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Abstract

A framework is outlined for estimating pedestrian demand within a rail-
way station which takes into account the train timetable, ridership data,
and various direct and indirect indicators of demand. Such indicators may
include e.g. link flow counts, measurements of density and travel times,
or historical information. The problem is considered in discrete time and
at the aggregate level, i.e., for groups of pedestrians associated with the
same user class, origin-destination pair and departure time interval. The
formulation of the framework is probabilistic, allowing to explicitly cap-
ture the stochastic characteristics of demand. A case study analysis of a
Swiss railway station underlines its practical applicability. Compared to a
classical estimator that ignores the notion of a train timetable, the gain in
accuracy in terms of RMSE is between -20% and -50%. More importantly,
the incorporation of the train schedule allows for prediction when little or
no information besides the timetable and ridership estimates is available.

Keywords: Origin-destination demand, schedule-based estimation, de-
mand prediction, pedestrian flows, public transportation.
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1 Introduction

Passenger railway systems are experiencing a tremendous growth in many
countries around the world. For the last decade, the national rail operator
of the US, Amtrak, reports an average annual growth rate in number of
daily transported passengers of close to 3% (Puentes et al., 2013). Similar
figures are valid for Europe with e.g. 4.1% for Switzerland’s national opera-
tor SBB-CFF-FFS (Amacker, 2012) or 2.7% for Germany’s Deutsche Bahn
(Kasparick, 2010). In Asia, annual growth rates have been even higher,
with a reported average of 11.0% for Singapore (Land Transport Author-
ity, Singapore, 2012) and 9.2% for South Korea’s high-speed train network
(Chung, 2012).

Partially in response to that growth, and partially inducing it, trans-
portation systems have been continuously expanded over the past decades
(Kallas, 2014). In particular, the frequency and the capacity of trains have
been increased. However, one component that has received less attention
is that of rail access installations (Schneider, 2012). The capacity of pedes-
trian facilities has not been a limiting factor for a long time. Today, they
are increasingly considered a bottleneck of railway systems, and pedestrian
congestion in train stations is becoming a common phenomenon (Ganansia
et al., 2014).

During normal operation of a railway station, primarily the arrival and
departure of large trains are responsible for the peak usage of pedestrian
facilities. Following a train arrival, a potentially large number of passengers
alights, and then moves as a dense crowd through the station. These ‘pedes-
trian waves’ often provoke congestion in platform access ways (van den
Heuvel et al., 2013). Similarly, prior to train departures, outbound pas-
sengers accumulate on platforms that serve as waiting areas. If platforms
are small, or the number of prospective passengers high, space quickly gets
scarce (Schneider, 2012). Such train-induced demand patterns have a sig-
nificant impact on customer satisfaction, as well as on the performance and
safety of a train station. With the densification of train timetables that is
ongoing in many countries, and the prospect of more capacious trains, this
impact is likely to aggravate.

By increasing the capacity of rail access installations, most negative
side-effects of a growing ridership can be alleviated. Unfortunately, the
required investment is often prohibitively high. The enlargement of plat-
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forms or access ways typically requires a redesign of large parts of a train
station, which can seldom be closed during construction. Many studies
documenting extensions of railway stations are found in the literature, in-
cluding examples from the Netherlands (van den Heuvel and Hoogenraad,
2014), France (Ganansia et al., 2014), Portugal (Hoogendoorn and Daamen,
2004) or South Africa (Hermant, 2012).

Given the complexity and cost of an expansion of rail access installa-
tions, a diligent planning and dimensioning is indispensable. Key in this
process is the assessment of the usage of a railway station. In this work,
we propose a methodology for estimating pedestrian demand in a railway
station, taking into account the particular demand patterns induced by
trains. An explicit integration of the train timetable allows to quantita-
tively assess its influence on pedestrian traffic in rail access installations.
To underline the practical applicability of the framework, a case study in-
volving pedestrian demand in the walking facilities of Lausanne railway
station, Switzerland, is presented.

In the long run, we hope that this work contributes to the development
of tools and methodologies that allow optimizing the pedestrian infras-
tructure of railway stations, as well as the train timetable or the track
assignment in the context of pedestrian flows.

2 Literature review

Pedestrian behavior in railway stations increasingly attracts the attention
of academic research. Broadly, it can be distinguished between empirical
studies aiming at characterizing behavior, and those concerned with its
mathematical modeling.

In an early study, Daly et al. (1991) investigate the relationship between
speed and flow and between flow and travel time in various pedestrian fa-
cilities of London’s underground system. Lam and Cheung (2000) examine
several metro stations as well as pedestrian areas in a shopping center in
Hong Kong. Differentiating by trip purpose, flow capacities are evaluated
and flow-travel time functions are calibrated. Compared to the results from
London, users of Hong Kong’s mass transit system are found to be better
at dealing with high levels of congestion, which is attributed to anatomical
and sociological differences.
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In a related study, Lam et al. (1999) investigate the train dwelling time
and the distribution of pedestrians on platforms in two stations of Hong
Kong’s Light Rail Transit system. A behavioral analysis reveals that peo-
ple are significantly less willing to board a train if the latter is congested,
and if the journey to be made is longer. Also focusing on train platforms,
Zhang et al. (2008) quantitatively describe the process of alighting and
boarding in metro stations in Beijing. A cellular automaton model is de-
veloped, calibrated on empirical data and complemented with a literature
review. Various empirically observed behavior patterns can be reproduced
with high accuracy. Pettersson (2011) investigates the behavior of pedes-
trians on railway platforms from an architect’s perspective. In particular,
the effect of signposts, availability of seats and entrances on the distribu-
tion of pedestrians along the platform is investigated at the example of a
Swedish and a Japanese case study. Concrete recommendations are made
regarding how a more homogeneous distribution along a train platform can
be attained.

Recently, Ganansia et al. (2014) have studied the use of standard CCTV
networks for measuring pedestrian flows in railway stations. Several case
studies, including a TGV station and two subway stations in France and
Italy, are discussed. It is found that data obtained through such a system is
in principle highly useful for a continuous monitoring of the spatio-temporal
evolution of pedestrian flows, but also that an a posteriori ‘correction’ is
necessary whenever dense crowds need to be accurately measured. A con-
siderable effort is made towards developing such a calibration model.

Notably using such camera-based data, several researchers have em-
pirically analyzed the influence of train arrivals and departures on pedes-
trian behavior patterns. For instance, Buchmüller and Weidmann (2008)
describe the flows on platform access ways caused by alighting train pas-
sengers. Following the same approach, Molyneaux et al. (2014) discuss
the concrete example of Lausanne railway station. Characteristic for such
train-induced pedestrian arrival flows is the lagged onset of the flow after
the arrival of the train, the saturation at a given capacity flow rate, and a
subsequent decay (see Section 4.4).

A similar example is provided by van den Heuvel and Hoogenraad
(2014), who use automatic fare collection (AFC) data to study various
aspects of pedestrian behavior within railway stations. At the example
of Utrecht Central Station, the passenger arrival distribution at AFC exit
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gates is investigated. In comparison to the arrival pattern observed on plat-
form exit ways in Lausanne (Molyneaux et al., 2014), there are more ‘late
arrivals’, which is attributed to passengers that visit a restroom, restaurant
or other service points before leaving the railway station.

In principle, similar empirical relationships can be established for train-
induced departure flows, i.e., for the flow patterns of outbound train pas-
sengers walking towards platforms. However, empirical evidence shows that
such relationships are more complex for reasons such as differences in risk
aversion among passengers, or due to constraints imposed by the schedule
of tertiary transport modes (van Hagen, 2011). For instance, outbound
passengers associated with an interregional train and long headway times
typically arrive earlier at a platform than those bound for a regional train
with a high frequency. Transfer passengers may simply show up on their
respective departure platform after they have arrived at a railway station,
giving raise to complex correlation patterns.

In spite of these challenges, a few researchers have proposed a formal re-
lationship between train departures and the number of prospective passen-
gers on the platform prior to departure. Specifically, based on qualitative
observations, Tolujew and Alcalá (2004) and Hermant et al. (2010) assume
that the accumulation of outbound pedestrians on a train platform prior
to departure first follows an S-curve which, once the train has arrived, is
‘inverted’ by pedestrians that start boarding.

To assess the design of a railway station, the ability to predict the
routes taken by pedestrians is crucial. Several studies have been dedicated
to this endeavor. Again for the case of a metro station in Hong Kong,
Cheung and Lam (1998) investigate the route choice between escalators
and stairways leading to a train platform. A relationship between flow
and travel time is first established. This characteristic relationship is then
used in a choice model allowing to predict the percentage of escalator-
users for ascending and descending directions as a function of prevailing
traffic conditions. At the example of two Dutch stations, Daamen et al.
(2005) have collected route choice data by following passengers through
the facility from their origin to their destination. Likewise, a route choice
model is estimated allowing to predict the influence of level changes in
walking routes on passenger route choice behavior. It is concluded that the
various ways of bridging level changes such as ramps, stairs or escalators
have a different impact on the attractiveness of a route. Further similar
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studies are provided by Srikukenthiran et al. (2014) and Stubenschrott et al.
(2014), who consider subway stations in Toronto and Vienna, respectively.

In a more general context, Hoogendoorn and Bovy (2004) develop a
model for pedestrian route choice and activity scheduling. Every route
and activity schedule is associated with a cost, and it is assumed that
pedestrians choose their route and activities such that the perceived utility
is maximized. The methodology is applied to a case study of a major Dutch
transportation hub.

