
Heuristics and Exact Algorithms for
Choice-Based Capacitated and Uncapacitated

Continuous Pricing

Tom Haering * † Fabian Torres * Michel Bierlaire *

September 5, 2024

Report TRANSP-OR 240905
Transport and Mobility Laboratory

School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

transp-or.epfl.ch

*École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Envi-
ronmental Engineering (ENAC), Transport and Mobility Laboratory, Switzerland, {tom.haering,
michel.bierlaire }@epfl.ch

†Corresponding author.

1

Abstract
We introduce the Breakpoint Heuristic Algorithm (BHA) to address the choice-based pric-
ing problem (CPP) with and without capacity constraints as well as valid inequalities for
the QCQP-L (quadratically constrained quadratic program with linear objective) formu-
lation of the uncapacitated CPP, allowing us to speed up the exact Branch & Benders De-
composition (B&BD) approach. The BHA is based on the Breakpoint Exact Algorithm
(BEA) which we extend to handle capacity constraints, implemented using an exogenous
priority queue. Results show that, when optimizing the prices of two capacitated alter-
natives simultaneously, the BEA reports runtimes up to 20 times faster than the state-of-
the-art mixed-integer linear programming (MILP) approach, while the BHA, leveraging a
coordinate descent method, performs up to 5000 times faster than the MILP across low-
and high-dimensional instances, while producing high-quality solutions. For the uncapac-
itated case, the BHA outspeeds the BEA as well as the B&BD approach by multiple orders
of magnitude, especially for high-dimensional instances. Our results further show signifi-
cant improvements in computational time for the exact method (B&BD) when adding the
valid inequalities together with the heuristic solution to guide the algorithm. The BHA
significantly surpasses state-of-the-art methods, including those tailored for mixed logit
models, in speed while maintaining an average optimality gap of less than 0.02%.
Keywords: discrete choice, pricing, capacity constraints, heuristic, valid inequalities

Glossary

Acronym Full term

CPP Choice-based Pricing Problem
DCM Discrete Choice Model
ML Mixed Logit
MILP Mixed Integer Linear Programming / Program
QCQP-L Quadratically Constrained Quadratic Program with Linear objective
BEA Breakpoint Exact Algorithm
BHA Breakpoint Heuristic Algorithm
ILS Iterated Local Search heuristic
B&B spatial Branch and Bound
B&BD spatial Branch and Benders Decomposition
CoBiT Convexification of a Biconvex optimization and Trust-region algorithm
LAG Lagrangian decomposition-based heuristic

1 Introduction
Effective pricing strategies play a critical role in various industries, especially in markets
where customer preferences and product choices are diverse and complex. Discrete choice

1

models (DCMs), based on random utility theory, provide a robust framework for captur-
ing the impact of customer heterogeneity on demand. By modeling how individuals se-
lect among available alternatives, these models allow companies to better predict demand
and optimize their pricing strategies accordingly. Building on this foundation, we aim to
address the challenge of developing efficient algorithms for pricing with disaggregate de-
mand modeling in the form of a DCM, which we will refer to as the choice-based pricing
problem (CPP). Our central research question is how to create a scalable and computa-
tionally efficient algorithm to solve the CPP, especially for high-dimensional instances
with customer heterogeneity and when taking constraints on capacity into account.
By advancing state-of-the-art methods, we seek to provide more effective solutions for
real-world pricing challenges, where customer preferences and demand patterns can be
modeled using random utility maximization (RUM) frameworks, resulting in so-called
choice-based optimization problems. Utility maximization theory posits that individu-
als assess each option available to them and choose the one that maximizes their utility.
Key areas where these models are applied include pricing Davis et al. (2017); Gallego &
Wang (2014); Li et al. (2019); Paneque et al. (2022) and assortment optimization Liu et
al. (2020); Rusmevichientong et al. (2010), which are fundamental to strategic business
decisions. DCMs like logit and nested logit are a widely used tool to model demand in var-
ious problem settings, including facility location (Mai & Lodi, 2020; Ljubić & Moreno,
2018), railway timetabling (Cordone & Redaelli, 2011; Robenek et al., 2018), and toll
setting (Wu et al., 2012) problems, as well as revenue management and pricing (Shen &
Su, 2007; Korfmann, 2018; Gallego & Wang, 2014; Müller et al., 2021). For the latter,
however, it has been shown that the more complex mixed logit (ML) DCMs represent
the more powerful and realistic demand representation (Sumida et al., 2021; van de Geer
& den Boer, 2022; Marandi & Lurkin, 2023). Incorporating advanced discrete choice
models such as mixed logit into optimization problems introduces significant computa-
tional difficulties due to the non-convex nature of the choice probabilities (Hanson &
Martin, 1996) and the need to represent individual demand perspectives, such as capacity
allocation. As a result, only small to moderate-sized problems are typically solvable to
optimality (Benati & Hansen, 2002; Paneque et al., 2021).
To tackle these computational challenges, innovative approaches have emerged: Gilbert
et al. (2014) developed a tractable approximation for maximizing revenue through pricing
under mixed logit (ML) demand in congested networks, utilizing a two-step process com-
bining a mixed integer program with an ascent algorithm. Subsequently, Li et al. (2019)
explored a price optimization problem under discrete ML demand, introducing a pair of
concave maximization problems to bound the revenue function.
It is important to highlight that in Li et al. (2019) and van de Geer & den Boer (2022), both
of which are closely related to our work, the probability measure is considered discrete.
In Li et al. (2019), customer-specific variables are not included in the utility models, re-
sulting in identical choice probabilities for all customers. In contrast, van de Geer &
den Boer (2022) connects only the exogenous component of the utility to the customers.
Consequently, unlike van de Geer & den Boer (2022), more recent studies, as well as
our framework, address customer heterogeneity, including variations in price sensitiv-

2

ity parameters. For instance, Marandi & Lurkin (2023) consider discrete ML pricing with
heterogenous price-sensitivity parameters and propose an iterative optimization algorithm
that asymptotically converges to the optimal solution. By formulating a linear optimiza-
tion problem based on the trust-region approach, they find a feasible solution and design
a convex optimization problem using a convexification technique to approximate the opti-
mization problem from above. A branching method is then used to tighten the optimality
gap. Results show that for various tested instances (up to 5 customers and 5 alternatives),
their method significantly outperforms other approaches, among which van de Geer & den
Boer (2022), in almost all cases. They furthermore successfully demonstrate the benefits
in terms of expected revenue when going from MNL to ML demand modeling, a finding
later confirmed by for example Abdolhamidi & Lurkin (2024)
One way to deal with the non-convexity arising from advanced DCMs is simulation-based
optimization (Gosavi, 2015). This framework involves optimizing stochastic simulations
to derive effective decisions or strategies. For instance, in choice-based optimization,
this method approximates demand for products or services by simulating various ran-
dom choices based on utility functions and using a sample average approximation method
Haase & Müller (2013); Legault & Frejinger (2024).
To provide a more general framework for integrating advanced choice models into opti-
mization problems, Paneque et al. (2021) proposed a simulation-based approach to for-
mulate any choice-based optimization problem as a mixed-integer linear program (MILP).
While increasing complexity due to the exponential scaling of the MILP solve time with
the number of draws, this approach guarantees convergence to globally optimal solutions
for sufficiently large numbers of draws. However, its practical applicability is limited to
small-scale instances, highlighting the need for more efficient computational strategies.
The authors manage to solve instances with two controlled prices, 50 customers and 250
simulation draws to optimality within two hours for the uncapacitated case and within 21
hours when taking capacity into account.
Recognizing this, Paneque et al. (2022) introduced a heuristic method based on a La-
grangian decomposition scheme, where the original problem is simplified by grouping
simulation scenarios based on their similarities, allowing for a more efficient and scalable
approach to solving the aforementioned MILP formulation. However, the efficiency of the
algorithm depends heavily on the scenario grouping strategy, and its effectiveness might
vary across different setups or datasets. They use the same data set as Paneque et al. (2021)
and focus on instances with capacity constraints. For two controlled alternatives and 50
individuals, they manage to solve instances with 100 draws up to around 3% optimality
within a two-hour time limit. For four controlled alternatives they solve instances with 25
draws in the same time limit to around 3.5% optimality. It is worth mentioning, however,
that adding capacity constraints drastically complicates the optimization problem.
Haering et al. (2023) introduce two exact methods, the Breakpoint Exact Algorithm
(BEA), well suited for low-dimensional instances with two controlled products or fewer,
as well as a Spatial Branch and Benders Decomposition (B&BD) approach, perform-
ing well for high-dimensional instances, to tackle the uncapacitated pricing problem
where demand is captured by any discrete choice model. They manage to outspeed

3

previous approaches by several orders of magnitude on low-dimensional instances and
significantly reduce computational time for higher dimensions when using the B&BD
algorithm. With the BEA, they solve instances with one controlled price, 50 customers
and one million simulation draws within less than two minutes to optimality, as well as
instances with two controlled prices, 50 customers and two thousand draws within two
hours and as well as instances with the same number of controlled prices and customers
but with 22 thousand draws within 72 hours. With the B&BD algorithm, they manage to
solve instances with four controlled prices, 50 customers and 200 draws to 1% optimality
within 24 hours. They furthermore compare their general method of integrating any
DCM in an uncapacitated pricing problem with algorithms specifically designed for
ML integration, and show that the BEA outperforms the work from Marandi & Lurkin
(2023) by a factor of 300x for two-price optimization and an average factor of 3x for
larger numbers of alternatives when using the spatial Branch and Bound (B&B) without
Benders decomposition. However, differences in the approximation procedure have to
be considered. These results show that the BEA and B&B / B&BD approaches represent
the state-of-the-art solution methods for choice-based uncapacitated pricing and that for
high-dimensional instances, the problem remains difficult to solve. Additionally, these
approaches are not capable of handling capacity constraints.

To summarize, we find that for the CPP, there are no solution approaches in the literature
that are at the same time general, flexible, and capable of solving realistic instances in a
reasonable amount of time, especially for high numbers of prices and when constraints on
capacity are introduced. Our aim is to address this gap by building on the work of Haering
et al. (2023), specifically by extending the BEA algorithm to handle capacity constraints,
developing an efficient and flexible heuristic for high-dimensional problems, and enhanc-
ing the capabilities of the B&B and B&BD procedures by adding valid inequalities. The
goal in this context is to further demonstrate that a simulation-based method with a larger
number of samples can be solved more efficiently than an approach that directly employs
nonlinear choice functions but is restricted to a smaller number of classes or breaking
points, as shown in Legault & Frejinger (2024). This provides a strong motivation for
using a purely simulation-based approach with deterministic customers rather than ap-
proximating ML models with a smaller sample of customers following a logit model. By
using a larger number of samples, the simulation-based method can more accurately cap-
ture the diversity of customer preferences and behaviors, thereby enhancing the robustness
of the results and providing a more comprehensive understanding of complex customer
heterogeneity.

