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Abstract

In this work we consider route planning for valuable delivery in
an urban environment under the threat of ambushes in which a ve-
hicle, starting from a depot, has to serve a set of predetermined des-
tinations during the day. We provide a method to plan for hardly
predictable multi-destination routing extending a minmax flow-based
model available for single-destination cases. We then formulate the
process of selecting a visiting order as a game to obtain a mixed rout-
ing strategy. We analyse the application of the method to a set of
simulation scenarios and compare the mixed routing strategy against
the best routing. Finally we develop further the methodology intro-
ducing a second-level optimization model which reduces the overall
risk associated to the proposed mixed routing strategy.
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1 Introduction

Vehicle ambush avoidance in urban environments is crucial to both peace-
time and war-time goals. Unsafe routing prejudices successful humanitarian
shipments through troubled areas with a history of hijacking, diplomatic se-
curity for high-profile VIPs, valuable transfers between banks, and military-
supply transport through insurgency zones. In this article, we develop a
program that can plan optimal routes for an un-escorted vehicle carrying
out multiple stops under threat of ambush. Possible applications of this
work include all such physical situations, as well as, possibly, data-routing
on the internet. For this article, we consider the case of an armored vehicle
carrying a sum of money for deposit at one or more banks in a relatively
stable urban situation, in other words, an environment in which planning
is required for ambushes. At its base, the problem is a Vehicle Routing
Problem (VRP), see e.g. Toth and Vigo (2001). However, the problem
is complicated substantially by the fact that it is both deterministic and
stochastic in nature. The vehicle must visit one or more fixed locations, in
a manner similar to the traveling salesman, while taking routes that pre-
vent an ambusher from predicting the vehicles path, a stochastic measure.
The attacker can be modeled as a feature of the environment, as is the case
in adaptations of hazmat-transport literature, or the attacker’s incentives
can be rigorously modeled, as is the case in game-theoretic modeling of
ambush.

Erkut and Verter (1998) and List et al. (1991) are seminal reviews of
hazmat literature. A trend of such literature is modeling risk as an accu-
mulating metric over the course of a vehicle’s route. This type of metric
makes sense for a hazmat vehicle, as such a vehicle is faced by a small risk
of accident for every differential distance of environment traversed. Inte-
grating this accumulating differential risk is thus one method to determine
total risk of a hazmat vehicle’s path.

Direct adaption of this metric effectively posits that there are attackers
in every differential portion of the environment and that the longer a vehicle
travels, the more risk it encounters. This hypothesis may be valid in war
zones or in cases of extreme insurgency. However, our hypothesis of a
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relatively-stable urban environment means that such a direct application
of hazmat literature is not the best option. In our urban situation, a more
realistic modeling of the robber should be based upon the idea of prepared
ambush that activates if the vehicle passes the prepared point.

Hazmat literature also proposes algorithms for creation of dissimilar
routes, the priority of the stochastic portion of our model. In hazmat-
literature, the goal of these routes is equal risk sharing among communities,
as is presented in Carotenuto et al. (2007). For the purposes of ambush
games, however, such routing methods are not ideal. We are not faced
with the necessity of choosing dissimilar routes that distribute risk across
communities, but rather with the need to implement a routing system
without optimal ambush points. Hazmat based predictability metrics are in
fact predictable, and thus we eliminate hazmat-based predictability models
of fund transfer.

Likhachev and Stentz (2007) models the attacker as possible barriers
in an environment, detectable by a vehicle with sensors which can reroute
dynamically. The robber is thus a part of the environment, as opposed to
an autonomous actor. For our vehicle, posited without sensors and located
in a relatively stable urban-environment, this is a less interesting prospect.

The game-theoretic alternative models the vehicle and attacker as mem-
bers of a 2-player non-cooperative game. Such a game, in its most basic
form, involves the crossing of a continuous interval in which an attacker
can place ambushes, as in Ruckle (1983) and Zoroa et al. (1999).

For games played on a discontinuous interval, i.e., a road network, mod-
eling is driven by the solution method envisioned. If the problem is to be
solved by a path-based method, dynamic solution is necessary. Any route
vs. ambush-site matrix would quickly explode for a non-trivial road net-
work.