If a large number of pedestrians is to be considered, an individual con-
sideration of activities can be impractical. Instead, pedestrians may be
divided into user classes that are characterized by a common activity or
behavior pattern (e.g. Wong et al., 2005). Pursuing a socio-geographical ap-
proach, Lavadinho (2012) analyses the behavior of different user classes at
the example of Lausanne railway station. In the context of a train station,
it can be broadly distinguished between inbound, outbound, transit and
local users: Inbound passengers often leave the railway station immediately
upon arrival, following the shortest path. Outbound passengers sometimes
arrive early at the railway station, spending some spare time waiting, or
pursuing any other intermediate activity such as reading a newspaper. For
transit passengers, the behavior depends significantly on the duration of
the layover, and may consist in hurrying from one platform to another, or
in spending time in a restaurant. Local users finally are those that visit a
railway station to take advantage of its sales and service points, or simply
traverse it.

Most of the aforementioned studies concentrate on individual aspects of
pedestrian behavior such as flow-travel time relationships or way finding,
or they concern sociological aspects. In the following, several studies are
presented that consider more comprehensive and quantitative models of
pedestrian behavior in railway stations.

Lee et al. (2001) provide one of the first model-based studies of pedes-
trian flows in a railway station in the scientific literature. For a major sta-
tion in Hong Kong’s metro system, origin-destination demand and travel
times are collected using a large number of human observers. From this
data, flow-travel time relationships are derived, which are used in a rela-
tively simple, network-based pedestrian flow model. A comparison between
empirical data and model prediction indicates a good performance of the
model.
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Along the same lines, Daamen (2004) develops a particularly detailed
modeling framework for pedestrian flows in railway stations. A multitude of
models for describing the processes of queueing, boarding, alighting, wait-
ing, walking as well as route and activity choice are proposed, and jointly
implemented. The framework represents a hybrid queueing network/link
flow-model operating in discrete space. Various case studies across the
Netherlands are considered.

More recently, Kaakai et al. (2007) have developed a related model at the
macroscopic level. They consider both discrete processes such as the arrival
and departure of trains, as well as continuous processes such as the fill-up
of railway platforms by pedestrians awaiting a train, or pedestrian flows
in walking facilities. The model is represented as a Petri net and applied
to a French case study involving a railway station with a single platform.
Hanisch et al. (2003) and Tolujew and Alcalá (2004) qualitatively follow a
similar approach, but do not provide a mathematical specification of their
model.

At the microscopic level, Xu et al. (2014) develop a model describing
pedestrian behavior in a Chinese metro station. The framework is entirely
based on a queueing network, i.e., all processes including entering the rail-
way station, passing ticket gates, walking and boarding are represented by
queues. The framework is applied to estimate the maximum service rate of
a metro station, as well as to determine the optimal inflow rate at the en-
trance at which this capacity is attained. Pursuing a similar goal, but using
a macroscopic approach, Starmans et al. (2014) have conducted a study of
Amsterdam Central Station, for which a ‘pedestrian transfer chain’ model
is developed to assess the design and operation of the station.

There are several more studies of pedestrian flows in railway stations
that concentrate rather on a high level of accuracy for specific applications
than on a methodological contribution. Most of them pursue an agent-
based approach and describe various local challenges such as the placement
of access gates in Lisbon (Hoogendoorn and Daamen, 2004), the re-design
of access ways in Bern (Rindsfüser and Klügl, 2007), the evacuation of a
metro station in Beijing (Jiang et al., 2009), the modeling of waiting areas
in German railway stations (Davidich et al., 2013) or the design of a new
station in South Africa (Hermant, 2012).

While most of the previously mentioned studies use sophisticated mod-
els for describing various aspects of pedestrian behavior such as walking,
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waiting or boarding, the methods used to estimate pedestrian demand are
quite simplistic. Many do not even specify how these estimates are ob-
tained. Other studies rely on flow counts that are converted to origin-
destination demand values based on simple rules of thumb, such as assum-
ing a uniform demand over time. Few studies take the train timetable
explicitly into account, but if so, only for a single platform.

Despite a considerable interest in pedestrian behavior models for rail-
way stations, there seems to be a lack of dedicated methods for estimating
pedestrian demand. Ideally, such a methodology should be able to re-
produce the ‘demand micro-peaks’ (Hermant, 2012) caused by incoming
and outgoing trains, i.e., it should explicitly take the train timetable into
account. Moreover, it should be able to distinguish between user classes
characterized by class-specific behavior.

To develop a corresponding demand estimation model, different ap-
proaches seem conceivable. For instance, in the context of a university
campus, Danalet et al. (2014) propose an activity choice model based on
WiFi traces and individual class schedules, which assume a similar role as
the train timetable for a railway station. In principle, an analogous ap-
proach could be adapted. However, for most applications involving train
stations, disaggregate data is still unavailable. Instead, it is more efficient
to estimate origin-destination (OD) demand at the aggregate level.

For problems concerning car traffic, such dynamic OD demand estima-
tion methodologies are well established. Inspired by the seminal work by
Cascetta et al. (1993), a large number of statistical methods have been de-
veloped in the last two decades (Bera and Rao, 2011). For instance, Wong
et al. (2005) provide an example of a multi-class estimation work that is
applied to the case of a transit network. More recently, Shao et al. (2014)
have presented an estimation model that allows exploring the stochastic
characteristics of OD demand. Based on a static formulation of the de-
mand estimation problem, besides the mean, also the variation caused by
day-to-day fluctuations of demand is estimated.

By building on the aforementioned achievements, this study aims at
providing a dedicated estimation methodology for pedestrian OD demand
in railway stations. It is designed in a probabilistic way, so that the stochas-
tic characteristics of OD demand, such as its variance, can be readily cap-
tured. Particular emphasis is given to the development of a fully dynamic
estimation framework that explicitly considers the train timetable.
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3 Estimation framework

The train station is considered as a mathematical system, for which a model
consisting of input variables, state variables, structural equations and mea-
surement equations is defined. To facilitate the discussion of these com-
ponents, first a general notation is established. Subsequently, the model
formulation is presented, and in Section 4, a concrete specification is pro-
vided.

3.1 Notation

Walkable space is represented by a directed graph G = (N , Λ), where N

represents the set of nodes ν ∈ N , and Λ the set of directed links λ ∈ Λ.
Nodes through which pedestrians enter and leave the pedestrian facility
network are referred to as centroids, and their set is denoted by C ⊂ N .

The subset of centroids associated with a platform p ∈ P is denoted
by Cp, where P denotes the set of platforms. The subset of centroids CP
represents the set of all centroids associated with any platform. Similarly,
the set Λarr

p includes the links representing platform exit ways of platform
p, and Λarr

P the set of all platform exit ways.
Fig. 1 provides an illustration of the proposed space representation. In

the case of the upper platform, an East and a West sector are considered,
each of which is represented by two centroids. Pedestrian flows within
platform areas from and towards each railway track are explicitly modeled.
This case is important for the derivation of the model formulation presented
in this section. In the case of the lower platform, a single centroid represents
each platform sector, and no explicit distinction is made between railway
tracks. This case will be relevant for the case study presented in Section 4.

Any two centroids can be connected by a route ρ ∈ R, defined as a
sequence of links ρ = (λρ

1, λ
ρ
2, . . . ). Besides, a set of ‘subroutes’ Q is defined,

where for each subroute ̺ ∈ Q at least one parent route exists. The set
of parent routes associated with subroute ̺ is denoted by Rsup

̺
. Subroutes

may originate and terminate at any node, νo
̺
, νd

̺
∈ N , and are useful to

incorporate subroute flows obtained from a tracking system. In case the
tracking system covers the full network, the set of subroutes is identical to
the set of routes.

A connected subnetwork Gα = (Nα, Λα), with Gα ⊂ G, is referred to
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Figure 1: Illustration of network topology at the example of a simple train
station. Railway tracks are denoted by dotted lines. Gray areas represent walking
facilities, and dotted areas denote joint walking/waiting areas (in this case only
platform areas). Levels are bridged by ramps and stairways, denoted by standard
floor plan symbols. Platform sectors are represented by centroids shown as yellow
rectangles with rounded corners. They may be associated with one or a pair
of railway tracks. Further centroids are shown as orange squares, which include
sales or service points, or exit/entrance areas. The pedestrian walking network
is represented by a graph connecting centroids and intersection nodes (solid blue
arrows representing directed links). Pedestrian counters are represented by red
diamonds. An exemplary area is shown in shaded green. Yellow stars denote
cordons at which train-induced passenger arrival flows are estimated.

as an area α, and the set of all areas by A. The concept of an area is
useful to consider the occupation of certain facilities such as waiting halls
or platforms. Knowledge of occupation can be helpful for dimensioning
such facilities, or to validate the results of the estimation model, as done
in this work. Areas are allowed to overlap, and their union is not required
to cover the full network.

Each pedestrian is associated with a specific OD pair ζ = (νo
ζ, ν

d
ζ), where

νo
ζ, ν

d
ζ ∈ C. The set of all OD pairs is denoted by Z. Furthermore, Zorig

ν

represents the set of OD pairs sharing node ν as their origin, and Zdest
ν

those having node ν as destination. Also, for each OD pair ζ, the set of
connecting routes is denoted by Rζ.

Moreover, each pedestrian is associated with a user class β. The set
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of classes is represented by B. Without loss of generality, we consider the
aforementioned set of four user classes representing inbound, outbound
and transfer passengers, as well as local users, i.e., B = {in, out, tr, loc}. In
another context, a different specification of user classes is easily applicable.