We introduce the breakpoint heuristic algorithm (BHA) that can handle both the non-
capacitated and capacitated version of the CPP and succeeds at finding very high-quality
solutions for high-dimensional instances fast. It is based on the BEA, which we extend to
handle capacitated instances. Furthermore, we show how the solution from the BHA can
be used to speed up the exact spatial B&BD approach for the non-capacitated problem by
guiding the pruning and introducing valid inequalities for the QCQP-L formulation of the
problem, which the B&BD is based on.

4

The paper is structured as follows: Section 2 describes the choice-based pricing problem
and its formulation as a mathematical program. In Section 3, we introduce the Breakpoint
Heuristic Algorithm (BHA), as well as an extension with an iterated local search (ILS)
to escape local optima. In Section 4 we demonstrate how to guide the B&BD algorithm
using the solution from the BHA together with new valid inequalities, followed by Section
5 presenting the computational experiments. Finally, we conclude the paper and present
its essential takeaways in Section 6.

2 Problem definition
Consider a competitive market with multiple products, of which J products are controlled
by a supplier who wants to identify the set of prices that maximizes their revenue. We
number the controlled alternatives from 1 to J, and the competitors’ alternatives using
non-positive numbers, from 1−K to 0. Denote C1 = {1, . . . , J} the set of all offered alter-
natives by the supplier and C = C1∪{1−K, . . . , 0} the set of all alternatives available. We
consider N customers choosing one product among all offered alternatives. Each individ-
ual n ∈ N = {1, . . . ,N} may furthermore have a different set of considered alternatives,
denoted by Cn ⊂ C. We need to assume that each individual has at least one uncontrolled
alternative in the choice set. If not, the problem is unbounded. An individual’s considered
set of alternatives that are offered by the supplier is denoted by C1

n = {i ∈ Cn|i ∈ C1}.
The behavior of the customers is captured by a random utility model: each alternative
i ∈ Cn is associated with a stochastic utility Uin, which depends on socioeconomic
characteristics of individual n, alternative-specific attributes, and the controlled prices for
alternatives i ≥ 1. It can be defined as follows:

Uin = Vin + εin ∀i ∈ Cn \ C1
n,

Uin = Vin + βin
p pi + εin ∀i ∈ C1

n,

where Vin represents the deterministic part of the utility that is observed by the analyst,
which can take any form and be non-linear in the explanatory variables, and εin is the un-
observed error term (and thus a random variable). For the B&BD algorithm, the assump-
tion needs to be made that the utilities are linear in the prices pi, which are multiplied by
a pricing coefficient βin

p < 0, that can vary across n and i. Any assumption on the influ-
ence of the price on the utility can be dropped completely for the BEA, BEAC and BHA
approaches, although behavioral realism suggests that the utility is at least non-increasing
in the price. It is furthermore worth noting that for all approaches, including the B&BD,
the price variable pi can be separated into multiple pic for different customer segments
c without significantly altering the algorithms. For the sake of readability, we adhere to
the global price notation pi. The probability Pn(i) that individual n chooses alternative
i ∈ Cn can now be written as follows:

Pn(i) = P(Uin ≥ Ujn ∀j ∈ Cn) ∀i ∈ Cn

The controlled prices pi, i ∈ C1 are decision variables that need to be optimized in order
to maximize the expected revenue, expressed as each product’s price times the probability

5

the product is bought by an individual, summed up over all individuals. We assume each
price pi to be bounded within a continuous domain [pL

i , p
U
i]. In general, the mathematical

expression for Pn(i) is complex. Advanced models, such as mixtures of logit and hybrid
choice models lack a closed form and are expressed using integrals (Hanson & Martin,
1996).

2.1 Problem formulation
To address the lack of closed-form expressions for the probability functions, we employ
the simulation approach of Paneque et al. (2021): We take R draws εinr from the distri-
bution of the error terms to generate R scenarios (the terms “scenario” and ‘‘draw” will
henceforth be used interchangeably) with deterministic utilities Uinr:

Uinr = Vin + βin
p pi + εinr ∀i ∈ C1, n ∈ N, r ∈ R,

= cinr + βin
p pi ∀i ∈ C1, n ∈ N, r ∈ R,

Uinr = Vin + εinr ∀i ∈ C \ C1, n ∈ N, r ∈ R,

= cinr ∀i ∈ C \ C1, n ∈ N, r ∈ R,

where R = {1, . . . , R} and cinr contains all terms of the utility function independent from
the price. As now all uncontrolled alternatives i ∈ C \ C1 have a utility that is constant
given an individual n and a scenario r, we can gather them for each tuple (n, r) as a single
opt-out alternative, corresponding to the best of them:

c0nr = max
i∈C\C1

cinr ∀n ∈ N, r ∈ R.

We thus redefine C = C1 ∪ {0} and impose 0 ∈ Cn ∀n ∈ N, as otherwise, the problem
is unbounded. The choice of individual n in scenario r is then modeled with the choice
variable ωinr, which is equal to 1 if alternative i is chosen and 0 otherwise. Subsequently,
the probability of an individual n ∈ N choosing alternative i ∈ Cn can be approximated
by the sample average 1

R

∑
r∈Rωinr.

This framework leads to the formulation of the uncapacitated choice-based pricing prob-
lem (CPP) as a quadratically constrained quadratic program with linear objective (QCQP-
L), presented in Haering et al. (2023), given in Formulation 1.

6

max
p,ω,η,U,h

1

R

∑
r∈R

∑
n∈N

∑
i∈C1

n

ηinr

s.t.∑
i∈Cn

ωinr = 1 ∀n ∈ N, r ∈ R (µnr)

hnr = c0nrω0nr

+
∑
i∈C1

n

[cinrωinr + βin
p ηinr] ∀n ∈ N, r ∈ R (ζnr)

hnr ≥ c0nr ∀n ∈ N, r ∈ R (α0nr)

hnr ≥ Uinr ∀n ∈ N, i ∈ C1
n, r ∈ R (αinr)

Uinr = cinr + βin
p pi ∀n ∈ N, i ∈ C1

n, r ∈ R (κinr)

ηinr = piωinr ∀n ∈ N, i ∈ C1
n, r ∈ R (λinr)

ω ∈ [0, 1](J+1)NR

p ∈ [pL
1 , p

U
1]× . . .× [pL

J , p
U
J]

η ∈ [0, pU
1]× . . .× [0, pU

J]

U,h ∈ RJNR,RNR

(1)

The objective function is equal to the expected revenue and is thus defined as the ap-
proximated choice probability of individual n selecting alternative i ∈ Cn multiplied
by the alternative’s price pi, summed over all individuals. The constraints define the in-
dividual choices: Constraints (µnr) guarantee that exactly one alternative is chosen per
individual and scenario. Constraints (κinr) model the utility Uinr of each alternative i for
individual n in scenario r. Constraints (ζnr) and constraints (αinr) enforce the optimality
conditions for the customer utility maximization problem. Note that this is a continuous,
but non-convex, reformulation of the original mixed-integer linear program (MILP) ap-
proach. Indeed the previously integer ω variables are relaxed to be in [0, 1] instead, at the
cost of non-convex choice constraints. This non-convexity stems from multiplying two
continuous variables in the price pi and the choice ωinr, isolated in the constraints (λinr).
Finally, the price variables may also depend on the individuals (or groups of individuals),
thus allowing for segmented targeting of the population.
Formulation 1 can be extended to incorporate capacity constraints on the alternatives, as
demonstrated in Paneque et al. (2021). We include this extension in Appendix A. It is
furthermore worth noting that, if the prices are all fixed to constant values, it is trivial
to find the optimal values of all variables. To see this, it is enough to observe that with
fixed prices p, the problem reduces to solving a utility maximization knapsack problem
for each customer n and scenario r. As the prices are the only connecting variables,
this can be done separately for every tuple (n, r), giving an efficient way to evaluate the
objective function for a given feasible solution. A similar procedure can be applied to the
capacitated version of the problem.

7

3 Methodology
In this section, we introduce the Breakpoint Heuristic Algorithm (BHA) which can be
applied to solve both the uncapacitated and capacitated version of the CPP, as well as an
iterated local search (ILS) heuristic to improve the solution quality. Lastly, we demon-
strate how to guide exact methods using the heuristic result together with newly developed
valid inequalities for the CPP.

3.1 Breakpoint heuristic algorithm (BHA)
The BHA is based on the exact Breakpoint Exact Algorithm (BEA), introduced in Haering
et al. (2023). It capitalizes on the idea of decision-making breakpoints. Given a fixed state
of the market—a set of controlled and competing alternatives, all with fixed prices—we
can compute, for each customer and each simulation scenario, a breakpoint at which the
utility of a newly introduced alternative becomes the largest, thus altering the current de-
cision. These breakpoints represent a set of local optima that can be enumerated. For
details to the BEA we refer the reader to Haering et al. (2023). The extension to handle
capacity constraints is straightforward. When a new alternative is introduced into a fixed
state, customers may switch from any existing option, not just the current best, as ca-
pacity constraints could force them to make suboptimal choices. Consequently, decision
breakpoints between all current alternatives and the new one must be considered. Further-
more, for each combination, we invoke a function compute objective value that
calculates the objective value for these prices, taking capacity restrictions into account, as
due to interdependent choices potentially leading to recursive substitution, continuously
updating choices and revenues (as in the original BEA) becomes impractical.
This extension of the BEA is discussed in more detail in Appendix B.
The BHA can be summarized as a coordinate descent (ascent), iteratively optimizing one
price at a time while fixing all other prices, terminating once no coordinate can be im-
proved further. It is described in the following procedure:

1. Choose a starting point for the heuristic. As any combination of prices is feasible,
the simplest choice here can be to choose the middle of the price bounds, p∗ =

(
pLi +pUi

2)i∈C1 .