Dynamic solutions are thus proposed by Bell (2004), Gentry and Feron
(2004), and Root et al. (2005). These methods are attractive, but do depend
upon high-network connectivity to achieve good results.

An alternative is exact flow-based solution as proposed by Joseph (2005).
This method calculates a mixed strategy for the vehicle by equilibrating
flows across a matrix in function of the risks at each node. This method
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avoids the obstacles to exact solution presented by the route-based method,
and thus allows networks of large size to be solved exactly. We thus, after
reviewing the literature, modeled the problem with the use of this flow-
based solution in mind.

2 Model

We model a situation in which a travelling salesman can operate in an
environment of risk, visiting multiple locations without returning to the
depot. This method will be useful for any resupply vehicle operating in a
dangerous environment.

Let V be the set of nodes which model possible attack sites (road lengths
or crossroads), as well as bank sites, B ⊆ V (where danger of attack equals
zero), and the depot d ∈ V . These nodes are joined by road links modeled
by set E, which are bi-directional edges.

We make the following assumptions:

� Both players are assumed to have complete information on the net-
work, including full data on ambush risk at each node.

� Ambush sites and vehicle paths are chosen before the vehicle de-
parts from the depot, and these decisions are not changeable post-
departure.

� Ambushes take place only at nodes.

� The probability of ambush success at the depot or at a bank is equal
to zero.

� The robber is intelligent, and will maximize payoff.

� The robber has only enough resources to set up one ambush (a lonely
gangster).

� The vehicle has no ability to sense ambushes before they are triggered.
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Indeed, a competent transport company will certainly analyze the road
network over which it must route its vehicles, assessing risk at different
points on the network. A competent robber will certainly carry out a
similar analysis in order to find the best ambush site. We assume both
the company and the robber will be able to correctly assess ambush risk.
We assume that the robber requires time to set up his ambush to have
a reasonable chance of success. His game is ambush, not pursuit. The
vehicle must leave from the depot and must arrive at the banks, and, thus,
if an ambush could succeed with reasonable probability of success at these
points, the robber would always ambush at these nodes. Secure transport
companies in the Vaud area of Switzerland have indicated that attacks often
take place at loading and unloading sites, which does bring into question
this hypothesis. However, problems of depot and bank security are outside
of the scope of a routing problem, and we assume these aspects are well
managed. An intelligent robber will always set an ambush at the node
with maximum payoff. Our solution in effect allows this maximum-payoff
node to “shade” other nodes with non-zero but also non-maximum robber
payoffs. Routes that pass through these shaded nodes are effectively not
optimized as the robber will not carry out an ambush at these points.

Let αj be the probability of success of an ambush prepared at node j

and pij the probability that a vehicle passes by the link (i, j) ∈ E. Thus,
we can model the probability of a successful ambush at node j as:

rj =
∑

(i,j)∈E

(pij) αj

This formulation adopts itself quite well to implementation in real-world
transport situations. Probability of ambush success can be based on prox-
imity of nodes to police stations, bank security, easily blocked streets, and
upon actual traffic dynamics at different times of day. The vehicle controls
the frequency with which each node is used. As the robber will always plan
an ambush for the node with a maximum product of these two factors, thus
the maximum payoff, we can easily model the robber’s behavior as:

Zr = max
j∈V

rj
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The goal of a route planner is thus to minimize the maximum value of
this product at each node used. We consequently have a minimax problem,
which, when solved, will yield no one optimal node for the robber. In the
simplest case of an origin-to-one destination problem, the minimax game
can be expressed as:

Zp = argminP

max
j∈V

∑
(i,j)∈E

(pij) αj


or equivalently as:

Zp = argminP

{
max
j∈V

rj

}
subject to the conditions of flow conservation:

∑
i∈V

(pij) =
∑
k∈V

(pjk) ∀j ∈ V

and the constraints for mandatory locations, i.e. depot and banks, and
variable non negativity:

∑
i∈V

(pij) = 1 ∀j ∈ B ∪ {d}

pij ≥ 0 ∀(i, j) ∈ E

As the vehicle does not carry money while returning to the depot and
is thus not vulnerable to ambush, we add an artificial edge to the set E,
connecting the last visited bank to the depot. Flow on this edge is set equal
to 1. This setting imposes flow circulation in the network and excludes the
back-to-depot trip from contribution to the objective function.