Regarding the representation of time, the period of interest is divided
into a set of discrete intervals T , where each interval τ = [t−τ , t

+
τ ], τ ∈ T , is

of uniform length ∆t = t+τ − t−τ .
Based on the above representation of space, time and user classes, the

concept of demand can be defined. The number of travelers leaving the
origin νζ

o during time interval τ towards destination νζ
d associated with

class β is represented by dβ
ζ,τ, and the corresponding time-space expanded

vector by dβ = [dβ
ζ,τ], being of size |Z||T |. The complete demand vector is

denoted by d = [din;dout;dtr;dloc] and represents the state variable of the
demand estimation model. The unit of demand is number of pedestrians.

During the time horizon T , a set of trains M is considered. The plat-
form serving train m ∈ M is denoted by pm, the corresponding vector of
length |M| by p, and the set of trains associated with platform p by Mp.

For a train m ∈ M, tarr
m and tdep

m denote the arrival and departure time,
and woff

m and won
m the alighting and boarding volume. The corresponding

vectors are tarr = [tarr
m ], tdep = [tdep

m ], woff = [woff
m ] and won = [won

m ], which
are of size |M|, as well as w = [woff;won] of length 2|M|. In the following,
boarding and alighting volumes are jointly referred to as train exchange
volumes.

A pre-specified aggregated network supply model is assumed to exist
that, given the demand, predicts for each user class the expected traffic con-
ditions. Such a model is typically referred to as dynamic traffic assignment
(DTA) model. We assume that the vector γ contains all its parameters
specifying e.g. the free-flow walking speed distribution or the route choice
model. The traffic conditions of each class β are assumed to be described
by the generic vector sβ. While no precise definition of sβ is necessary
in the current context, it may be thought of as the vector containing the
travel time distribution of users of class β on all links ℓ ∈ Λ during all time
intervals τ ∈ T . The corresponding vector s = [sin; sout; str; sloc] represents
the state variables of the supply model.

Various demand indicators can be derived from OD demand to facilitate
the formulation of the structural and measurement model. In this work,
primarily flows and area occupations are of interest. All flows are cumula-
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tive over time, i.e., they effectively represent pedestrian counts. Following
Edie (1963), occupation is defined as the time-mean average number of
users in an area. Therefore, the unit of demand, cumulative flows and area
occupation is always ‘number of pedestrians’.

Multiple types of link flows are distinguished, namely cumulative link
flows, total cumulative link flows, cumulative arrival link flows, and cu-
mulative subroute link flows. Cumulative link flows are associated with a
single pedestrian class, whereas total cumulative link flows represent the
sum over all pedestrian classes (The same distinction is made between the
occupation associated with a specific pedestrian class, and the total occu-
pation.). Cumulative arrival and subroute link flows are associated with
arriving passengers and with a specific subroute, respectively.

Besides link flows, the total cumulative origin flow and the total cumula-
tive destination flow associated with a centroid are considered, representing
the total ‘generation’ and ‘absorption’ of pedestrians of any class at a net-
work node. They are useful for integrating ridership information, sales data
and travel surveys. In this work, link flows are cumulative with respect to
a single time interval τ, and flows associated with centroids are cumulative
with respect to the full time period T .

Furthermore, the total cumulative departure flow of a train platform is
of interest, denoting the number of departing pedestrians associated with a
platform. Compared to the total cumulative destination flow to a node, the
cumulative departure flow takes into account that a platform may consist
of several centroids.

With the exception of the train exchange volumes whose notation has
already been defined, the following list provides an overview of all consid-
ered demand indicators. Their unit is number of pedestrians unless stated
otherwise. A mathematical definition of all demand indicators is provided
in Section 3.3.

� dtot = [dtot
ζ,τ]: The total demand dtot

ζ,τ associated with OD pair ζ and
time interval τ, and the corresponding time-space expanded vector
dtot of length |Z||T |.

� fβ = [fβλ,τ]: The cumulative link flow fβλ,τ associated with users of class
β on link λ during time interval τ, and the corresponding time-space
expanded vector fβ of length |Λ||T |.
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� ftot = [ftot
λ,τ]: The total cumulative link flow ftot

λ,τ on link λ during time
interval τ, and the corresponding time-space expanded vector ftot of
length |Λ||T |.

� farr = [farr
λ,τ]: The cumulative arrival link flow ftot

λ,τ on link λ during time
interval τ, and the corresponding time-space expanded vector farr of
length |Λ||T |. This part of the link flow is particularly volatile, and
useful for the integration of the train timetable in the estimation
framework.

� eβ = [eβ
̺,τ]: The cumulative subroute flow eβ

̺,τ associated with users of
class β along subroute ̺ leaving node νo

̺
during time interval τ, and

the corresponding time-space expanded vector eβ of length |Q||T |.

� etot = [etot
̺,τ]: The total cumulative subroute flow etot

̺,τ along subroute ̺

leaving node νo
̺

during time interval τ, and the corresponding time-
space expanded vector etot of length |Q||T |.

� nβ = [nβ
α,τ]: The occupation ntot

α,τ associated with user class β on area
α during time interval τ, and the corresponding time-space expanded
vector nβ of length |A||T |.

� ntot = [ntot
α,τ]: The total occupation ntot

α,τ on area α during time interval
τ, and the corresponding time-space expanded vector ntot of length
|A||T |.

� otot = [otot
ν ]: The total cumulative origin flow otot

ν emanating from
centroid ν during the time period T , and the corresponding vector
otot of length |C|.

� qtot = [qtot
ν ]: The total cumulative destination flow qtot

ν reaching cen-
troid ν during the time period T , and the corresponding vector qtot

of length |C|.

� gtot = [gtot
p ]: The total cumulative departure flow gtot

p at platform p

during the time period T , and the corresponding vector gtot of length
|P|.

� rβ = [rβν]: The time-mean average ratio rβν of users associated with
class β in the origin flow at centroid ν during the time period T ,
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and the corresponding vector rβ of length |C|. The ratio rβν is a
dimensionless quantity.

3.2 Input variables

To estimate time-dependent OD demand, it is desirable to consider multiple
sources of data (Cascetta et al., 1993; Sherali and Park, 2001). Some of
them, such as link flow counts, are accurate and widely available, whereas
e.g. route flow data may be biased and less complete, but useful for resolving
structural ambiguities (Hazelton, 2003). Furthermore, travel surveys or
previous demand estimates may be relatively inaccurate, but useful for
reducing the solution space if the estimation problems allows for multiple
solutions.

In the following, we mark biased variables such as measurements by a
hat (e.g. f̂β), and ‘incomplete’ vectors by a prime (e.g. f ′

β). The latter are
referred to as reduced vectors, and a reduction matrix R is defined that
relates each of them to the corresponding full vector (e.g. f ′

β = Rffβ).
The following assumptions regarding data availability are made:

� The network topology, including the set of OD pairs and routes, the
time discretization, as well as the set of trains including the train
timetable and the train-track assignment, are assumed to be given.
The parameter vector γ is also known a priori.

� An a priori estimate of train exchange volumes ŵ′ for a subset of
trains is assumed to be available, which can be inferred e.g. from
traffic surveys, door counts or train capacity.

� Some direct or indirect observations of OD demand are assumed to
be available. Direct observations can be obtained from a pedestrian
tracking system. Indirect observations usually include measurements
of flow, density, travel time or walking speed. Their temporal resolu-
tion has to be such that dynamical features of pedestrian flows, such
as ‘micro-peaking’, can be captured, i.e., a maximum aggregation pe-
riod of the order of a minute is desirable. Here, measurements of total
cumulative link flows, f̂ ′

tot, total cumulative subroute flows, ê′
tot, and

total area occupations, n̂′
tot, are assumed to be available, understand-

ing that other demand indicators can be considered analogously.
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� For a subset of centroids, estimates of the total cumulative origin
and destination flows, ô′

tot and q̂′
tot, are assumed available. They may

be obtained from customer frequentation data at sales and service
points, or from manual surveys. Moreover, a priori information on the
cumulative class split ratios, r̂′

β, is considered available. For instance,
some shop keepers may know what percentage of their clients are train
passengers, or railway operators may dispose of an a priori estimate
of the overall percentage of transfer vs. non-transfer passengers.

� An a priori estimate of class-specific origin-destination demand d̂ is
assumed to be available, which is typically obtained from previous
estimates and often afflicted with a large uncertainty.

3.3 Structural model

The structural model consists of three parts, namely a set of definitions
of traffic-invariant demand indicators, a DTA model as used in ‘classical’
car traffic problems, and a schedule-based model that considers the arrivals
and departures of trains.

Traffic-invariant demand indicators: Several demand indicators can
be computed from the demand vector by aggregation.

The total demand is obtained by aggregating over user classes, i.e.,

dtot
ζ,τ =

∑

β∈B

dβ
ζ,τ. (1)

The total cumulative origin and destination flows during the time period
T , the total platform departure flow, and the average class split ratios are
obtained by aggregating over time and space, i.e.,

otot
ν =

∑

τ∈T

∑

ζ∈Z
orig
ν

dtot
ζ,τ, (2)

qtot
ν =

∑

τ∈T

∑

ζ∈Zdest
ν

dtot
ζ,τ , (3)

gdep
p =

∑

τ∈T

∑

ν∈Cp

∑

ζ∈Zdest
ν

∑

β∈{out,tr}

dβ
ζ,τ, (4)

rβν =

∑
τ∈T

∑
ζ∈Z

orig
ν

dβ
ζ,τ

otot
ν

. (5)
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Dynamic traffic assignment model: The role of the DTA is to estimate
the traffic conditions s given a certain demand d.