2. Evaluate the objective function for price p∗, giving objective value o∗.

3. Set j = 1.

4. Solve the problem using the BEA but with modified bounds p̄L, p̄U, where, p̄L
i =

p̄U
i = pi ∀i ̸= j and p̄L

j = pL
j , p̄U

j = pU
j . We refer to these new bounds as

p̄L(p, j, pL) and p̄U(p, j, pU). All bounds, except for alternative j, are thus tight,
greatly simplifying the problem. We thus iterate over all relevant breakpoints for all
simulated customers, evaluating the objective value at each combination of break-
points and updating the highest objective o∗ and the best prices p∗ whenever a
better solution is found.

8

5. Set j = j+ 1 and repeat from step 4. In the case of j = D, we reset it to j = 1.

6. Terminate once no change in the optimal solution is observed over D iterations.

The pseudocode for the BHA is provided in Algorithm 1.

Algorithm 1: Breakpoint Heuristic Algorithm (BHA)
Function BHA(pstart; c, prio queue):

o∗ ← compute objective value(pstart)
p∗ ← pstart

j← 1

σ← 0

i← 0

while σ < D do
i += 1

λ = false
p̂j, ô← BEA(p̄L(p, j, pL), p̄U(p, j, pU); c, prio queue)
pj ← p̂j

if ô > o∗ then
o∗ ← ô

p∗ ← p

σ← 0
else

σ += 1

end
j += 1

if j > D then
j← 1

end
end
return o∗, p∗

end

3.2 Iterated local search heuristic (ILS)
The iterated local search algorithm is an iterative enhancement to the BHA, aimed at
escaping local optima through adaptive step size adjustments. Initiated with a set of initial
prices p and an objective value o∗, the algorithm takes as additional inputs an initial step
size δ, the number of steps to be taken in each direction (increase and decrease) k, a step
increase factor γ, and a maximum step size ∆max. Each iteration consists of the following
steps:

• Exploring both increase and decrease directions for each price component i ∈ C1,
the algorithm tests k increment steps, each being a multiple of δ. At each step,
a new candidate solution p̄ is generated by adjusting the i-th component of p by
±kδ.

9

• For each candidate solution, the objective function is evaluated, and o∗ is updated
when a new best solution is found.

• If there was no improvement in objective value after completing the line search on
all components of p, the step size δ is increased by the factor γ, enlarging the scope
of the line search in the next iteration.

The algorithm continues until δ ≥ ∆max. The pseudocode for the ILS can be found in
Algorithm 2.

Algorithm 2: Iterated Local Search Algorithm (ILS)
Function
iterated local search(pstart, δ, k, γ, ∆max; caps, prio queue):

o∗ ← compute objective value(pstart)
p∗ ← pstart

φ← true
σ← 0

while δ < ∆max do
φ← false
for j ∈ 1 : D do

for d ∈ [−1, 1] do
for l ∈ 1 : k do

pnew ← p

pnew
j += d · l · δ

if pL
j ≤ pnew

j ≤ pU
j then

onew, pnew,← BHA(pnew; c, prio queue)
if onew > o∗ and pnew ∈ [pL, pU] then

o∗ ← onew

p∗ ← pnew

φ← true
σ← 0

end
end

end
end

end
if !φ then

σ += 1

δ ·= γ
end
else

σ← 0

end
p← p∗

o← o∗

end
return o∗, p∗

end

10

4 Guiding the exact algorithm
As shown in Section 5, the heuristics introduced above provide very good solutions in a
short amount of time. However, they do not provide a guarantee of optimality. There-
fore, we also investigate the possibility of solving the problem exactly. In this context,
we use the heuristic to help an exact algorithm. We consider as a starting point the spa-
tial Branch & Benders algorithm for the uncapacitated CPP introduced by Haering et al.
(2023). We give a brief overview of the method and then explain how we can speed up its
convergence. The main strategy for accelerating the performance of Branch and Bound
algorithms hinges on improving the bounds. Specifically, using a heuristic such as the
BHA to find an initial feasible solution generates a strong lower bound (for a maximiza-
tion problem) on the objective, significantly reducing the number of nodes explored in the
search tree by enabling more effective pruning. Additionally, the upper bounds, needed to
prove optimality, can be improved through the incorporation of valid inequalities. Lastly,
we incorporate knowledge of the heuristic solution into the enumeration strategy to break
ties between nodes with equal upper bound.

4.1 Spatial Branch and Benders algorithm
The spatial Branch and Benders (B&BD) algorithm proposed by Haering et al. (2023)
solves the mathematical program stated in Formulation 1 by first employing the Mc-
Cormick envelope (McCormick, 1976) to relax the bilinear constraints defining ηinr, and
then tightens that relaxation by finding the best set of bound via a spatial branch and
bound tree. In each child node, the length of the interval between the price bounds for a
selected price is halved, guaranteeing convergence. The relaxation in each node is then
solved using Benders decomposition.
Given a set of bounds pi ∈ [pL

i , p
U
i] ∀i ∈ C1, the McCormick envelop used to relax the

constraints ηinr = piωinr is given by:

ηinr ≥ pL
iωinr

ηinr ≥ pU
i ωinr + pi − pU

i

ηinr ≤ pL
iωinr + pi − pL

i

ηinr ≤ pU
i ωinr

This yields the linear McCormick relaxation of the QCQP-L shown in Formulation 2.
Then, a spatial Branch and Bound algorithm, see for example Liberti (2008), is employed
to find the globally optimal values for all the prices. A conceptual outline of the method
is given below:

1. Solve the McCormick relaxation (Formulation 2) using the initial bounds.

2. From the solution value of the prices, compute the corresponding choices and con-
struct a feasible solution.

11

3. Choose a price to branch on, then split the search interval for that price, i.e., its
bounds, into two, while all other price bounds remain the same. Add two new
nodes to the Branch and Bound tree, each corresponding to one set of the new
bounds.

4. Choose the next node from the tree based on the achieved objective value in its par-
ent node (best-first-search), and solve the relaxation with the bounds corresponding
to that node.

5. Continue until the relative gap between the objective value of the tightest relaxation
is close enough (up to a predefined relative optimality gap) to the objective value
of the best feasible solution found.

In every node of the Branch and Bound tree, Formulation 2 needs to be solved with a given
set of price bounds, which may be time-consuming due to a large number of variables η
and ω. However, Formulation 2 is highly separable: indeed, if all variables pi are fixed
to a certain value, the utility maximization problem can be solved for every individual
and scenario independently. This is why a Benders decomposition approach is considered
to speed up the solution of the McCormick relaxation in each node of the Branch and
Bound tree. Benders decomposition works by decomposing the original problem into a
master problem and a subproblem, where the master problem is a relaxation of the original
problem that iteratively is improved by the addition of optimality and feasibility cuts, see
for example Rahmaniani et al. (2017). For more details on the B&BD algorithm, see
Haering et al. (2023).

12

max
p,ω,η,U,h

1

R

∑
r∈R

∑
n∈N

∑
i∈C1

n

ηinr

s.t.∑
i∈Cn

ωinr = 1 ∀n ∈ N, r ∈ R (µnr)

hnr = c0nrω0nr

+
∑
i∈C1

n

[cinrωinr + βin
p ηinr] ∀n ∈ N, r ∈ R (ζnr)

hnr ≥ c0nr ∀n ∈ N, r ∈ R (α0nr)

hnr ≥ Uinr ∀n ∈ N, i ∈ C1
n, r ∈ R (αinr)

Uinr = cinr + βin
p pi ∀n ∈ N, i ∈ C1

n, r ∈ R (κinr)

ηinr ≥ pL
iωinr ∀n ∈ N, i ∈ C1

n, r ∈ R (λ1inr)

ηinr ≥ pU
i ωinr + pi − pU

i ∀n ∈ N, i ∈ C1
n, r ∈ R (λ2inr)

ηinr ≤ pL
iωinr + pi − pL

i ∀n ∈ N, i ∈ C1
n, r ∈ R (λ3inr)

ηinr ≤ pU
i ωinr ∀n ∈ N, i ∈ C1

n, r ∈ R (λ4inr)

ω ∈ [0, 1](J+1)NR

p ∈ [pL
1 , p

U
1]× . . .× [pL

J , p
U
J]

η,U, h ∈ RJNR,RJNR,RNR

(2)

4.2 Valid inequalities
A first general set of valid inequalities can be derived by observing that, given a set of
bounds [pL

i , p
U
i]i∈C1 , i.e. at each node in the tree, for each simulated customer (n, r) ∈

N× R and alternative i ∈ C1
n, there exists a minimal breakpoint p̌nr

i (assuming strongest
competition) and a maximal breakpoint p̂nr

i (assuming weakest competition), defined as
follows:

p̌nr
i =

maxj∈C1
n\{i}

Ujnr(p
L
j) − cinr

βin
p

∀n ∈ N, i ∈ C1
n, r ∈ R

p̂nr
i =

maxj∈C1
n\{i}

Ujnr(p
U
j) − cinr

βin
p

∀n ∈ N, i ∈ C1
n, r ∈ R

For the strongest competition, we compute the maximum utility among all other con-
trolled alternatives, given their lowest possible prices given the current bounds. As we
assume βp < 0 in all cases, this corresponds to the strongest possible competition. On the
other hand, taking the maximum utility among all other controlled alternatives, given their
highest possible prices corresponds to the breakpoint assuming the weakest competition.