When more than one bank is to be served by the vehicle, a further level
of complexity is added to the flow-based modeling of this problem, as a flow-
based model does not take account of temporal considerations. A route-
based model could take account of all possible orderings of banks and all
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possible routings for each ordering, but this model’s matrix would quickly
explode with complexity for a non-trivial network and number of banks.
Thus continuing with the flow-based model, we propose the following two-
step routing system to avoid predictability:

� The order of the banks to be visited is decided by a calculation based
upon the risk of each ordering.

� The solution of the flow-based model for this routing order is thus
used.

2.1 A flow based model for a given routing order

We can model the problem on a multi-layer network, each layer linked by
unidirectional edges, representing the probability routing for each segment
of the vehicle’s journey. Let V ′ be the set of nodes obtained by duplicating
the original edge set V , E ′ the resultant edge set, B ′ the set of nodes in
V ′ representing each bank in its corresponding layer (|B ′| = |B|), and d ′

the node in V ′ representing the depot (the nodes d ′ and d are equivalent).
Ambush success rate at node k, αk, and the probability pik that a vehicle
passes by edge (i, k) have the same meaning as above. Let B be the set of
layers, corresponding to the set of banks. As ambushes at the same node j

in two different layers are mutually exclusive events, we model the overall
probability of a successful ambush at node j of the original network by
summing all probabilities of incoming arcs of the extended network and
normalizing by the number of layers as:

rj =
1

|B|

∑
B

∑
(i,k)∈E ′|k∈V ′⇒j∈V

(pik) αj

and the objective of a route planner is the same as above:

Zp = argminP

{
max
j∈V

rj

}
subject to flow conservation constraints and mandatory location con-

straints extended to the extended network (V ′, E ′):
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∑
i∈V ′

(pij) =
∑
k∈V ′

(pjk) ∀j ∈ V ′

∑
i∈V ′

(pij) = 1 ∀j ∈ B ′ ∪ {d ′}

pij ≥ 0 ∀(i, j) ∈ E ′

Figure 1 illustrates, on the left, a 6 nodes network with a depot D at
node 3 and two banks at nodes 2 and 6, and, on the right, the corresponding
layered network for the journey Depot − Bank1 − Bank2.

1 2

3 4

5 6

Depot

B1
7 8

9 10

11 12
B2

1 2

3 4

5 6

Depot

B1

B2

Figure 1: Small network with 2 banks. B ′=2,12, d ′ = 3.

Furthermore, in order to eliminate sub-tours, we add a differential value
that corresponds to distance di,k traveled along arc (i, k) ∈ V ′ when mod-
eling the ambush success:

rj =
1

|B|

∑
B

∑
(i,k)∈E ′|k∈V ′⇒j∈V

(pik) (αj + ε ∗ di,k)

where ε is a small constant equal to 10−6 in our experiments.

2.2 Determination of the vehicle’s journey

The choice of ordering, among all possible ones, is similar to a game of
mixed strategies. The vehicle wishes to choose an ordering that will mini-
mize the robber’s expected payoff.
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A B C
A Zp(A) Up(AB) Up(AC)

B Up(BA) Zp(B) Up(BC)

C Up(CA) Up(CB) Zp(C)

Table 1: Matrix game for 3 banks orderings

If the robber does not guess correctly the vehicle’s destination ordering,
he stands to set up an ambush at a point by which the vehicle will not or
is not likely to pass. The vehicle thus mixes strategies so as to minimize
the robber’s expected pay-off, and the robber attempts to maximize his
payoff. Given a vehicle’s journey A, the value of Zp(A) corresponds to the
maximal payoff for the robber when solving the flow formulation presented
in 2.1 on the layered-network. The robber receives the payoff Zp(A) if he
guesses correctly the vehicle’s chosen destination ordering. If he guesses
incorrectly, however, he receives the payoff Up(AB), a value based upon
the probability that he still has stumbled upon a node that the vehicle
passes, despite his mis-estimation of the ordering, and the flow available at
such a node. This situation can be summarized, for an illustrative example
with three bank orderings, as reported in table 1.