Let σβ(d;γ) denote the network supply model associated with user class
β, and let the random variable ηβ

s represent the corresponding structural
error. The class-specific traffic conditions are then given by

sβ = σβ(d) + ηβ
s . (6)

For ηβ
s , as well as all other error terms introduced in this section, a zero

mean is assumed, i.e., that the corresponding estimator is unbiased (Cascetta
et al., 1993).

To obtain link flows, subroute flows and area occupations, two steps
are necessary (see e.g. Cascetta and Improta, 2002). First, OD demand
is mapped to route flows. The corresponding probabilities are obtained
from a route choice model, which is part of the DTA model and generally
traffic dependent. It is represented by the class-specific route choice ma-
trix ∆β(sβ;γ) = [δβ

(ρ,τ),(ζ,κ)
] of size |R||T | × |Z||T |. Each of its elements

δβ
(ρ,τ),(ζ,κ)

(sβ;γ) represents the probability that a pedestrian associated with
user class β, OD pair ζ and departure time interval κ chooses route ρ during
time interval τ. Route choice is assumed instantaneous such that generally
δβ
(ρ,τ),(ζ,κ) = 0 if τ 6= κ.

Second, a dynamic network loading (DNL) model is used to describe
the propagation of pedestrians along their routes. The DNL model is also
part of the DTA model, and also traffic-dependent. The class-specific map-
ping from route to link flows, route to subroute flows, as well as from
route flows to area occupations, are represented by the assignment matrices
Aβ(sβ;γ) = [aβ

(λ,τ),(ρ,κ)], Bβ(sβ;γ) = [bβ
(̺,τ),(ρ,κ)] and Cβ(sβ;γ) = [cβ

(α,τ),(ρ,κ)]

of sizes |Λ||T | × |R||T |, |Q||T | × |R||T | and |A||T | × |R||T |, respectively.
The entry aβ

(λ,τ),(ρ,κ)(sβ;γ) represents the probability that a pedestrian asso-
ciated with user class β, route ρ and departure time interval κ reaches link
λ during time interval τ; the entry bβ

(̺,τ),(ρ,κ)
(sβ;γ) represents the probabil-

ity that a pedestrian associated with user class β, route ρ and departure
time interval κ reaches subroute ̺ during time interval τ, and the entry
cβ
(α,τ),(ρ,κ)(sβ;γ) denotes the ‘occupation contribution’ of a pedestrian with

the same class, route and departure time interval to area α during time
interval τ (see Section 4.3).

If η
β
f , ηβ

e and ηβ
n denote the class-specific error terms corresponding

to the mappings from OD demand to link flows, subroute flows and area
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occupations, the latter can be expressed as

fβ = Aβ(sβ)∆β(sβ)dβ + η
β
f , (7)

eβ = Bβ(sβ)∆β(sβ)dβ + ηβ
e (8)

and
nβ = Cβ(sβ)∆β(sβ)dβ + ηβ

n, (9)

respectively. Note that Eq. (7), Eq. (8) and Eq. (9) consider the probabil-
ities defined by the assignment models Aβ(sβ)∆β(sβ), Bβ(sβ)∆β(sβ) and
Cβ(sβ)∆β(sβ) as proportions. This is feasible since the demand estimation
problem is considered at the aggregate level.

If the dependency on prevailing traffic conditions in Eq. (7), Eq. (8)
and Eq. (9) is neglected, the relationship between demand and the derived
indicators becomes linear. This implies that the traffic situation is indepen-
dent of demand, which is generally the case for an uncongested network.
Alternatively, if the traffic situation is known a priori e.g. through direct
measurements, an estimate of the assignment maps may also be obtained
without considering the demand.

If a network is congested and link costs are unknown, a problem of
circular dependence arises between the demand estimation and the network
supply model. One way of dealing with that is by formulating a bi-level
optimization problem that explicitly includes traffic equilibrium conditions.
Among the most popular studies pursuing such an approach are those by
Fisk (1988), Yang (1995) and Florian and Chen (1995). An alternative way
to consider the mutual dependency between the demand and supply model
is by using a fixed-point formulation (see Section 3.5).

Based on Eq. (7), Eq. (8) and Eq. (9), the total cumulative link flow,
the total cumulative subroute flow, the cumulative arrival link flow and the
total area occupation can be defined as

ftot
λ,τ =

∑

β∈B

fβλ,τ, (10)

farr
λ,τ =

∑

β∈{in,tr}

fβλ,τ, (11)

etot
̺,τ =

∑

β∈B

eβ
̺,τ, (12)

ntot
α,τ =

∑

β∈B

nβ
α,τ. (13)
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Schedule-based model: The schedule-based model establishes a rela-
tionship between OD demand and train exchange volumes.

Alighting volumes are associated with inbound and transfer passengers
by means of a class-homogeneous assignment matrix H(tarr, tdep) = [hm,(ζ,τ)]

and a corresponding error εoff such that

woff = H (din + dtr) + εoff. (14)

The element hm,(ζ,τ)(t
arr
m , tdep

m ) quantifies the degree to which demand
emanating from the origin νo

ζ of OD pair ζ during time interval τ is asso-
ciated with the alighting volume of train m idling on platform pm during
the time period [tarr

m , tdep
m ]. For instance, if at most one train is served by a

platform at a time, and if a homogeneous distribution of demand within a
time interval is assumed, the entries of the assignment matrix H are given
by

hm,(ζ,τ) =

{
∣

∣

[

tarr
m , tdep

m

]

∩ τ
∣

∣ /|τ| if νo
ζ ∈ Cpm ,

0 otherwise,
(15)

where |τ′| represents the length of time interval τ′.
In principle, an analogous approach can be used to consider boarding

volumes. However, as mentioned in the literature review, it is difficult
to find a meaningful specification of the corresponding assignment matrix.
Alternatively, boarding volumes may be considered in terms of cumulative
platform departure flows. If ̟χ represents a vector containing structural
errors, the vector of cumulative platform departure flows can be expressed
as

gdep = χ(won) +̟χ, (16)

where χ = [χp] denotes an aggregation function defined by

χp(won) =
∑

m∈Mp

won
m . (17)

Eq. (14) and Eq. (16) are useful to relate train exchange volumes to OD
demand, but they provide little information about their distribution across
time intervals if the train idling times cover several time intervals.

Instead, such information may be obtained from empirical relations,
which is discussed at the example of train-induced arrival flows. We denote
by φλ,τ(warr) an empirical model predicting the flow of pedestrians on link
λ during time interval τ that have alighted from a train. If ϕ(woff, s;γ) =

18



[φλ,τ] represents the corresponding time-space expanded vector and ̟̟ a
structural error, it holds that

farr = ϕ(woff, s) +̟ϕ. (18)

3.4 Measurement model

The measurement model links the structural model to a priori information
and measurements. For each data source, a random error term ω(·) takes
into account the uncertainty that the data is afflicted with, and the afore-
mentioned reduction matrices R(·) account for the incomplete coverage of
the data collection infrastructure, i.e.,

ŵ′ = Rww + ω′
w, (19)

f̂ ′
tot = Rfftot + ω′

f , (20)

ê′
tot = Reetot + ω′

e, (21)

n̂′
tot = Rnntot + ω′

n, (22)

ô′
tot = Rootot + ω′

o, (23)

q̂′
tot = Rqqtot + ω′

q, (24)

r̂′ = Rrr + ω′
r, (25)

d̂ = d+ ωd. (26)

3.5 Estimation problem

The estimation problem consists in finding the distribution of the OD de-
mand volumes d⋆ such that (i) actual observations of demand indicators
are reproduced at best, (ii) train-induced arrival and cumulative platform
departure flows are ‘most consistent’ with empirical predictions based on
the train schedule, and (iii) the resulting estimate matches the historical
one in case the estimation problem is underdetermined.

In the most general case, these three objectives are captured by a joint
distance measure dist〈·〉. A statistically meaningful specification can be
found using pure likelihood methods, or within the Bayesian framework
(Hazelton, 2000), and depends critically on the assumptions that are made
regarding the distribution of the error terms.

Alternatively, if any cross-correlation across the three objectives is neg-
ligible, the joint distance measure can be replaced by three separate terms
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distobs〈·〉, distsched〈·〉 and disthist〈·〉. In practice, such an assumption is of-
ten made due to the difficulty of estimating the correlation structure and
the high cost involved in solving the full problem (Cascetta and Improta,
2002). The estimation problem can then be formulated as

d⋆

γ = arg min
d≥0

distobs

〈























ŵ′

f̂ ′
tot

ê′
tot

n̂′
tot

ô′
tot

q̂′
tot

r̂′
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w′

f ′
tot

e′
tot

n′
tot

o′
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q′
tot
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〉

+

distsched

〈(

ϕ′

χ′

)

,

(

f ′
arr

g′
dep

)〉

+ disthist

〈

d̂,d
〉

.

(27)

When solving Eq. (27), it is critical not to rely on point estimates. The
demand vector d⋆ is generally distributed, and may follow a complex dis-
tribution that is insufficiently described by a single value such as its mean.
Its distribution depends both on the variation of input variables, which
may be distributed themselves, and on the uncertainty involved in terms
of modeling and measurement errors. To approximate the distribution of
d⋆, Monte Carlo sampling can be used.