13

These breakpoints exhibit the following properties:

pi ≤ p̌nr
i =⇒ (n, r) is guaranteed to select i

=⇒ ωinr ≥ 1 ∀n ∈ N, i ∈ C1
n, r ∈ R,

pi ≥ p̂nr
i =⇒ (n, r) is guaranteed to not select i

=⇒ ωinr ≤ 0, ηinr ≤ 0 ∀n ∈ N, i ∈ C1
n, r ∈ R,

which can be integrated into Formulation 1 by use of the following valid inequalities:

pi + (p̌nr
i − pL

i)ωinr ≥ p̌nr
i ∀n ∈ N, i ∈ C1

n, r ∈ R,

and

pi + (pU
i − p̂nr

i)ωinr ≤ pU
i ∀n ∈ N, i ∈ C1

n, r ∈ R,

pi + (pU
i − p̂nr

i)ηinr ≤ pU
i ∀n ∈ N, i ∈ C1

n, r ∈ R,

respectively. Note that in case of the upper bound with p̌nr
i , we cannot deduce a bound on

the revenue ηinr except that it is less than or equal to p̌nr
i which is already covered by the

McCormick constraints.
Given a feasible solution p∗ to the CPP, we can furthermore derive the following relations:

pj ≥ p∗
j ∀j ̸= i, pi ≤ p∗

i =⇒ ωinr ≥ ω∗
inr ∀n ∈ N, i ∈ C1

n, r ∈ R

pj ≤ p∗
j ∀j ̸= i, pi ≥ p∗

i =⇒ ωinr ≤ ω∗
inr ∀n ∈ N, i ∈ C1

n, r ∈ R

We describe how to convert the first relation into linear constraints, as the second follows
symmetrically. As the left-hand side consists of J individual conditions that all need to
be verified, we introduce an auxiliary variable zinr ∈ [0, 1] for each such condition i and
simulated customer (n, r). Note that these variables are indicators for whether or not a
condition holds, and as such are binary in nature. However, including them as binary vari-
ables would inevitably slow down the computation of the relaxation significantly, which is
why we relax their domain. For each i ∈ C1, we model the z variables with the following
constraints:

Constraints for alternative i:

pi + (p∗
i − pL

i)zinr ≥ p∗
i ∀n ∈ N, r ∈ R

Constraints for alternatives j ̸= i:

pj − (pU
j − p∗

j)zjnr ≤ p∗
j ∀n ∈ N, r ∈ R

Additionally, we add constraints to ensure the relationship between the z variables and the
choice variables ω:

ωinr ≥
J∑

j=1

zjnr − (J− 1) ∀n ∈ N, r ∈ R

14

These constraints ensure that ωinr ≥ 1 if all conditions hold, i.e., zinr = 1 ∀i ∈ C1
n.

Although the relaxation of the z variables’ domain makes these inequalities less tight, they
remain valid, as each individual inequality still holds for fractional values of z. However,
this change makes the computational gain of their addition to the relaxation dependent on
the problem instance.

The valid inequalities developed in this subsection can directly be integrated in Formula-
tion 2.

4.3 Improving price bounds
Given a set of price bounds [pL

i , p
U
i]i∈C1 at a node in the branch and bound tree, we

can look to improve the price bounds further before solving the relaxation. For this, we
consider the lowest minimal breakpoint p̌i and highest maximal breakpoint p̂i for each
i ∈ C1 over all individuals and scenarios:

p̌i := min
n∈N,r∈R

p̌nr
i ∀i ∈ C1

p̂i := max
n∈N,r∈R

p̂nr
i ∀i ∈ C1

From their derivation, we can infer certain conditions based on these values. If pi > p̂i,
this implies that no customer will choose alternative i. Conversely, if pi < p̌i, it indicates
that every customer will choose alternative i, provided it is within their choice set.
Additionally, we can refine these bounds to aim for target-specific outcomes, if desired.
For instance, if pi exceeds the m-th highest maximal breakpoint p̂nr

i,m, it suggests that
at most m simulated customers will choose alternative i. Similarly, if pi is below the
m-th lowest minimal breakpoint p̌nr

i,m, it implies that at least m simulated customers will
choose alternative i. In our case, we assume that for each product, there should be at
least one customer or scenario in which the product is chosen. If this assumption does not
hold, the product can be considered as having no effect on the choice and can be removed
from the set of offered products entirely. Consequently, we update the upper bound pU

i by
replacing it with p̂i whenever p̂i < pU

i , for all i ∈ C1.

4.4 Node enumeration
Finally, when multiple nodes in the branch and bound tree have an identical upper bound,
we can use the knowledge of a good solution to determine the next node to explore.
Specifically, we select the node that contains the highest number of price values of the
provided solution within its bounds, exploring promising areas first. Let Ω denote the set
of all active nodes in the tree, where a node j consists of a set of bounds ∆j and its upper
bound on the objective value ôj. Furthermore, denote p∗ as the provided starting solution.
The next node to be selected from the tree can now be written as:

j∗ := arg max
j∈Ω

{|{k ∈ C1 s.t. p∗
k ∈ [pL

k(j), p
U
k (j)]}| s.t. ôj = max{ôi | {∆i, ôi} ∈ Ω}}}

15

implying that, among the nodes that reach the highest upper bound on their potential
objective value, we choose the one that contains the highest number of price values of the
initial solution in its bounds.

5 Results and discussion
In this section, we apply the introduced methodology to a parking choice case study,
evaluating its performance across various instance sizes. We explore the limits of solvable
instances, compare the results to state-of-the-art methods for choice-based pricing and
mixed logit-specific pricing, and assess the computational efficiency and solution quality.

5.1 Case study
To test the presented methodology we rely on the same mixed logit (ML) case study as var-
ious other studies, among which Bortolomiol et al. (2021); Paneque et al. (2022); Marandi
& Lurkin (2023); Haering et al. (2023), establishing itself as a popular benchmark data
set for ML-based pricing policies. The case study concerns a parking services operator,
motivated by the published disaggregate demand model for parking choice by Ibeas et
al. (2014). The choice set consists of three services: paid on-street parking (PSP), paid
parking in an underground car park (PUP), and free on-street parking (FSP), presenting
the opt-out. We artificially add more PSP or PUP options by duplicating the respective
alternative and increasing the access time from the parking space to the desired destina-
tion by three minutes per duplicate, starting with duplicating the PUP alternative, and then
the PSP alternative. For example: if we consider five offered alternatives, three of those
will be PUP and two will be PSP. This extension corresponds to augmenting the parking
space facilities in size and offering separate prices depending on proximity to the desired
destination.

5.2 Description of experiments
The methods used in our experiments and their abbreviations are: Mixed-integer lin-
ear programming (MILP), Branch and Benders Decomposition (B&BD), B&BD without
Benders decomposition (B&B), Breakpoint Exact Algorithm (BEA), Breakpoint Heuris-
tic Algorithm (BHA), Iterated Local Search (ILS), the state-of-the-art heuristic for the ca-
pacitated CPP, the Lagrangian decomposition approach presented in Paneque et al. (2022),
which we will refer to as LAG, and finally the state-of-the-art exact method for ML-based
pricing without capacities, the convexification of a biconvex optimization and trust-region
algorithm (CoBiT), presented by Marandi & Lurkin (2023). The goal of our experiments
is to answer the following set of questions:

1. How does the BEA, adapted to capacity constraints, compare in runtime to the
state-of-the-art exact MILP approach of solving capacitated instances of the CPP
when an exogenous priority queue is set in place?

16

2. How do the BHA and ILS compare to the MILP and BEA approaches on instances
with capacity constraints and a priority queue in terms of runtime and achieved
revenue?

3. What are the largest instances we can solve within 72 hours using the BHA with
capacity constraints?

4. How do the BHA and ILS compare to the state-of-the-art exact B&BD and BEA
approaches on pricing instances without capacity constraints?

5. How does the number of alternatives impact the optimality gap for the BHA?

6. What are the largest instances we can solve within 72 hours using the BHA without
capacity constraints?

7. To what extent are we able to speed up the B&BD method using the solution from
the BHA for guidance, together with the derived valid inequalities?

8. How do the proposed solution methods compare to the LAG and CoBiT algo-
rithms?

To investigate these eight issues we perform the tests described in Table 0, where N de-
notes the number of individuals considered, R the number of scenarios generated and J

the number of controlled alternatives.
The limits for capacities are adapted from Paneque et al. (2021), as are the bounds for
all prices, which are defined to be [0.5, 0.7] for PSP alternatives and [0.65, 0.85] for
PUP alternatives. The initial starting point for the BHA in all cases is the mean of the

bounds, i.e. pstart
i =

pLi +pUi
2 ∀i ∈ C1. For the ILS, we use the following hyperparameter

inputs: δ = 0.005, k = 3, γ = 2, ∆max = 0.05. Both the MILP and B&BD experiments
are performed using GUROBI 10.0.3 (Gurobi Optimization, LLC, 2021). All methods
are run on a single thread in a computational cluster node with two 2.4 GHz Intel Xeon
Platinum 8360Y processors, where we utilize 16 cores with a total of 32 GB of RAM.

5.3 Numerical results and analysis
Table 1 illustrates results from Test 1, showing that the BEA with capacities is on average
20x faster than the MILP with equal revenues for all completed instances. For unsolved
instances (R = 250), the BEA offers slightly better solutions. Comparing the BHA and
ILS to the exact methods in Table 2, we find that the BHA is up to 360x faster than
BEA for two prices, and ILS is up to 10x faster. For four prices, the BHA and ILS achieve
speed-ups to 5000x and 65x, respectively. The ILS consistently finds global optima where
verifiable but is about 40x slower than BHA, whose solutions are on average within less
than 0.2% of the optimal value. For R ≥ 50, the BHA matches the ILS’s solutions, both
finding higher quality solutions than the best feasible solution found by the exact methods
at the time limit. Testing the limits of the BHA for capacitated instances, the results in
Table 3 indicate that we can solve instances with up to 1,000 draws for 6 prices, up to

17

2,000 draws for 5 prices, and up to 3,000 prices for 4 prices or fewer within the time limit
of 72 hours, marking a significant leap in instance size compared to the maximal number
of 200 draws for two offered alternatives in Paneque et al. (2022).

For the uncapacitated case, Haering et al. (2023) have shown that instances with two or
fewer prices can easily be solved with the BEA algorithm, whereas for instances with
at least three alternatives, the B&BD approach is the fastest method. We thus consider
only instances with at least three offered alternatives. Table 4 shows the results from Test
4, revealing that the BHA and ILS significantly outperform B&BD and BEA in terms
of speed, with speedups of factor up to 3 · 106. The ILS, again about 40x slower than
the BHA, does not improve objective values here, moreover, the BHA and ILS achieve
the global optimum for all verifiable instances (R = 100, 200) and outperform the exact
methods in terms of best solution found within the time limit in all unterminated cases.
Table 5 depicts the outcomes of the analysis of the behavior of the optimality gap when
the number of offered alternatives is increased. The instance size is kept small in order
to be able to compute the global optimum with the B&BD algorithm within a reasonable
time. We observe that generally, the mean of the bounds as a starting point does not lead
to convergence to the global optimum, especially if the number of dimensions increases.
However, the optimality gap is continuously very small and never reaches values bigger
than 0.14%. We conclude that the BHA manages to deliver very high-quality solutions
even for high-dimensional instances. The next test, whose results are found in Table 6,
aims to understand the limits in terms of instance size for the BHA when no capacity
constraints are set in place. Although a 72 hour time limit was set in place, the largest
instance, N = 50, R = 1, 000, 000, J = 6 was solved in less than seven minutes, demon-
strating that the BHA is capable of tackling much larger instances than the ones available
from our current dataset, which should be addressed in future research. The outcomes
of Test 7 are displayed over the next three tables, Tables 7, 8 and 9 respectively. They
each depict the impact on computational time coming from adding the valid inequalities
(VIs) to the McCormick relaxation in each node, the BHA solution as a starting point for
the B&B search and the two enhancements combined, for achieving different optimality
gaps. Table 7 shows that to reach an optimality gap of 10%, the total speedup from the
enhancements over the unmodified B&BD reaches up to 50%, especially for instances
with higher dimensions. Going further to 5% optimality in Table 8, the speedup reduces
slightly and varies between 25-40%, decreasing further when looking at the computational
time needed to reach 1% optimality gap in Table 9, which is reduced by 10-20% when us-
ing the enhancements. These speedups, where observable, remained stable until full con-
vergence to the optimal solution (not depicted as only a fraction of these large instances
were solved to optimality within the time limit). Two tendencies are clearly shown: For
three alternatives, the VIs in fact seem to slow down the computation, however, increasing
the number of alternatives shows that the more alternatives are being controlled, the larger
the observed increase in speed when adding both the VIs or the heuristic starting point.

