA and ILS solve all tested instances quickly, even when exact methods such
as B&BD and BEA fail to terminate. Both heuristics match the best-known solutions in all
cases where verification is possible, with BHA again exhibiting notably shorter runtimes.
The BHA also contributes to improving the exact B&BD method: when used to initial-
ize the tree and generate valid inequalities, it reduces solution time by up to 50%, de-
pending on the tightness of the optimality gap. Compared to specialized state-of-the-art
approaches, the BHA significantly outperforms the heuristic LAG algorithm in the capac-
itated setting, achieving at least a 78-fold reduction in runtime. In mixed-logit pricing
problems, BHA and ILS also solve all benchmark instances significantly faster than the
exact CoBiT approach, with ILS always matching the optimal value and BHA showing
an average deviation below 0.02%.
Overall, the proposed heuristics demonstrate strong empirical performance across capaci-
tated and uncapacitated variants of the CPP, providing fast and high-quality solutions even
in high-dimensional and computationally challenging scenarios.

6 Conclusions
This research introduces the Breakpoint Heuristic Algorithm (BHA), a scalable and effi-
cient approach for solving the choice-based pricing problem (CPP), both with and without
capacity constraints. We also propose an extension of the Breakpoint Exact Algorithm
(BEA) to handle capacities through a priority-queue-based strategy, and we enhance the
state-of-the-art Branch-and-Benders Decomposition (B&BD) method by incorporating
valid inequalities that make use of a strong incumbent solution, as for example retrieved
by a heuristic.
The adapted BEA is shown to solve a broader set of capacitated instances than the ex-
isting MILP formulation within a fixed time limit, offering better or equal revenue in all
tested cases. The BHA, based on a coordinate descent scheme, performs particularly well
in high-dimensional settings and solves many large-scale instances that are intractable for
exact approaches within practical timeframes. Compared to the LAG algorithm for capac-
itated pricing, the BHA delivers substantial reductions in computation time while main-
taining high solution quality. In the uncapacitated case, the BHA consistently matches the
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best-known solutions and, when used to warm-start the B&BD algorithm, leads to com-
putational gains of up to 50%. The ILS extension of the BHA succeeds in recovering the
global optimum across all verifiable instances, although at the cost of increased runtime.
Finally, in mixed-logit pricing problems, the BHA and ILS outperform CoBiT, a method
specifically designed for such models. Both heuristics solve all tested instances substan-
tially faster, with ILS consistently matching the optimal value and BHA maintaining an
average optimality gap below 0.02%. Owing to its flexibility, generalizability, and strong
empirical performance, the BHA constitutes a promising tool for large-scale pricing ap-
plications involving choice models.
We thus conclude that we have successfully contributed to filling the gaps identified in the
literature: we provide operational algorithms to solve the CPP, capable of handling large,
high-dimensional instance sizes and complex additional constraints (like capacity), while
maintaining only weak assumptions, if any, on the choice model.
Various avenues are open for future research: In terms of the heuristic, other extensions
of the BHA to escape local optima should be considered, as the ILS increases computa-
tional time substantially. The remarkable speed of the BHA algorithm, together with its
capability to produce high-quality solutions and overall flexibility due to depending only
on evaluating an objective function given fixed parameters, lays the groundwork for its
application in larger as well as more intricate problem settings.
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Appendix A Comparison to CoBiT
This section shows the numerical results for the CoBiT, B&B, BHA and ILS algorithms
when applied to the artificially augmented parking choice data set.

Table A1 – Numerical results for CoBiT

N R J Obj. p1 p2 p3 p4 p5 p6

10 9 2 6.837 0.520 0.729
10 9 3 6.761 0.500 0.690 1.000
10 9 4 6.882 0.531 0.719 0.750 0.520
10 9 5 6.842 0.540 0.722 0.750 0.500 0.697
10 9 6 6.839 0.540 0.720 0.750 0.500 0.950 0.500
10 64 2 5.069 0.500 0.661
10 64 3 5.080 0.500 0.659 0.664
10 64 4 5.086 0.500 0.659 0.664 0.500
10 64 5 5.084 0.500 0.662 0.660 0.500 0.625
10 64 6 5.086 0.500 0.661 0.661 0.500 0.628 0.498

Table A2 – Numerical results for best exact method (B&B)

N R J Obj. p1 p2 p3 p4 p5 p6

10 100 2 5.200 0.626 0.651
10 100 3 5.142 0.562 0.652 0.674
10 100 4 5.140 0.543 0.560 0.652 0.677
10 100 5 5.142 0.543 0.560 0.652 0.677 0.668
10 100 6 5.155 0.540 0.575 0.530 0.652 0.656 0.680
10 400 2 5.279 0.550 0.652
10 400 3 5.196 0.550 0.652 0.651
10 400 4 5.204 0.549 0.570 0.652 0.655
10 400 5 5.208 0.549 0.570 0.652 0.655 0.650
10 400 6 5.235 0.564 0.556 0.538 0.650 0.661 0.669
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Table A3 – Numerical results for BHA

N R J Obj. Gap (%) p1 p2 p3 p4 p5 p6

10 100 2 5.200 0.00 0.626 0.651
10 100 3 5.141 0.02 0.548 0.653 0.673
10 100 4 5.140 0.00 0.543 0.560 0.652 0.677
10 100 5 5.142 0.00 0.540 0.561 0.651 0.673 0.665
10 100 6 5.152 0.05 0.543 0.579 0.654 0.653 0.657 0.681
10 400 2 5.279 0.00 0.550 0.652
10 400 3 5.196 0.00 0.550 0.653 0.651
10 400 4 5.201 0.06 0.532 0.534 0.650 0.658
10 400 5 5.205 0.07 0.532 0.534 0.650 0.658 0.650
10 400 6 5.234 0.03 0.564 0.558 0.542 0.650 0.661 0.669

Table A4 – Numerical results for ILS

N R J Obj. Gap (%) p1 p2 p3 p4 p5 p6

10 100 2 5.200 0.00 0.626 0.651
10 100 3 5.142 0.00 0.562 0.652 0.674
10 100 4 5.140 0.00 0.543 0.560 0.652 0.677
10 100 5 5.143 0.00 0.543 0.560 0.652 0.677 0.668
10 100 6 5.155 0.00 0.540 0.576 0.530 0.652 0.656 0.680
10 400 2 5.279 0.00 0.550 0.652
10 400 3 5.196 0.00 0.550 0.652 0.651
10 400 4 5.204 0.00 0.549 0.569 0.652 0.657
10 400 5 5.208 0.00 0.549 0.569 0.652 0.657 0.650
10 400 6 5.234 0.03 0.564 0.558 0.542 0.650 0.661 0.669
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