We close the presentation of the model formulation with three com-
ments:

First, Eq. (27) could be generalized to allow for the estimation of the
parameter vector γ, i.e., the a priori information and measurements could
be used to ‘improve’ the estimation of model parameters. Presumably due
to the difficult implementation and high computational cost, such appli-
cations have not been pursued beyond the stage of formal specification
(Cascetta and Improta, 2002).

Second, Eq. (7), Eq. (11) and Eq. (18) establish a relationship between
the demand vector d and the train exchange volumes w that is generally
non-linear. This can make solving the problem (27) hard. If the a priori
estimate of train exchange volumes ŵ is accurate, the corresponding vec-
tor w may be assumed known a priori, which reduces the computational
complexity.

Third, an interaction between demand and supply incurs a dependency
of the assignment maps Aβ∆β, Bβ∆β and Cβ∆β on prevailing traffic con-
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ditions, and thus indirectly on demand. A fixed-point between the network
supply model, Eq. (6), and the demand estimation model, Eq. (27), arises.
To solve such a problem, typically iterative algorithms are used that alter-
nately update the state variables of the demand and of the supply model
(Cascetta and Postorino, 2001; Bierlaire and Crittin, 2006).

If any interaction between demand and supply is neglected, and if the
train exchange volumes are assumed to be known a priori, Eq. (27) reduces
to a constrained, linear estimation problem for most of the commonly used
distance measures. The resulting problem can be solved e.g. with the pro-
jected gradient algorithm (Cascetta and Improta, 2002). Such an approach
is pursued in the subsequent model specification.

4 Case study

The previous section has left the functional form of the structural and
measurement model undefined. To demonstrate the applicability of the
proposed framework, a case study of Lausanne railway station is carried
out.

4.1 Description

Lausanne railway station is the largest train station in French-speaking
Switzerland, serving approximately 120’000 passengers with about 650 ar-
riving and departing trains every weekday (Amacker, 2012). Located at the
junction of three national lines, it provides express train service to a variety
of destinations across Switzerland and beyond. It also provides access to
suburban transportation, notably through a local metro system that can
be reached across the train station square, and by means of several bus
lines. Fig. 2 shows a schematic map of Lausanne railway station.

The station encompasses the passing tracks #1–9 and the dead end track
#70. Track #2 is used by freight trains and through traffic only, as it is not
accessible by any platform. Except for platforms #1 and #70, all platforms
are accessible from the city solely through two pedestrian underpasses (PU),
PU West and PU East. Furthermore, platform #9 is only accessibly from
PU West. Longitudinally, the train station is divided into sectors A-D,
where the historical ordering from East to West is adopted. The blue
graph in Fig. 2 shows the corresponding walking network.
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Kiosk
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to #9

Figure 2: Schematic map of Lausanne railway station, encompassing ten tracks
(#1–#9, #70) that are served by platforms #1, #3/4, #5/6, #7/8, #9 and
#70. Platforms are connected by two pedestrian underpasses (PU) referred to as
PU West and PU East, each partially covered by a pedestrian tracking system
(corresponding areas are shaded in green). Dashed lines represent network links
that cannot be directly shown on the scheme due to the chosen two-dimensional
representation. For a description of the various symbols, please see Fig. 1. Note
that all links and flow sensors are directed.
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The demand peak over a workday in Lausanne is reached at around
07:45 when several long distance trains arrive and depart in close succes-
sion (Gendre and Zulauf, 2010). At this time of the day, more than 500
incoming users alight during a peak minute, whereas a few instants later
it can be less than a hundred per minute (Alahi et al., 2013a). Such a
periodical concentration of pedestrians is characteristic for the Swiss rail-
way network that aims at bundling train arrivals and departures in major
railway stations in order to minimize waiting time for transfer passengers
(SBB-Infrastruktur, 2013).

Within-day and day-to-day variation in demand during the period be-
tween 07:30 and 08:00 is considered. The chosen temporal aggregation is of
one minute. Data for a set of 10 ‘reference weekdays’ is available, namely
for January 22 and 23, February 6, 27 and 28, March 5, as well as April 9,
10, 18 and 30, 2013. These dates, representing Tuesdays, Wednesdays or
Thursdays, have been selected by SBB based on the punctuality of trains
and the availability of data sources listed in the following.

Train timetable and train frequentation data: During the time pe-
riod of interest, a total of 25 trains stop at Lausanne railway station (train
timetable not shown). For all trains, the assigned track, and the actual
arrival and departure times are known. From ticket sales data, within-
train surveys, and infrared-based counts at train doors, an estimate1 of the
boarding and alighting volumes is available (SBB-Personenverkehr, 2011;
Olesen, 2006). These estimates date back to the year 2010 and are of vary-
ing quality. For use in this study, they have been increased by 15% based
on the growth rate recommended by SBB (Gendre and Zulauf, 2010). All
boarding and alighting volumes are considered as random normal variables
with a standard deviation equal to 19.2% of their mean (Molyneaux et al.,
2014).

Trajectory recordings: For the two pedestrian underpasses, individual
pedestrian trajectories are available (Lavadinho et al., 2013). These record-
ings have been obtained by means of a tracking system consisting of ca. 60
visual, depth and infrared sensors (Alahi et al., 2011, 2013b). In spite of
this large number of sensors, the resulting trajectories are on average 60%

1The actual figures cannot be revealed due to a non-disclosure agreement.
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interpolated (Babel, 2014). This is in part due to occlusion, and due to
the fact that the sensors only cover approximately 75% of the total walking
area in the PUs. For the purposes of this study, this level of interpolation
is negligible, as demand is studied at the aggregate level. Critically, all
entrance and exit areas of PUs are fully covered by typically three sen-
sors, such that the estimates of total in- and outflows in the pedestrian
underpasses are considered accurate.

Link flow observations: For ten links of the pedestrian walking network,
directional minute-by-minute counts are available. The surveyed links are
marked by red diamonds in Fig. 2.

By comparing the link flow observations to the trajectory recordings
described above, the count sensors are found to reach saturation at high
flows, i.e., they underestimate the actual throughput if pedestrian density
is high. A correction function of the form f(x) = ax + bx2 with a = 1.065

(0.950, 1.179) and b = 0.005515 (0.00276, 0.00827; numbers in brackets
represent 95% confidence bounds) is thus applied a posteriori. For fur-
ther details on the correction of pedestrian counts, see e.g. Ganansia et al.
(2014).

Sales data and historical information: There are three sales points
located in PU West, for which the average number of monthly customer
visits in 2013 is available (footnote 1 on page 23 applies). The correspond-
ing number of visits during the morning peak hour is estimated by assuming
that the customer frequentation is proportional to the overall occupation
of the train station, i.e., that 10% of all daily sales are achieved within
the morning peak hour (Lavadinho et al., 2013). There are further restau-
rants and sales points in the train station building, represented by a generic
‘service point’ in Fig. 2. For this node, no customer frequentation data is
available, and it is not considered in the demand analysis.

Besides sales data, some information on user class split ratios is avail-
able. According to Anken et al. (2012), the fraction of inbound passengers
among alighting train-users is estimated at rin

ν = 91.4% ± 4.6%, ∀ν ∈ CP .
Benmoussa et al. (2011) and Lavadinho et al. (2013) report for the fraction
of outbound passengers among pedestrians entering the train station from
the city a value of rout

ν ≈ 95%, ∀ν 6∈ CP . These estimates date back to the
year 2010 and do not specifically apply to the morning peak hour.
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4.2 Assumptions of model specification

To apply the estimation framework presented in Section 3, the following
assumptions are made:

(i) The considered pedestrian network covers only facilities in which
walking is the predominant activity. Pedestrian behavior on plat-
forms is not explicitly modeled. Instead, platform sectors are repre-
sented by centroids that are connected to the walking network (see
space representation of platform #3/4 in Fig. 1). Furthermore, differ-
ences in walking behavior across user classes are considered negligible,
yielding a class-homogeneous supply model.

(ii) The level of congestion is low to moderate (LOS E or better, Highway
Capacity Manual, 2000, Exhibit 18-3), such that the network supply
model is demand-invariant, and such that schedule-based link flows
associated with different trains are independent. A detailed analysis
of pedestrian trajectories has not revealed any significant evidence of
interaction between demand and supply, justifying this assumption
in the case of Lausanne railway station (Hänseler et al., 2013).

(iii) The train alighting volumes are a priori known and do not need to
be estimated (see closing comment at the end of Section 3).

(iv) Pedestrians are assumed to follow the shortest path, of which there
exists at most one per OD pair. During peak periods, in which regular
commuters with a good knowledge of the railway station constitute
the main user group, this is a valid assumption (Lavadinho, 2012).
Besides obviating the need for a route choice model, this assumption
implies that all pedestrians leaving a platform are either inbound or
transfer passengers (as opposed to e.g. ‘train spotters’ or some lost
travelers).

(v) All error terms follow a univariate normal distribution with zero mean
and are independent from each other. This represents a common
assumption in practice, both because it yields accurate results and
because the resulting problem is relatively easy to estimate (Cascetta
and Improta, 2002).
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(vi) Multi-destination trips are considered as multiple, independent single-
destination trips. For instance, an incoming train passenger that stops
at a shop before heading for the city is represented by two indepen-
dent OD trips, namely ‘platform → shop’ and ‘shop → entrance/exit’.
Moreover, it is assumed that each OD pair is associated with exactly
one user class, reducing the multi-class estimation problem to a single-
class problem. An OD pair ζ ∈ Z is associated with the class of (i)
inbound passengers if νo

ζ ∈ CP and νd
ζ 6∈ CP , (ii) outbound passengers

if νo
ζ 6∈ CP and νd

ζ ∈ CP , (iii) transfer passengers if νo
ζ, ν

d
ζ ∈ CP , and

(iv) local users if νo
ζ, ν

d
ζ 6∈ CP .