Regarding Test 8, we first compare our methods with the state-of-the-art heuristic method
for general capacitated choice-based pricing, the LAG algorithm by Paneque et al. (2022).
Unfortunately, the authors were not able to provide us with their code, which is why we

18

replicate their experimental environment (12 threads on a 3.33 GHz Intel Xeon X5680
server running a 64-bit Ubuntu 16.04.2) in order to be able to compare with the runtimes
they provide in their paper. In their experiments, they run tests on the same parking space
operator case study (with capacity constraints) in the following way: a time limit of two
hours is set and the achieved optimality gap after the time limit is reported, but no ob-
jective values or optimal prices. This makes the comparison to our approaches difficult,
as neither the exact BEA nor the heuristic BHA and ILS procedures report an optimality
gap. Table 10 shows the comparison between the LAG, the BEA, the BHA and the ILS in
terms of runtimes. The time limit is set to two hours and the instance sizes and capacity
limitations are chosen in accordance with the tests conducted in Paneque et al. (2022).
The LAG does not solve any of the instances to optimality within the time limit, the BEA
manages to solve the smallest one (N = 50, R = 50, J = 2), the BHA converges for all in-
stances and the ILS does so for four out of the nine tested instances. The BHA on average
is at least 78x faster than the LAG, with the ILS on average being at least 4x faster. These
factors are likely many times higher in reality, since closing the last few percentages of
the optimality gap notoriously takes very long, which was also reported to be the case by
Paneque et al. (2022). Comparing the numerical results is difficult, since for the LAG, we
only have the achieved optimality gap. Table 11 thus shows the reported optimality gap
for the LAG, the achieved revenues for the BEA, BHA and ILS, as well as the relative
gap between the revenues of the BEA and BHA compared to the ILS, as we cannot report
the real optimality gap. We note that within this time limit, both heuristic procedures pro-
duce better solutions than the exact BEA approach, with the average relative gap between
BEA and ILS being 1.63%, and the average relative gap between the BHA and ILS being
0.04%. This further demonstrates that, although the BHA is significantly more efficient
in terms of computational time, there is only a small loss in terms of solution quality
when compared to the ILS algorithm. The average reported optimality gap of the LAG is
with 3.19% pronouncedly larger than the average relative gap from BHA to ILS, however,
the comparison should be contextualized carefully, considering the lack of an optimality
certificate for the ILS.

We next compare to the state-of-the-art algorithm for (uncapacitated) mixed-logit-basing
pricing, the CoBiT algorithm presented by Marandi & Lurkin (2023). The authors use the
same parking choice case study as we do to illustrate their algorithm, and they have made
their code available on GitHub. In their experiments, they address cases with N = 10 cus-
tomer classes and two controlled prices, achieving optimal solutions. They approximate
the continuous distributions of price sensitivity and arrival times with discrete distribu-
tions and report the runtimes based on varying numbers of breakpoints in their approxi-
mations.
Differing from our approach, their model assigns each pair of customer class and break-
point to a customer under the MNL model, leading to nonlinear choice probabilities with
respect to prices. Our method simulates each customer with deterministic preferences
based on scenario draws. As a result, the problem we address for a given (N,R) dif-
fers and may not approximate the original model in the same way as their model with
identical N and R = n2 (number of breakpoints). According to numerical experiments

19

conducted in Haering et al. (2023) , R = 400 draws in sample average simulation achieve
similar accuracy to n2 = 64 in Marandi & Lurkin (2023). Therefore, we consider good
approximations with n2 = 64 or R = 400, and smaller instances with n2 = 9 or R = 100.
We employ the same 10 customer classes as used in Marandi & Lurkin (2023), utilizing
Julia version 1.8.0 and a computational cluster node with identical specifications to our
other experiments, with all price bounds set to the closed unit interval [0, 1] as per the
authors’ specifications, as well as no limitations on capacity. To ensure accurate runtime
comparisons, we rerun the authors’ method and successfully replicate their results. Addi-
tionally, we increase the number of controlled alternatives to up to six, as described in our
previous experiments, to assess the impact of a larger choice set. The runtime results are
presented in Table 12, and it is evident that the BHA is remarkably faster than CoBiT, by
an average factor of 5.8 · 106, with an average optimality gap of 0.02%, whereas the ILS
is faster by an average factor of 57,000, with an average optmiality gap of 0.00%. Numer-
ical results are detailed in the Appendix in Tables C1, C2, C3 and C4. It is important to
mention a difference in how the price sensitivity parameters are generated between their
framework and ours: in order to ensure behavioral realism, we opt to draw the factors βin

p

multiplying the prices using a truncated normal distribution, to guarantee that they are
always negative. This additional step in the simulation procedure was not performed by
Marandi & Lurkin (2023). Furthermore, the size of the confidence set for evaluating the
integral (they chose a 99% set) influences the numerical value of the obtained revenue. It
is for these reasons that there is a discrepancy in the optimal values for the prices and the
objective between our approaches and CoBiT.

20

Table 0 – Summary of Tests

Test 1 Test 2 Test 3 Test 4

J 2 2, 4 2, 4 2, 3, 4, 5, 6
N 50 50 50 50
R 2, 5, 10, 25, 50,

100, 250
2, 5, 10, 25, 50,
100, 200, 250

2, 5, 10, 25, 50,
100, 200, 250

1,000, 2,000,
3000

Capacities [20, 20] [20, 20], what
[15, 15, 15,
15]

[20, 20], what
[15, 15, 15, 15]

[20] ∀i ∈ Cn

Methods MILP, BEA BEA,
BEA-M,
BEA-R

MILP, BEA,
BHA, ILS

BHA

Test 5 Test 6 Test 7 Test 8

J 4 3, 4, 5, 6, 7, 8,
9, 10

2, 3, 4, 5, 6 2, 3, 4, 5, 6

N 20 20 50 10, 50, 100,
150, 197

R 100, 200, 300,
500, 1,000

20 500,000,
1,000,000

25, 50, 100,
200, 400

Capacities [∞, ∞, ∞,∞]
[∞] ∀i ∈ Cn [∞] ∀i ∈ Cn [20], [40], [60],

[80], [∞]
∀i ∈ Cn

Methods B&BD, BEA,
BHA, ILS

B&BD, BHA BHA LAG, CoBiT,
BEA, BEA,
BHA, ILS,
B&B, B&BD

21

Table 1 – Test 1: MILP vs. BEA in the capacitated case

MILP BEA

N R J Time (s) Revenue Time (s) Revenue

50 2 2 4.17 27.61 0.43 27.61
50 5 2 46.95 26.51 1.72 26.51
50 10 2 180.85 27.06 11.42 27.06
50 25 2 3,119.66 27.08 169.08 27.08
50 50 2 >5 hours ≥25.15 1,272.68 26.85
50 100 2 >25 hours ≥25.11 9,928.57 26.85
50 250 2 >45 hours ≥23.45 >45 hours ≥26.37

Table 2 – Test 2: BHA and ILS vs. MILP and BEA in the capacitated case

MILP BEA BHA ILS

N R J Time (s) Revenue Time (s) Revenue Time (s) Revenue Time (s) Revenue

50 2 2 4.17 27.61 0.43 27.61 0.22 27.61 1.03 27.61
50 5 2 46.95 26.51 1.72 26.51 0.32 26.46 5.91 26.51
50 10 2 180.85 27.06 11.42 27.06 0.58 27.05 20.34 27.06
50 25 2 3,119.66 27.08 169.08 27.08 3.40 27.05 129.66 27.08
50 50 2 >5 hours ≥25.15 1,272.68 26.85 8.31 26.53 559.04 26.85
50 100 2 >25 hours ≥25.11 9,928.57 26.85 51.77 26.72 2,791.28 26.85
50 250 2 >45 hours ≥23.45 >45 hours ≥26.37 455.37 26.66 15,867.67 26.71
50 10 4 >10 hours ≥22.21 >10 hours ≥25.10 7.08 26.78 527.34 26.83
50 50 4 >20 hours ≥22.19 >20 hours ≥25.19 166.21 27.00 7,234.88 27.00
50 100 4 >45 hours ≥20.50 >45 hours ≥26.09 866.97 26.67 34,050.57 26.67
50 200 4 >72 hours ≥20.32 >72 hours ≥24.79 2,762.39 26.70 106,286.13 26.70

22

Table 3 – Test 3: Limits of the BHA in the capacitated case

N R J BHA (s)

50 1,000 2 15,093
50 1,000 3 25,326
50 1,000 4 69,134
50 1,000 5 112,042
50 1,000 6 178,923
50 2,000 2 51,637
50 2,000 3 84,231
50 2,000 4 150,132
50 2,000 5 193,233
50 3,000 2 164,922
50 3,000 3 184,293
50 3,000 4 >259,200

Table 4 – Test 4: BHA and ILS vs. B&BD and BEA in the uncapacitated case

B&BD BEA BHA ILS

N R J Time (s) Revenue Time (s) Revenue Time (s) Revenue Time (s) Revenue

20 100 4 12,478 10.14 61,139 10.14 0.00 10.14 0.14 10.14
20 200 4 29,213 10.40 >24 hours ≥10.21 0.01 10.40 0.41 10.40
20 300 4 >24 hours ≥10.38 >24 hours ≥9.84 0.02 10.24 0.64 10.24
20 400 4 >24 hours ≥9.81 >24 hours ≥9.82 0.05 10.26 0.78 10.26
20 500 4 >24 hours ≥10.01 >24 hours ≥9.80 0.13 10.24 1.37 10.24