Up(AB) can be estimated by:

Up(AB) =

∑
j∈VAB

rA
j

MB

where

VAB = VA ∩ VB =
{
j ∈ V | rA

i > 0
}
∩

{
j ∈ V | rB

j = Zp(B)
}

and

MB = |VB| =
∣∣{j ∈ V | rB

i = Zp(B)
}∣∣

rA
j and rB

j are the robber’s pay-offs for the orderings A and B, respectively.
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The above formulas are justified by the fact that a robber will always
place himself on a node with maximum payoff in the ordering he has pre-
dicted, represented by B. We assume that, being indifferent between all
nodes in this set VB, he will choose one at random. Thus, his payoff Up(AB)

can be calculated by finding the sum of payoffs for the intersection of this
set with the set of all nodes that the vehicle actually traverses with positive
flow, divided by the total number of ambush sites from which the robber
could possibly choose MB. The ordering game serves to reduce the robber’s
payoff. If the worst happens, and sets A and B are identical, the max the
robber can receive will be payoff Zp(A), which is the value he would have
received if the ordering game had not been played.

A mixed-strategy game thus results from this matrix, with the vehicle
attempting to minimize expected robber payoff, and the robber attempt-
ing to maximize it. By the minimax theorem, for such a game in which
mixed strategies are permitted, there exists a security strategy for each
player, that is, a strategy which guarantees a minimum payoff. This secu-
rity strategy corresponds to the optimal strategy when playing against an
intelligent player. A corollary of this theorem is that each mixed security
strategy corresponds to a mixed saddle point equilibrium for the game. We
define here x as the vehicle’s strategy, y as the robber’s strategy, and π the
game’s payoff. By the minimax theorem, thus, for payoff matrix H:

π(H) = maxXminYxTHy = minYmaxXxTHy = π(H)

represents the value of the saddle point. This equation can be solved by
linear programming.

The size of the set of possible orderings can be seen as a drawback of
the current model. However, according to our estimates, a bank car likely
can visit no more than 6 to 7 banks in a day. This results in 7! possible
orderings, or 5040 flow calculations (LP problem), and a matrix of 5040
by 5040. The calculation of the values for and the solution of the matrix
are feasibly solvable by a laptop computer. Conversely, the complexity of
a path-based formulation would depend also on the size and density of the
network. For the same number of banks the underlying complexity follows,
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(a) (b)

Figure 2: Cambridge MA: (a) the network; (b) increasing ambush success
rate with distance from banks and depot.

in the worst case, an exponential growth.

3 Application to the Cambridge’s network

We illustrate the application of this method on a network based on the
city of Cambridge, MA, the same network used in Joseph, 2005. As Joseph
notes, this network is a good example because it is rather irregular and it is
difficult to determine the optimal strategy without using a computer. The
network contains 50 nodes and 91 edges (see Figure 2.a) and all edges, in
our model, are bi-directional.

On the Cambridge network, we constructed 24 test scenarios consisting
of 8 scenarios with 3, 4 and 5 banks each. The depot and the banks are
located at nodes selected randomly on the network. Two possible alpha
spreads were tested: for the first set we used random ambush success rates,
and for the second the ambush success rate increased proportionally with
the distance from either the depot or the banks. This increase in success
models the higher security of nodes close to banks and depot, and is illus-
trated for a 3 bank example in Figure 2.b. In order to identify the instances,

10



D-48-28-13 D-48-13-28 D-28-48-13 D-28-13-48 D-13-48-28 D-13-28-48
D-48-28-13 0.38 0.13 0.13 0.14 0.13 0.13
D-48-13-28 0.11 0.33 0.11 0.11 0.10 0.11
D-28-48-13 0.11 0.11 0.33 0.11 0.11 0.11
D-28-13-48 0.11 0.10 0.10 0.33 0.10 0.10
D-13-48-28 0.11 0.10 0.11 0.11 0.33 0.10
D-13-28-48 0.14 0.14 0.13 0.14 0.13 0.38

Table 2: Matrix game for the illustrative example - equal α

the number of banks is denoted by Bx, and the type of ambush success rate
spread is denoted by R (random) or I (increasing). For example, instance
B3_R_2 is the second instance tested with 3 banks and random ambush
success rate.