4.3 Dynamic traffic assignment model

Based on the assumption of a single route per OD pair, |Rζ| = 1, ∀ ζ ∈ Z,
the route choice fractions are given by

δ(ρ,τ),(ζ,κ) =

{
1 if ρ ∈ Rζ, τ = κ,

0 otherwise.
(28)

This implies that the corresponding route choice matrix ∆ is equal to the
identity matrix of size |R||T | × |Z||T | (with |R| = |Z|).

To describe the propagation of pedestrians along routes, the walking
speed distribution recommended by SBB’s dimensioning guidelines (Weid-
mann, 1992; Buchmüller and Weidmann, 2008)

v ∼ N (1.34 m/s, 0.34 m/s) (29)

is used. The corresponding probability density and cumulative distribution
functions are denoted by fv(v) and Fv(v), respectively.

Expression (29) has been obtained indirectly from observations of travel
times and traveled distances on horizontal walking areas. Here, it is used
in the inverse way, i.e., to estimate the distribution of travel times given a
distance.

On inclined walking areas or stairways, the velocity of pedestrians dif-
fers from that observed on even areas. According to Weidmann (1992), the
horizontal speed on stairways averages to 0.61 m/s for pedestrians walking
upward, whereas an average of 0.694 m/s is reported for pedestrians walk-
ing downward. For ramps with an inclination of 15%, the corresponding

26



velocities are estimated at 1.07 and 1.40 m/s. It is assumed that the stan-
dard deviation of the distribution changes proportionally with the change
in average speed. In case of such uneven surfaces, Eq. (29) is modified
accordingly.

The assignment fractions for the cumulative link flows, cumulative sub-
route flows and area occupations can be derived as follows. Let the distance
along a route ρ up to the beginning of link λ be denoted by ℓλρ. Furthermore,
let the departure times of pedestrians within a time interval be distributed
uniformly, i.e., the distribution of continuous departure time k for any route
during a time interval κ is given by

hκ(k) =

{
1
∆t

if k ∈ κ,

0 otherwise.
(30)

Assuming that each pedestrian is walking at a constant speed, the proba-
bility for a person on route ρ that departed during time interval κ to arrive
on link λ during time interval τ is given by

a(λ,τ),(ρ,κ) = Pr(k ∈ κ, t ∈ τ|ρ, λ)

= Pr

(

k ∈ κ, v ∈

[

ℓλρ

t+τ − k
,

ℓλρ

t−τ − k

])

, (31)

where k and t represent the (continuous) departure and arrival time, re-
spectively. For the most common case that ℓλρ > 0 and τ > κ, we obtain

a(λ,τ),(ρ,κ) =

∫ k+

k=k−

∫ ℓλρ/(t
−
τ −k)

v=ℓλρ/(t
+
τ −k)

fv(v)gκ(k) dv dk

=
1

∆t

∫ k+

k=k−
Fv

(

ℓλρ

t−τ − k

)

− Fv

(

ℓλρ

t+τ − k

)

dk. (32)

Similarly, if ℓλρ > 0 and κ = τ, we obtain

a(λ,τ),(ρ,τ) = 1− Pr (k ∈ τ, t 6∈ τ|ρ, λ)

= 1− Pr

(

k ∈ τ, v ∈

[

0,
ℓλρ

t+τ − k

])

= 1−
1

∆t

∫ t+τ

k=t−τ

Fv

(

ℓλρ

t+τ − k

)

− Fv(0) dk. (33)
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Thus, the probability that a user associated with route ρ and departure
time interval κ reaches link λ during time interval τ is given by

a(λ,τ),(ρ,κ) =






0 if ℓλρ = 0, κ < τ,

1 if ℓλρ = 0, κ = τ,

Eq. (32) if ℓλρ > 0, κ < τ,

Eq. (33) if ℓλρ > 0, κ = τ.

(34)

Regarding subroute flows, the probability that a pedestrian associated
with route ρ and departure time interval κ reaches subroute ̺ during time
interval τ can be expressed as

b(̺,τ),(ρ,κ) =

{
a(λo

̺
,τ),(ρ,κ) if ρ ∈ Rsup

̺
,

0 otherwise.
(35)

The assignment fraction for area occupations can be derived accord-
ingly. Let us consider an area α, and let us assume that each route enters
and leaves area α at most once. Let v be the constant, individual speed
of a person traveling along route ρ, ℓρ,αin the distance along the route ρ to
the entrance of area α and ℓρ,αout the corresponding distance to its exit. Con-
sequently, tin = ℓρ,αin /v is the time after departure at which a person with
speed v enters area α and tout = ℓρ,αout/v the corresponding time at which it
is exited. If a route ρ does not cross area α, then ℓρ,αin = ∞. If we consider
a time interval [t−, t+] after departure, the expected sojourn time for this
person with constant speed v inside the area α within the interval is given
by

σ(v, ℓρ,αin , ℓρ,αout, t
−, t+) =






t+ − ℓρ,αin /v if t− ≤ ℓρ,αin /v ≤ t+ ≤ ℓρ,αout/v,

ℓρ,αout/v− t− if ℓρ,αin /v ≤ t− ≤ ℓρ,αout/v ≤ t+,

t+ − t− if ℓρ,αin /v ≤ t− ≤ t+ ≤ ℓρ,αout/v,

(ℓρ,αout − ℓρ,αin )/v if t− ≤ ℓρ,αin /v ≤ ℓρ,αout/v ≤ t+,

0 otherwise.

(36)

In Eq. (36), the first line corresponds to the case where a person reaches the
area within the time interval, but does not exit it. The second line is the
inverse case. The third line represents the case where a person stays within
the area during the full time period. Finally, the fourth line represents the
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case where a pedestrian enters and leaves the area during the period of
interest, and the fifth case the situation where a pedestrian is not present
in area α during the time interval at all.

Using Eq. (36), the ‘occupation contribution’ of a pedestrian traveling
along route ρ with departure time interval κ in area α during time interval
τ is given by

c(α,τ),(ρ,κ) =

∫ t+κ

t=t−κ

∫
∞

v=0

σ(v, ℓρ,αin , ℓρ,αout, t
−
τ − t, t+τ − t)

∆t
fv(v)hκ(t) dv dt

=
1

∆t2

∫
∞

v=0

fv(v)

∫ t+κ

t=t−κ

σ(v, ℓρ,αin , ℓρ,αout, t
−
τ − t, t+τ − t) dt dv. (37)

For an efficient implementation, we note that the assignment fractions (34)
and (37) are time-invariant, i.e., for τ′ = τ − κ it holds that

a(λ,τ),(ρ,κ) = a(λ,τ′),(ρ,0) and c(α,τ),(ρ,κ) = c(α,τ′),(ρ,0). (38)

To further reduce the computational cost involved in computing Eq. (34)
and Eq. (37), a maximum travel time TTmax is defined. If τ′ ≥ TTmax,
it is assumed that a(λ,τ′),(ρ,0) = 0 ∀ λ, ρ and c(α,τ′),(ρ,0) = 0 ∀α, ρ. The
threshold TTmax is chosen such that the error incurred by this numerical
approximation is negligible. For the present case study, a threshold value
of TTmax = 10 min has been found sufficient.

4.4 Schedule-based link flow model

Assumption (iii) in Section 4.2 allows to simplify the schedule-based link
flow model in several ways. It obviates the need for Eq. (14), and for a
specification of the assignment matrix H used therein. Also, it allows to
‘pre-compute’ the vector of cumulative platform departure flows and the
vector of train-induced arrival flows, denoted by χ̂ and ϕ̂′, respectively.
The former can be obtained by aggregation over boarding volumes through
Eq. (17). The ‘pre-computation’ of the latter is discussed in the following.

In line with assumption (iv), on links representing platform exit ways,
it holds that ftot

λ,τ = farr
λ,τ, ∀ λ ∈ Λarr

P , ∀ τ ∈ T . Furthermore, assumption (ii)
allows to decompose the train-induced arrival flow into a set of independent
contributions of individual trains.

Assume that for a train m, the arrival flow rate at continuous time
t at link λ is denoted by φ̃m,λ(t;w

off
m , tarr

m ,γ). The estimated cumulative

29



train-induced arrival flow during time interval τ at link λ is then given by

φ̂λ,τ =

∫ t+τ

t=t−τ

∑

m∈M

φ̃m,λ(t; ŵ
off
m , tarr

m ,γ) dt. (39)

In two related studies, Benmoussa et al. (2011) and Lavadinho (2012)
propose an approximative, piecewise linear specification of the continuous-
time flow model φ̃m,λ. Let the variable Zp(w

off) denote the total exit flow
rate associated with platform p if a train with alighting volume woff has
arrived, and let sp be the dead time representing the delay between the
arrival of the train and the onset of flow at a given set of sensors on each link
λ ∈ Λarr

p . This dead time takes into account the walking time between train
doors and the sensors under free-flow conditions, a potential lag between
the arrival of a train and the time at which train doors open, and random
delays. Two exemplary sensor locations are shown for platform #3/4 in
Fig. 1, which are indicated by yellow stars and assumed to be approximately
at the same distance from the platform.