23

Table 5 – Test 5: BHA optimality gap when increasing dimensions

N R J BHA B&BD Gap (%)

20 20 3 10.281 10.281 0
20 20 4 10.271 10.28 0.09
20 20 5 10.283 10.294 0.11
20 20 6 10.290 10.302 0.12
20 20 7 10.292 10.306 0.14
20 20 8 10.330 10.336 0.06
20 20 9 10.329 10.335 0.06
20 20 10 10.293 10.300 0.07

Table 6 – Test 6: Testing BHA limits without capacity constraints

N R J BHA (s)

50 500,000 2 56
50 500,000 3 77
50 500,000 4 187
50 500,000 5 163
50 500,000 6 194
50 1,000,000 2 68
50 1,000,000 3 132
50 1,000,000 4 312
50 1,000,000 5 300
50 1,000,000 6 412

24

Table 7 – Test 7: B&BD with Guidance - 10% gap

N R J
normal

w/out VIs (s)
normal

w VIs (s)
Guided

w/out VIs (s)
Guided

w VIs (s)
Speedup

from just VIs (%)
Add. Speedup
from Sol. (%)

Total
speedup (%)

50 1,000 3 987 1,132 731 816 -14.69 27.92 17.33
50 2,000 3 2,878 3,490 2,513 2,693 -21.26 22.84 6.43
50 3,500 3 10,325 12,919 6,390 7,454 -25.12 42.3 27.81
50 1,000 4 4,662 3,311 3,705 2,472 28.98 25.34 46.98
50 2,000 4 17,599 12,068 10,868 8,288 31.43 31.32 52.91
50 3,500 4 48,445 31,210 40,061 29,504 35.58 5.47 39.1
50 1,000 5 8,242 5,428 5,664 3,914 34.14 27.89 52.51
50 2,000 5 25,842 16,641 17,420 12,268 35.6 26.28 52.53
50 3,500 5 114,216 81,826 85,083 58,754 28.36 28.2 48.56

Table 8 – Test 7: B&BD with Guidance - 5% gap

N R J
normal

w/out VIs (s)
normal

w VIs (s)
Guided

w/out VIs (s)
Guided

w VIs (s)
Speedup

from just VIs (%)
Add. Speedup
from Sol. (%)

Total
speedup (%)

50 1,000 3 2,372 2,454 1,933 2,245 -3.46 8.52 5.35
50 2,000 3 7,883 8,359 7,106 7,342 -6.04 12.17 6.86
50 3,500 3 51,964 57,229 42,991 47,282 -10.13 17.38 9.01
50 1,000 4 12,062 10,668 10,490 8,934 11.56 16.25 25.93
50 2,000 4 43,829 36,524 36,222 32,929 16.67 9.84 24.87
50 3,500 4 259,200 240,767 238,777 198,981 7.11 17.36 23.23
50 1,000 5 24,371 20,590 19,519 16,930 15.51 17.78 30.53
50 2,000 5 84,104 60,814 70,676 48,541 27.69 20.18 42.28
50 3,500 5 259,200 259,200 259,200 247,944 - - -

25

Table 9 – Test 7: B&BD with Guidance - 1% gap

N R J
normal

w/out VIs (s)
normal

w VIs (s)
Guided

w/out VIs (s)
Guided

w VIs (s)
Speedup

from just VIs (%)
Add. Speedup
from Sol. (%)

Total
speedup (%)

50 1,000 3 15,840 16,933 13,239 14,594 -6.9 13.81 7.87
50 2,000 3 42,261 45,223 35,882 37,137 -7.01 17.88 12.12
50 3,500 3 183,696 195,743 152,833 162,594 -6.56 16.93 11.49
50 500 4 47,101 46,719 47,963 43,190 0.81 7.55 8.3
50 1,000 4 131,122 135,564 107,288 105,596 -3.39 22.11 19.47
50 1,500 4 229,620 230,187 203,348 202,560 -0.25 12 11.78
50 2,000 4 259,200 259,200 259,200 259,200 - - -
50 500 5 139,618 125,755 115,783 109,084 9.93 13.26 21.87
50 1,000 5 259,200 259,200 259,200 259,200 - - -

Table 10 – Test 8: Runtime (seconds) comparison to LAG

N R J LAG BEA BHA x Sp. ILS x Sp.

50 50 2 >7,200 3,109 24 300 841 9
50 100 2 >7,200 >7,200 96 75 3,640 2
50 200 2 >7,200 >7,200 459 16 >7,200 -

100 100 2 >7,200 >7,200 554 13 >7,200 -
150 100 2 >7,200 >7,200 1166 6 >7,200 -
197 100 2 >7,200 >7,200 1617 4 >7,200 -
50 25 4 >7,200 >7,200 31 230 2,711 3
50 50 4 >7,200 >7,200 148 49 7,157 1
50 100 4 >7,200 >7,200 591 12 >7,200 -

26

Table 11 – Test 8: Objective value comparison to LAG (with a two-hour time limit)

LAG BEA BHA ILS

N R J Gap (%) Revenue Gap∗ (%) Revenue Gap∗ (%) Revenue

50 50 2 2.02 26.243 0.00 26.237 0.02 26.243
50 100 2 2.80 26.560 1.28 26.906 0.00 26.906
50 200 2 3.67 26.250 1.14 26.530 0.09 26.553

100 100 2 1.98 52.780 0.53 53.028 0.06 53.059
150 100 2 1.91 80.370 0.33 80.640 0.00 80.640
197 100 2 - 104.640 0.70 105.181 0.19 105.381
50 25 4 3.34 25.728 4.26 26.873 0.00 26.873
50 50 4 4.57 25.180 3.52 26.099 0.00 26.099
50 100 4 5.19 26.090 2.90 26.870 0.00 26.870

* relative gap compared to ILS revenue

Table 12 – Test 8: Runtime (seconds) comparison to CoBiT

N n2 R J CoBiT B&B x Sp. B&BD x Sp. BEA x Sp. BHA x Sp. ILS x Sp.

10 9 100 2 69 17 4 83 0.83 1 69 0.002 4 · 104 0.086 971
10 9 100 3 607 124 5 623 0.97 10 61 0.001 4.5 · 105 0.117 5,343
10 9 100 4 6,439 985 7 4,791 1.34 5727 1 0.002 3.2 · 106 0.216 2.2 · 104
10 9 100 5 34,409 4,017 9 18,644 1.85 >86,400 - 0.001 27 · 106 0.250 7.4 · 104
10 9 100 6 39,164 6,015 7 27,758 1.41 >86,400 - 0.002 15 · 106 0.254 1.1 · 105
10 64 400 2 270 128 2 620 0.44 1 270 0.003 8.6 · 104 0.139 4,461
10 64 400 3 4,234 783 5 3,174 1.33 560 8 0.005 9.2 · 105 0.244 1.2 · 104
10 64 400 4 37,384 8,895 4 34,503 1.08 >86,400 - 0.010 3.8 · 106 0.460 7.5 · 104
10 64 400 5 38,090 25,367 2 >86,400 - >86,400 - 0.010 3.6 · 106 0.658 1.3 · 105
10 64 400 6 39,424 >86,400 - >86,400 - >86,400 - 0.012 3.4 · 106 0.650 1.3 · 105

27

5.4 Summary of results
We summarize our findings as follows: The BEA, adapted to capacity constraints, sig-
nificantly outperforms the MILP formulation for capacitated instances of the CPP, being
up to 20 times faster while delivering equivalent revenues. Even when the MILP fails
(R = 250), BEA still offers slightly better solutions. The BHA and ILS heuristics show
remarkable speed improvements, with BHA being up to 360 times faster than BEA for
two prices and 5000 times faster for four prices. Although ILS is slower, it consistently
achieves global optima, while BHA stays within 0.2% of optimal values. Both outperform
exact methods for R ≥ 50.
The BHA handles large capacitated instances effectively, solving problems with up to
1,000 draws for 6 prices within 72 hours, far surpassing previous methods. In uncapac-
itated scenarios, BHA and ILS outshine exact methods like B&BD and BEA, achieving
speedups up to 3 ·106 while consistently finding global optima. BHA maintains a minimal
optimality gap (never exceeding 0.14%), even for high-dimensional instances, and solves
very large instances (one million draws) in under seven minutes. Enhancements to the
B&BD method, using BHA solutions and valid inequalities, provide speedups of up to
50% depending on the optimality gap, but are less effective as the gap tightens.
Compared to state-of-the-art methods, the BHA offers significant improvements, outper-
forming the LAG algorithm (with capacities) by a factor of at least 78 in runtime and
CoBiT (without capacities) by 5.8 · 106 in mixed-logit scenarios, with an average op-
timality gap of less than 0.02%. The ILS delivers remarkable speedups as well, while
maintaining optimality. Overall, the BHA exhibits exceptional performance across in-
stances both with and without capacity constraints and effectively addresses problems in
both low and high-dimensional settings.

6 Conclusions
This research introduces the Breakpoint Heuristic Algorithm (BHA), which offers a sub-
stantial advancement in solving the choice-based pricing problem (CPP) with and without
capacity constraints, as well as valid inequalities to tighten the relaxation in the state-of-
the-art approach for the uncapacitated problem, the Branch and Benders Decomposition
(B&BD) approach. To handle capacities, we first extend the Breakpoint Exact Algorithm
(BEA) with a capacity management strategy, implemented using an exogenous priority
queue. This adapted algorithm outperforms the state-of-the-art mixed-integer linear pro-
gramming (MILP) approach by 20 times in computational speed for simultaneous two-
price optimization. The BHA, employing a coordinate descent method, excels in high-
dimensional scenarios, showing remarkable efficiency in both capacitated and uncapaci-
tated cases. Notably, it outpaces the MILP by a factor of up to 5000 for the capacitated
case, and the B&BD approach by several orders of magnitude for the uncapacitated case,
while maintaining an average optimality gap of less than 0.2%. It can furthermore be
flexibly adapted to various use cases, due to its independent objective value evaluation.
The iterated local search (ILS) extension of the BHA succeeds in identifying the global

28

optimum in all tested instances, albeit with a significant speed reduction (average factor
of 40x). Combining the new valid inequalities with the solution found by the BHA to
guide the B&BD algorithm leads to decreases in computational time of up to 50%, with
high-dimensional instances showing the largest improvements. The BHA significantly
surpasses state-of-the-art methods, including those tailored for mixed logit models, in
speed while maintaining an optimality gap of less than 0.02%.
We thus conclude that we have successfully contributed to filling the gaps identified in the
literature: we provide operational algorithms to solve the CPP, capable of handling large
instance sizes and complex additional constraints (like capacity), while maintaining only
weak assumptions, if any, on the choice model.
Various avenues are open for future research: In terms of the heuristic, other extensions
of the BHA to escape local optima should be considered, as the ILS increases computa-
tional time substantially. The remarkable speed of the BHA algorithm, together with its
capability to produce high-quality solutions and overall flexibility due to depending only
on evaluating an objective function given fixed parameters, lays the groundwork for its
application in larger as well as more intricate problem settings.