Assuming that the total exit flow rate of platform pm is shared according
to link-specific split fractions ξm,λ with

∑
λ∈Λarr

pm
ξm,λ = 1, the flow rate on

link λ associated with train m is given by

φ̃m,λ(t) =

{
ξm,λZm t ∈

(

tarr
m + spm , t

arr
m + spm +woff

m /Zm

)

,

0 otherwise,
(40)

where Zm = Zpm(w
off
m ). Fig. 3 illustrates the cumulative arrival flow asso-

ciated with Eq. (40).
In the following, a calibration of Eq. (40) is discussed at the example of

Lausanne railway station. We hereby focus on the methodological aspects,
and refer the reader to Molyneaux et al. (2014) for numerical details.

The dead time sp is modeled as a normally distributed random variable.
The dependency of the total platform exit flow rate Zp on the alighting
volume woff is assumed to be linear at low values of woff, and to reach
saturation at a platform-specific threshold wcrit

p . If σZ
p , a

Z
p and bZ

p represent
shape parameters, the total exit flow rate on platform p is given by the
stochastic model

Zp(w
off) = Zdet

p (woff) +N (0, σZ
p), (41)
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Figure 3: Illustration of a continuous-time, piecewise linear model, Eq. (40),
for train-induced arrival flows associated with train m on link λ. The red curve
illustrates the actual flow, and the dash-dotted blue curve the piecewise linear
approximation.

where the deterministic part of the flow rate is specified as

Zdet
p (woff) =

{
aZ
pw+ bZ

p if w ≤ wcrit
p ,

aZ
pw

crit
p + bZ

p otherwise.
(42)

Fig. 4 illustrates Eq. (41) at the example of flow rates recorded on
platform #3/4 in Lausanne railway station. Two observations may be
made. First, the length of a train Nc, measured in number of passenger
cars, does not have a significant influence on the dependency between flow
rate and alighting volume. This is explicitly pointed out since the train
length is shown below to have a considerable influence on the split fractions.
Second, the flow rates are relatively high, such that the total duration of
the platform exit flow typically amounts to less than one minute (up to an
alighting volume of 333 passengers), and has not been observed to exceed
2 min. Obviously, these values are case-specific and may not hold for other
platforms or other train stations.

In Fig. 5, Eq. (40) has been applied to estimate the train-induced passen-
ger arrival flow on platform #5/6 that would be expected for the recorded
train timetable of April 10, 2013 (a qualitatively equivalent figure results for
most other days). In this example, the alighting volume woff

m of each train
m has been inferred from the historical train frequentation data mentioned
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Figure 4: Dependence of total platform exit flow rate Zp on the alighting volume
woff at the example of platform #3/4 in Lausanne railway station. At low volumes,
the flow rate increases linearly until a threshold is reached, beyond which the flow
rate remains constant. The solid curve denotes the predicted flow rate according
to Eq. (41), and the dashed lines the width of the prediction band in terms of ±
one standard deviation.

in Section 4.1. A logarithmic probability density plot shows the expected
cumulative arrivals as well as the arrival rate as a function of time. For
comparison, the observed flow on that day is shown.

The day-to-day stochasticity of the alighting volumes is high, manifest-
ing itself in a wide prediction band. To obtain the latter in Fig. 5, 7500
Monte Carlo samplings of Eq. (5) are conducted. All parameters have been
estimated based on data from platform #3/4, i.e., a clear distinction is
made between data used for calibration and validation.

The link-specific split fractions ξm,λ depend on various factors such as
the length of a train, its position along a platform, the distribution of pas-
sengers within a train, as well as their immediate next destination. Fig. 6
shows measurements of these train-specific split fractions as observed on
platform #3/4. The results are grouped by train length and ordered by
alighting volumes.

For short trains with Nc = 4, mostly the interior platform exit ways
in sectors B and C as defined in Fig. 2 are used. This is particularly
pronounced if the alighting volume is low. For larger trains with Nc ≥ 7,
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Figure 5: Comparison of train-induced passenger arrival flow as measured on
April 10, 2013 between 7:30 and 8:15, and as estimated using a probabilistic model,
Eq. (39) with specification (40), on platform #5/6 in Lausanne railway station.

the lateral exit ways absorb a larger share, and the influence of the alighting
volume is smaller.

In the framework of this study, two different specifications of the split
fractions for short trains (Nc = 4) and long trains (Nc ≥ 7) are considered.
For each case, a multivariate normal distribution is developed, from which
the train- and link-specific split fractions ξm,λ can be drawn.

While in this section most model parameters are calibrated from direct
measurements, there are also ways of estimating them in case no such data
is available. Molyneaux et al. (2014) provide a few examples that rely on
earlier studies by Weidmann (1992) and Buchmüller and Weidmann (2008).

4.5 Estimation

Based on assumptions (ii) and (iii) stated in Section 4.2, the estimation
problem (27) becomes linear in d. The assumption (v) turns it into a
constrained, generalized least squares (GLS) problem both in the context
of maximum likelihood and Bayesian estimation (Cascetta et al., 1993). It
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Figure 6: Train-specific split fractions of arrival flows across exit ways on platform
#3/4 in Lausanne railway station grouped by train size and ordered by alighting
volumes (increasing from left to right). Shorter trains induce only small flows on
the lateral exit ways in sectors A and D, whereas longer trains and larger alighting
volumes lead to a more homogeneous distribution across sectors.

consists in finding

d⋆

γ = arg mind≥0 µflow‖f̂
′
tot − f ′

tot‖
2
2 + µsrf‖ê

′
tot − e′

tot‖
2
2 + µocc‖n̂

′
tot − n′

tot‖
2
2

+ µorig‖ô
′
tot − o′

tot‖
2
2 + µdest‖q̂

′
tot − q′

tot‖
2
2 + µsplit‖r̂

′ − r′‖22

+ µarr‖ϕ̂
′ − f ′

arr‖
2
2 + µdep‖χ̂

′ − g′
dep‖

2
2 + µhist‖d̂− d‖22,

(43)

where the parameters µ(·) denote weights whose specification is discussed
further below.

The first three terms on the RHS of Eq. (43) represent the distance
between the observed link and subroute flows and those predicted by the
model, as well as that between observed and predicted area occupations.
The terms on the second line consider the distance between model predic-
tion and survey data in terms of cumulative origin and destination flows,
as well as in terms of ‘user-class split ratios’ (given assumption (vi), the
latter may also be referred to as aggregated destination split ratios). The
first two terms on the last line consider the distance to the pre-computed
train-induced arrival flows and the cumulative platform departure flows. As
in Eq. (27), the last term represents the distance to a historical estimate,
meant to overcome the underdetermination of the problem.
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To assess the efficiency of the proposed framework, two estimators are
compared. A ‘base estimator’, representing a simple minimum norm solver
taking into account cordon counts only, and a ‘full estimator’, that addi-
tionally considers a ‘static’ and a ‘dynamic’ prior. The static prior includes
cumulative origin and destination flows obtained from sales data and plat-
form departure flows, as well as user split fractions. The dynamic prior
represents pre-computed train-induced arrival flows. Trajectory recordings
are only used for validation, for which they are aggregated as minute-by-
minute subroute flows and occupations in PU East and PU West. No
historical prior is considered. Fig. 7 illustrates the proposed estimation
framework.

dynamic prior

static prior

train timetable/
ridership data

travel surveys/
sales data

demand estimator

link flow observations

traffic assignment model

validationaggregationtrajectory recordings

Figure 7: Scheme of the demand estimation framework applied to a case study
of Lausanne railway station. The color scheme corresponds to Fig. 2.

For optimal statistical efficiency, the weights µ(·) are typically assumed
equal to the reciprocal of the variance of the corresponding error term
(Cascetta and Improta, 2002), i.e., µflow = 1/Var(η′

f+ω′
f), µsrf = 1/Var(η′

e+

ω′
e), µocc = 1/Var(η′

n +ω′
n), µorig = 1/Var(ω′

o), µdest = 1/Var(ω′
q), µsplit =

1/Var(ω′
r), µarr = 1/Var(̟′

ϕ), µdep = 1/Var(̟′
χ) and µhist = 1/Var(ωd).

In practice, these variances are however unknown, and need to be estimated.
For that purpose, pedestrian trajectory recordings are assumed to rep-

resent the truth. This allows to estimate the variance of the errors asso-
ciated with the pedestrian count data and the train-induced arrival flows
inferred from the train timetable. If, without loss of generality, the weight
associated with pedestrian count data is set to one, µflow = 1, a value of
µdyn = µarr = 0.69 results for the weight of the dynamic prior.
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Regarding the weight of the static prior, µstat = µ{orig,dest,split,dep}, a
sensitivity analysis is performed. In the range of 10−4 ≤ µstat ≤ 10−1, only
little variation in the resulting demand estimate is perceivable. For lower
values, due to numerical errors, its influence on the model estimate vanishes
completely; for values larger than 10−1, its influence grows rapidly. Given
the inaccuracy of the data sources it contains, the role of the static prior
consists mostly in lowering the underdetermination of the problem. Thus,
a value of µstat = 10−1 is employed in all following considerations.

The size of the estimation problem is given by the number of considered
OD pairs, and the number of time intervals. In total, there are 370 feasible
routes, and 30 time intervals of interest. To account for artificial transients
in the demand estimates during a potential ‘heat-up’ of the estimation,
the computations include an additional 7 minutes both at the beginning
and the end of the 30-minute analysis period. Therefore, for each day an
estimation problem with a total of 16280 unknowns has to be solved.

An active set method (Lawson and Hanson, 1974) is used to solve the
KKT (Karush-Kuhn-Tucker) conditions for the resulting non-negative least
squares problem (43). If several optimal solutions exist, the one with
the lowest norm is selected, yielding a solution with maximum entropy
(Cascetta et al., 1993).

The current implementation (SciPy NNLS, a Fortran front-end) requires
on a standard desktop machine a couple of hours of run time for a single
evaluation of Eq. (43), i.e., for a given draw of ŵ and γ. For the Monte
Carlo sampling of an individual day, 16–24 evaluations have been found
to suffice for generating reproducible and numerically stable results. All
computations presented in this work have been conducted using N = 24

iterations. Thus, if a sample set of 10 days is to be estimated, 240 Monte
Carlo iterations of Eq. (43) are required, resulting in a considerable com-
putational load. By parallelizing the computational framework, and by
using a small computer cluster, the overall run time required to estimate
the present case study amounts to about three days.

4.6 Results

The temporal evolution of the total demand along the subroutes associated
with the pedestrian underpasses PU East and PU West is shown in Fig. 8.
Besides the results of the base and full estimators, also the observation from
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Figure 8: Total demand along subroutes as obtained from pedestrian trajec-
tory recordings, and as predicted by two different estimators: MAEbase = 50.74,
MAEfull = 30.03 (-40.8%); RMSEbase = 70.47, RMSEfull = 37.56 (-46.7%). Data:
10-day reference set, 2013.

pedestrian trajectory recordings is shown. The dashed curves represent the
standard deviation bands, i.e., the mean ± one standard deviation, for the
measurement and the full estimate. In the considered 30-minute period,
the demand along subroutes fluctuates between less than 70 and more than
500 ped/min, i.e., by almost an order of magnitude.

It can be seen that both estimators are capable of following the overall
trend. The base estimator, however, tends to underestimate the peaks,
and underestimates the cumulative demand by more than 20%. The full
estimate mostly represents an accurate guess of the peak amplitudes, and
yields an error of less than 4% for the overall demand. Moreover, the
measured demand always lies within the standard deviation bands obtained
for the full estimator. Further details regarding the performance of the two
estimators can be found in the figure caption, where the mean absolute
error (MAE) and the root-mean-square error (RMSE) are provided.

In the introduction to this work, the importance of platform exit flows
in the aftermath of a train arrival in the dimensioning of platform access
ways has been stressed. Therefore, the ability of the two estimators to
reproduce these flows is of interest. Fig. 9 shows a scatter plot of observed
and estimated pedestrian arrival flows obtained for platforms #3/4 and
#5/6 in Lausanne railway station.
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(a) Base estimate: MAE = 7.24, RMSE = 11.61.
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(b) Full estimate: MAE = 5.0457 (-30.26%). RMSE = 8.8952
(-23.35%).

Figure 9: Scatter plot of observed vs. estimated arrival flows at platforms #3/4
and #5/6 in Lausanne railway station. Data: 10-day reference set, 2013.

Neither the base nor the full estimator can perfectly reproduce the ob-
served platform exit flows. The total platform exit flow is underestimated
by the base model by -18.33%, and overestimated by the full model by
6.98%. As seen from the statistical measures provided in the captions of
Fig. 9, the full model performs significantly better than the base model.
This is in agreement with a visual impression obtained by comparing Fig. 9a
and 9b.

The occupation in the two pedestrian underpasses can also be used to
assess the accuracy of the developed framework. Fig. 10a and b show the
average number of pedestrians present in PU West and PU East as obtained
from pedestrian trajectory data, and as estimated by the base and the full
model.

As expected, the occupation in the PUs is found to follow a similar
pattern as the demand along subroutes shown in Fig. 8. A maximum
occupation of 210 pedestrians is observed between 7:43 and 7:44 in PU
West, in which the lowest value is reported at 37 pedestrians between 7:59
and 8:00. In PU East, the overall pattern is similar, but peaks are less
distinct and the average occupation is less than half as high. The two
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Figure 10: Occupation in pedestrian underpasses as obtained from pedestrian
trajectory recordings, and as predicted by two different estimators: MAEbase =
48.53, MAEfull = 24.34 (-49.9%); RMSEbase = 58.83, RMSEfull = 34.86 (-40.7%).
Data: 10-day reference set, 2013.

model estimates are in principle able to reproduce the observed loading
patterns, but, at least in PU West, the occupation during peak periods is
clearly underestimated. This may have several reasons. High demand can
lead to congestion, and thus to prolonged sojourn times in the underpasses.
However, this hypothesis seems difficult to justify, as the observed density
levels are relatively low and no significant correlation between travel times
and demand has been found (Hänseler et al., 2014). It seems more plausible
that the high occupation is caused by transfer passengers waiting in the
PUs, and by outbound passengers that are either buying a ticket at one of
the selling machines, or checking the timetable on one of the boards. Such
behavior has been observed in PU West (Lavadinho, 2012), and may be
captured by a dedicated assignment model.

Table 1 summarizes the previous findings, listing the RMSE associated
with the estimates of subroute flow and occupation in the PUs. Results
for the basic estimator, ‘basic estimator + static prior’, ‘basic estimator
+ dynamic prior’, and the full estimator (basic estimator + static prior +
dynamic prior) are provided.

According to these results, in particular the incorporation of the dy-
namic prior leads to a significant improvement as compared to the base
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Table 1: Performance in terms of RMSE of the base estimator, an estimator
considering additionally the dynamic prior and the static prior, respectively, and
of the full estimator. Values denote the relative change in RMSE comparing the
subroute flows and the occupation in the pedestrian underpasses to the measure-
ments obtained from a pedestrian tracking system. Data: 10-day reference set,
2013.

subroute flow occupation in PUs

Base estimate 3.52 ped/min 58.84 ped
Estimate with static prior (STAT) +2.43% -15.03%
Estimate with dynamic prior (DYN) -15.59% -41.76%
Full estimate (STAT + DYN) -31.07% -40.74%

model. This implies that the consideration of train-induced arrival flows
increases the prediction quality more significantly than sales data, infor-
mation of user class split ratios and cumulative platform departure flows
together. The full model globally performs best, even though the occu-
pation estimate is slightly worse than in the case with a dynamic, but no
static prior. Similar findings result if instead of RMSE another statistical
measure, such as MAE, is used.

An impression of the resulting pedestrian movements can be obtained
from the flow maps contained in Fig. 11, showing minute-by-minute link
flows for the time period between 7:43 and 7:46 on April 30, 2013, as
obtained by the full estimator. On that day, the three trains IR 1710,
IC 706 and IR 1407 arrive on platform #7 at 7:42:24, platform #5 at
7:42:59, and on platform #3 at 7:43:18, respectively. The traces they leave
can be readily discerned in Fig. 11a and 11b. A further train, IR 2517,
arrives on platform #1 at 7:44:37 (Fig. 11b and Fig. 11c), following which
pedestrian flows decay, as can be seen from Fig. 11d.

The highest value of total demand is found between 7:39 and 7:40,
amounting to 557.3 ped/min. A quarter of an hour later, between 7:54 and
7:55, it reaches a low of 112.0 ped/min (figure not shown). Within only a
couple of minutes, the average total demand thus varies by almost a factor
of 5. In the considered time period, 44.12% of all station visitors represent
inbound passengers, 31.18% represent outbound passengers, 16.42% are
transfer passengers, and the remaining pedestrians represent local users.
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Figure 11: Exemplary pedestrian flow map for Lausanne railway station as esti-
mated for the time period between 07:43 and 07:47 on April 30, 2013 by the full
model. The shading of links represents the cumulative link flow over a minute
in both directions. Similarly, the diameter of centroids represents the minute-by-
minute origin flow.

5 Conclusions

During peak hours, rail access installations in large train stations often
reach capacity and may reduce the performance of a transportation system.
To optimize their design and operation, there is a general need to better
understand pedestrian behavior in railway stations. An increasing effort is
made towards this end both by operators of railway networks and academia.
However, most researchers and practitioners concentrate on investigating
the interaction between pedestrian demand and infrastructure, whereas
the estimation of pedestrian demand as such has received relatively little
attention so far.

In this study, a framework for the time-dependent estimation of pedes-
trian origin-destination demand within a train station has been presented.
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Besides direct and indirect demand indicators such as flow counts or sales
data, the train timetable is explicitly taken into account. This is achieved
by establishing an empirical relation between the arrival of a train and the
subsequent flow of alighting passengers on platform exit ways. The formu-
lation of the framework is such that it can be applied to various types of
railway stations and may be used with different data sources.

A case study of the morning peak period in Lausanne railway station
has been presented. The obtained results are generally in good agreement
with pedestrian tracking data that has been used for validation only. A
clear performance gain has been shown to exist when the train timetable
is used in the estimation process. Moreover, spatial and temporal fluctu-
ations, both intra- and inter-day, have been investigated and are shown
to be significant, justifying the use of a fully dynamic and probabilistic
framework.

In the future, the proposed framework may be improved or extended
in several ways. Three examples are given. First, from a practical point
of view, the empirical relation between the train timetable and pedestrian
movements in railway stations may be further strengthened (Molyneaux
et al., 2014). Second, the use of a demand-dependent network loading
model may allow for an explicit consideration of congested facilities, in
which demand-supply interaction can no longer be neglected (Hänseler
et al., 2014). Third, the framework could be employed for real-time traffic
monitoring or crowd control (Seer et al., 2008).
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