Acknowledgements
We would like to express our gratitude to Robin Legault from the Massachusetts Institute
of Technology for his friendship, enduring support and exceptional guidance.

References
Abdolhamidi, D., & Lurkin, V. (2024). A tactical time slot management problem under

mixed logit demand. arXiv preprint arXiv:2407.02308.

Benati, S., & Hansen, P. (2002). The maximum capture problem with random utili-
ties: Problem formulation and algorithms. European Journal of operational research,
143(3), 518–530.

Binder, S., Maknoon, Y., & Bierlaire, M. (2017). Exogenous priority rules for the capaci-
tated passenger assignment problem. Transportation Research Part B: Methodological,
105, 19-42. (Accepted on Aug 17, 2017) doi: 10.1016/j.trb.2017.08.022

Bortolomiol, S., Lurkin, V., & Bierlaire, M. (2021). A simulation-based heuristic to
find approximate equilibria with disaggregate demand models. Transportation Science,
55(5), 1025–1045.

Cordone, R., & Redaelli, F. (2011). Optimizing the demand captured by a railway system
with a regular timetable. Transportation Research Part B: Methodological, 45(2), 430–
446.

29

Davis, J. M., Topaloglu, H., & Williamson, D. P. (2017). Pricing problems under the
nested logit model with a quality consistency constraint. INFORMS Journal on Com-
puting, 29(1), 54–76.

Gallego, G., & Wang, R. (2014). Multiproduct price optimization and competition un-
der the nested logit model with product-differentiated price sensitivities. Operations
Research, 62(2), 450–461.

Gilbert, F., Marcotte, P., & Savard, G. (2014). Mixed-logit network pricing. Computa-
tional Optimization and Applications, 57, 105–127.

Gosavi, A. (2015). Simulation-based optimization (Vol. 55). doi: 10.1007/978-1-4899
-7491-4

Gurobi Optimization, LLC. (2021). Gurobi Optimizer Reference Manual. Retrieved from
https://www.gurobi.com

Haase, K., & Müller, S. (2013). Management of school locations allowing for free school
choice. Omega, 41(5), 847–855.

Haering, T., Legault, R., Torres, F. A., Ljubic, I., & Bierlaire, M. (2023). Exact algorithms
for continuous pricing with advanced discrete choice demand models. OR Spectrum.
(Accepted for publication)

Hanson, W., & Martin, K. (1996). Optimizing multinomial logit profit functions. Man-
agement Science, 42(7), 992–1003.

Ibeas, A., Dell’Olio, L., Bordagaray, M., & Ortúzar, J. d. D. (2014). Modelling parking
choices considering user heterogeneity. Transportation Research Part A: Policy and
Practice, 70, 41–49.

Korfmann, F. (2018). Essays on advanced discrete choice applications (Unpublished
doctoral dissertation). Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky.

Legault, R., & Frejinger, E. (2024). A model-free approach for solving choice-based
competitive facility location problems using simulation and submodularity. INFORMS
Journal on Computing.

Li, H., Webster, S., Mason, N., & Kempf, K. (2019). Product-line pricing under dis-
crete mixed multinomial logit demand: winner—2017 msom practice-based research
competition. Manufacturing & Service Operations Management, 21(1), 14–28.

Liberti, L. (2008). Introduction to global optimization. Ecole Polytechnique.

Liu, N., Ma, Y., & Topaloglu, H. (2020). Assortment optimization under the multinomial
logit model with sequential offerings. INFORMS Journal on Computing, 32(3), 835–
853.

30

https://www.gurobi.com

Ljubić, I., & Moreno, E. (2018). Outer approximation and submodular cuts for max-
imum capture facility location problems with random utilities. European Journal of
Operational Research, 266(1), 46–56.

Mai, T., & Lodi, A. (2020). A multicut outer-approximation approach for competitive
facility location under random utilities. European Journal of Operational Research,
284(3), 874–881.

Marandi, A., & Lurkin, V. (2023). An exact algorithm for the static pricing problem
under discrete mixed logit demand. EURO Journal on Computational Optimization,
11, 100073.

McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex pro-
grams: Part i—convex underestimating problems. Mathematical programming, 10(1),
147–175.

Müller, D., Nesterov, Y., & Shikhman, V. (2021). Dynamic pricing under nested logit
demand. arXiv preprint arXiv:2101.04486.

Paneque, M. P., Bierlaire, M., Gendron, B., & Azadeh, S. S. (2021). Integrating advanced
discrete choice models in mixed integer linear optimization. Transportation Research
Part B: Methodological, 146, 26–49.

Paneque, M. P., Gendron, B., Azadeh, S. S., & Bierlaire, M. (2022). A lagrangian decom-
position scheme for choice-based optimization. Computers & Operations Research,
148, 105985.

Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The Benders decom-
position algorithm: A literature review. European Journal of Operational Research,
259(3), 801–817.

Robenek, T., Azadeh, S. S., Maknoon, Y., de Lapparent, M., & Bierlaire, M. (2018).
Train timetable design under elastic passenger demand. Transportation research Part
b: methodological, 111, 19–38.

Rusmevichientong, P., Shen, Z.-J. M., & Shmoys, D. B. (2010). Dynamic assortment
optimization with a multinomial logit choice model and capacity constraint. Operations
research, 58(6), 1666–1680.

Shen, Z.-J. M., & Su, X. (2007). Customer behavior modeling in revenue management
and auctions: A review and new research opportunities. Production and operations
management, 16(6), 713–728.

Sumida, M., Gallego, G., Rusmevichientong, P., Topaloglu, H., & Davis, J. (2021).
Revenue-utility tradeoff in assortment optimization under the multinomial logit model
with totally unimodular constraints. Management Science, 67(5), 2845–2869.

31

van de Geer, R., & den Boer, A. V. (2022). Price optimization under the finite-mixture
logit model. Management Science, 68(10), 7480–7496.

Wu, D., Yin, Y., Lawphongpanich, S., & Yang, H. (2012). Design of more equitable
congestion pricing and tradable credit schemes for multimodal transportation networks.
Transportation Research Part B: Methodological, 46(9), 1273–1287.

32

Appendix A Extension to capacity constraints
Formulation 1 can be extended to incorporate capacity constraints on the alternatives, as
demonstrated in Paneque et al. (2021). However, adding these constraints makes it no
longer possible to relax the domain of the ω variables, meaning the problem has to be
written as a MILP. Furthermore, some constraints presented in Formulation 1 have to be
adjusted. For the sake of clarity, we present the full MILP formulation for the CPP with
capacity constraints, as it represents the state-of-the-art to model and solve the problem.
First, we assume a set of given capacities ci, i ∈ C1. We now introduce two new sets of
variables, the binary yinr variables, which indicate the availability of alternative i ∈ C1

for individual n in scenario r, and the discounted utility variables zinr, which are equal
to the utilities Uinr if alternative i ∈ C1 is available (i.e. yinr = 1) and set to a low
enough value otherwise, thus embedding the concept of unavailable alternatives in the
customer subproblem. We note that individuals are assumed to be numbered in the order
of their priority to access the market. This numbering can follow any rule, including
being random, but must be exogenous Binder et al. (2017). Lastly, as the choice variables
are now again binary, the product piωinr can be modeled in a linear way using big-M
constraints, where the optimal big M is the largest possible value taken by said product, i.e.
pU
i . The full MILP formulation for the capacity-constrained CPP is given in Formulation

3:

33

max
p,ω,η,U,h

1

R

∑
r∈R

∑
n∈N

∑
i∈C1

n

ηinr

s.t.∑
i∈Cn

ωinr = 1 ∀n ∈ N, r ∈ R (µnr)

hnr ≤ zinr +M(1−ωinr) ∀n ∈ N, i ∈ Cn, r ∈ R (ζnr)

hnr ≥ zinr ∀n ∈ N, i ∈ Cn, r ∈ R (αinr)

Uinr = cinr + βin
p pi ∀n ∈ N, i ∈ C1

n, r ∈ R (κinr)

ηinr ≤ ωinrp
U
i ∀n ∈ N, i ∈ C1

n, r ∈ R (λ1inr)

ηinr ≤ pi ∀n ∈ N, i ∈ C1
n, r ∈ R (λ2inr)

ηinr ≥ pi − (1−ωinr)p
U
i ∀n ∈ N, i ∈ C1

n, r ∈ R (λ3inr)

z0nr = c0nr ∀n ∈ N, r ∈ R (anr)

zinr ≤ Uinr ∀n ∈ N, i ∈ C1
n, r ∈ R (binr)

zinr ≥ Uinr −M(1− yinr) ∀n ∈ N, i ∈ C1
n, r ∈ R (cinr)

zinr ≤ M/2+Myinr ∀n ∈ N, i ∈ C1
n, r ∈ R (dinr)

ωinr ≤ yinr ∀n ∈ N, i ∈ C1
n, r ∈ R (einr)

n∑
m=1

ωimr ≤ (ci − 1)yinr

+ (n− 1)(1− yinr) ∀n > ci ∈ N, i ∈ C1
n, r ∈ R (finr)n∑

m=1

ωimr ≥ ci(1− yinr) ∀n > 1 ∈ N, i ∈ C1
n, r ∈ R (ginr)

ω ∈ {0, 1}(J+1)NR

y ∈ {0, 1}JNR

p ∈ [pL
1 , p

U
1]× . . .× [pL

J , p
U
J]

η ∈ [0, pU
1]× . . .× [0, pU

J]

U, z, h ∈ RJNR,R(J+1)NR,RNR

(3)

where M is a large enough constant. Constraints (ζnr) and (αinr) have been adjusted to
incorporate the newly added z variables. The non-convex constraints (λinr) have been
replaced by a set of linear constraints (λ1inr), (λ

2
inr) and (λ3inr), modeling the big-M lin-

earization of the aforementioned product. Constraints (ainr − dinr) define the discounted
utility zinr, ensuring that in case of yinr = 0, zinr takes on a small enough value to not
compete with any available alternative’s utility, and is set to be equal to Uinr otherwise.
Constraint (einr) enforces that an alternative can only be chosen if it is available to that
individual in that scenario. Lastly, constraints (finr) and (ginr) define the y variables:
Constraint (finr) sets yinr to 0 whenever the capacity of alternative i is reached and con-

34

straint (ginr) makes sure that, if an alternative is no longer available, there have to be
enough people choosing the alternative to fill it to its capacity.

Appendix B Extending the Breakpoint Exact Al-
gorithm (BEA) to handle capacity
constraints

To incorporate capacity constraints into the BEA, we employ a streamlined variant that
systematically explores each valid combination of breakpoints in sequence. We use the
same notation as Haering et al. (2023). As for the uncapacitated case, the optimal price
ensures that the utility of a product matches the utility of the next cheapest alternative for
at least one customer and scenario, maximizing revenue without unnecessary customer
loss. Specifically, for an optimal price pi, i ∈ C1, there exists a customer n ∈ N and
scenario r ∈ R such that any increase in pi by ε > 0 would lower the utility Uinr below
that of cheaper alternatives or the opt-out option, deterring that customer and decreasing
overall revenue. Hence, this price acts as a “breakpoint” or “indifference point” in the
customer’s decision-making, representing the maximum price before their interest shifts
to more affordable options.
The outer level algorithm (see Algorithm 4) remains the same as for the BEA, with the
only difference being that the recursive enumerate function is replaced by a function
enumerate cap, described in Algorithm 5. At its deepest level, it invokes the func-
tion compute objective value that calculates the objective value for a set price
variables fixed to a combination of breakpoints, taking capacity restrictions into account.
Due to interdependent choices potentially leading to recursive substitution, continuously
updating choices and revenues becomes impractical. Additionally, when adding a new
product, calculating breakpoints for each simulated customer from their previous prefer-
ence to the new option is insufficient in this problem setting. Instead, breakpoints must
be computed from any possible previous product to the new one, as capacity limits may
force customers to choose an alternative other than their most preferred. This adjustment
accounts for decision breakpoints involving switches from any introduced product to the
new one. The process of sequentially introducing alternatives remains the same as in the
original BEA, as the order in which alternatives are introduced to customers alters their
decision making breakpoints. A diagram visualizing the BEA with capacity constraints is
shown in Figure 1.
These two changes, compared to the BEA without capacity constraints, increase the algo-
rithm’s computational complexity. However, directly evaluating the objective function at
each breakpoint combination also enhances flexibility in revenue computation methods.
Indeed, this allows to add any type of constraint to the problem without adjusting the algo-
rithm. In our case, we only consider capacity constraints, implemented with an exogenous
priority queue. Algorithm 3 lays out the evaluation of revenue given such a queue, where
individuals are assigned the highest utility alternative with positive remaining capacity.

35

Algorithm 3: Compute objective value with priority queue
Function compute objective value(p, c, prio queue):

σ← (0)i∈C
for idx ∈ prio queue do

u← [Ui
idx for i ∈ C]

a← sort(u, descending)
φ← false
j← 1

while j ≤ C− 1 and !φ do
if σaj

≤ caj
− 1 then

σaj
+= 1

φ← true
end
else

j += 1

end
end

end
o←∑i∈C σi · pi

return o
end

Algorithm 4: Breakpoint exact algorithm (BEA) to solve the capacitated
CPP

Result: optimal solution p∗ and objective value o∗ for the capacitated CPP.
p∗
j ← 0 ∀j ∈ {1, . . . , J}

o∗ ← 0

for s in S do
psj ← 0 ∀j ∈ {1, . . . , J}

(p̂, ô)← enumerate cap(s, p, 1)
if ô > o∗ then

p∗ ← p̂;
o∗ ← ô;

end
end
return (p∗, o∗)

We denote by S the set of all possible permutations s of {1, . . . , J}. For a given permu-
tation s ∈ S, the jth element of the ordered list s in denoted by sj. Algorithm 4 iterates
over all possible orderings of prices ps1 ≤ ps2 ≤ · · · ≤ psJ , s ∈ S. Each restricted
problem is addressed by the recursive enumerate cap function. This function accepts
as arguments the current permutation s ∈ S of alternatives, a partially filled vector of
prices p, with components ps1 ≤ · · · ≤ psj−1

already set, and the depth j of the current
permutation’s exploration.

36

The function enumerate cap solves the capacitated CPP, restricted to a specific order-
ing of prices, in a recursive manner.

Algorithm 5: Recursive enumeration function within the BEA, when
taking capacities into account

Function enumerate cap(s, p, j):

p̄nrsi
sj ← U

si
nr−csjnr

β
sjn

p

∀(n, r) ∈ N × R, i < j ∈ C ∪ {0}

N2 ← {(n, r, si)|p
L
sj
< p̄nrsi

sj < pU
sj
}

N2 ← N2 ∪ {pL
sj
, pU

sj
∀i ∈ C}

Sort the elements of N2 from largest to smallest
if j ≤ J− 1 then

for p̄nrsi
sj ∈ N2 do
psj ← p̄nrsi

sj

(p̂, ô)← enumerate cap(s, p, j+ 1)
if ô > o∗ then

o∗ ← ô

p∗ ← p̂
end

end
end
else

for p̄nrsi
sj ∈ N2 do
psj ← p̄nrsi

sj

o← compute objective value(p)
if o > o∗ then

o∗ ← o

p∗ ← p
end

end
return (p∗, o∗)

end
end

The exponential growth in BEA’s complexity with the number of controlled alternatives J
is clearly illustrated in the tree diagram in Figure 1, where each branch represents a call
to the recursive enumerate cap function.

Appendix C Comparison to CoBiT
This section shows the numerical results for the CoBiT, B&B, BHA and ILS algorithms
when applied to the artificially augmented parking choice data set.

37

Introduce
alternative 1,
compute ps

1.

Introduce
alternative 2,
compute ps

2,1.

Compute capacitated profit. Compute capacitated profit.

Fix
p 1
=
p
1
1
.

Introduce
alternative 2,
compute ps

2,2.

Fix
p
1
=

p
21 .

Introduce
alternative 2,
compute ps

2,3.

Compute capacitated profit.

Fix p
1 =

p 3
1 .

Compute the breakpoints ps
1

(from U0s = U1s)
for all simulated customers s.

Compute breakpoints ps
2

(from U0s = U2s and
U1s = U2s).

From lowest
to highest price.

Figure 1 – BEA with capacity constraints for three simulated customers and
two alternatives.

Table C1 – Numerical results for CoBiT

N R J Obj. p1 p2 p3 p4 p5 p6

10 9 2 6.837 0.520 0.729
10 9 3 6.761 0.500 0.690 1.000
10 9 4 6.882 0.531 0.719 0.750 0.520
10 9 5 6.842 0.540 0.722 0.750 0.500 0.697
10 9 6 6.839 0.540 0.720 0.750 0.500 0.950 0.500
10 64 2 5.069 0.500 0.661
10 64 3 5.080 0.500 0.659 0.664
10 64 4 5.086 0.500 0.659 0.664 0.500
10 64 5 5.084 0.500 0.662 0.660 0.500 0.625
10 64 6 5.086 0.500 0.661 0.661 0.500 0.628 0.498

38

Table C2 – Numerical results for best exact method (B&B)

N R J Obj. p1 p2 p3 p4 p5 p6

10 100 2 5.200 0.626 0.651
10 100 3 5.142 0.562 0.652 0.674
10 100 4 5.140 0.543 0.560 0.652 0.677
10 100 5 5.142 0.543 0.560 0.652 0.677 0.668
10 100 6 5.155 0.540 0.575 0.530 0.652 0.656 0.680
10 400 2 5.279 0.550 0.652
10 400 3 5.196 0.550 0.652 0.651
10 400 4 5.204 0.549 0.570 0.652 0.655
10 400 5 5.208 0.549 0.570 0.652 0.655 0.650
10 400 6 5.235 0.564 0.556 0.538 0.650 0.661 0.669

Table C3 – Numerical results for BHA

N R J Obj. Gap (%) p1 p2 p3 p4 p5 p6

10 100 2 5.200 0.00 0.626 0.651
10 100 3 5.141 0.02 0.548 0.653 0.673
10 100 4 5.140 0.00 0.543 0.560 0.652 0.677
10 100 5 5.142 0.00 0.540 0.561 0.651 0.673 0.665
10 100 6 5.152 0.05 0.543 0.579 0.654 0.653 0.657 0.681
10 400 2 5.279 0.00 0.550 0.652
10 400 3 5.196 0.00 0.550 0.653 0.651
10 400 4 5.201 0.06 0.532 0.534 0.650 0.658
10 400 5 5.205 0.07 0.532 0.534 0.650 0.658 0.650
10 400 6 5.234 0.03 0.564 0.558 0.542 0.650 0.661 0.669

39

Table C4 – Numerical results for ILS

N R J Obj. Gap (%) p1 p2 p3 p4 p5 p6

10 100 2 5.200 0.00 0.626 0.651
10 100 3 5.142 0.00 0.562 0.652 0.674
10 100 4 5.140 0.00 0.543 0.560 0.652 0.677
10 100 5 5.143 0.00 0.543 0.560 0.652 0.677 0.668
10 100 6 5.155 0.00 0.540 0.576 0.530 0.652 0.656 0.680
10 400 2 5.279 0.00 0.550 0.652
10 400 3 5.196 0.00 0.550 0.652 0.651
10 400 4 5.204 0.00 0.549 0.569 0.652 0.657
10 400 5 5.208 0.00 0.549 0.569 0.652 0.657 0.650
10 400 6 5.234 0.03 0.564 0.558 0.542 0.650 0.661 0.669

40

	Introduction
	Problem definition
	Problem formulation

	Methodology
	Breakpoint heuristic algorithm (BHA)
	Iterated local search heuristic (ILS)

	Guiding the exact algorithm
	Spatial Branch and Benders algorithm
	Valid inequalities
	Improving price bounds
	Node enumeration

	Results and discussion
	Case study
	Description of experiments
	Numerical results and analysis
	Summary of results

	Conclusions
	Extension to capacity constraints
	Extending the Breakpoint Exact Algorithm (BEA) to handle capacity constraints
	Comparison to CoBiT