A good example of our method’s application is the routing scheme based
upon a depot at node 1 and three banks placed at nodes 13, 28, and 48
. In this particular explanatory instance, two possible alpha spreads were
tested. In the first, which was used only for this particular ordering ex-
ample, α is equal to 0.5 throughout the network. In the second, α is
determined in function of distance from depots and banks (type I) (Fig-
ure 2.b). Based upon these α configurations, we calculated the optimal
routing for each possible ordering. With 3 banks, this corresponds to
3! = 6 possible orderings. We present here the results for the ordering
Depot − bank@48 − bank@28 − bank@13. For an alpha configuration of
0.5 at all attackable nodes, we find the results detailed in Figures 3.

We may interpret the obtained routing as two or three primary paths
with a secondary splitting of flow. The overview shows the division of the
available nodes between the different routing needs. The NW portion of the
map is primarily dedicated to linking Depot − bank@48, the SE portion
of the map is primarily dedicated to linking bank@48 − bank@28, and in
the middle and in the NW portion we find the routes linking bank@28 −

bank@13. This division of the map is in function of the position of the
banks; the map is divided rationally to maximize diversionary routing while
minimizing overlap of utilized areas.

The optimal ordering mix for this configuration is calculated using the
following matrix (Table 2). Z values are calculated directly by our opti-
mizations; U values are calculated as detailed above.
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(a) (b)

(c) (d)

Figure 3: Constant α: (a) overview; (b) flow Depot − bank@48; (c) flow
bank@48 − bank@28; (d) flow bank@28 − bank@13.
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Ordering Probability
D-48-28-13 0.0842
D-48-13-28 0.2103
D-28-48-13 0.2039
D-28-13-48 0.2178
D-13-48-28 0.2078
D-13-28-48 0.0759

Table 3: Orderings with relative probability

D-48-28-13 D-48-13-28 D-28-48-13 D-28-13-48 D-13-48-28 D-13-28-48
D-48-28-13 0.50 0.21 0.22 0.20 0.21 0.23
D-48-13-28 0.11 0.34 0.11 0.11 0.11 0.11
D-28-48-13 0.08 0.07 0.28 0.07 0.07 0.07
D-28-13-48 0.07 0.07 0.07 0.26 0.07 0.07
D-13-48-28 0.09 0.09 0.08 0.08 0.34 0.09
D-13-28-48 0.24 0.22 0.22 0.22 0.23 0.50

Table 4: Matrix game for the illustrative example - increasing α

The optimal solution to this matrix has optimal normalized payoff
0.1534. All orderings are used in the mix, and the probability of selecting
each ordering is provided in Table 3

For the same banks with α varying in function of distance from the
banks and depot, the results are depicted in Figure 4.

It is interesting to note that the NW - tendency of the two routings
use bank 13’s security zone to their advantage. For the link bank@48 −

bank@28, we see two paths in evidence, with the path hugging the SE
side of the map more likely to be used. However, conclusions about the
relative risks of these two paths cannot be made until the superposition of
all layers is considered. An interesting interplay is seen between the desire
of the bank car to stay closer to the banks and depot in order to benefit
from reduced α and the desire of the bank car to maintain unpredictability
by avoiding excessive overlap.

The matrix game for this second example is reported in Table 4 and the
probability of selecting each ordering is provided in Table 5 with optimal
normalized payoff 0.1369.
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(a) (b)

(c) (d)

Figure 4: Increasing α: (a) overview; (b) flow Depot − bank@48; (c) flow
bank@48 − bank@28; (d) flow bank@28 − bank@13.

Ordering Probability
D-48-13-28 0.1182
D-28-48-13 0.3216
D-28-13-48 0.3541
D-13-48-28 0.2061

Table 5: Orderings with relative probability
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mixed best % mixed best %
B3_I_1 0.1093 0.2667 59.00 B4_R_1 0.1834 0.3862 52.51
B3_I_2 0.1049 0.2435 56.91 B4_R_2 0.1844 0.4200 56.09
B3_I_3 0.1950 0.2400 18.74 B4_R_3 0.2004 0.3862 48.11
B3_I_4 0.1214 0.2471 50.85 B4_R_4 0.1887 0.3373 44.05
B3_R_1 0.2082 0.3887 46.44 B5_I_1 0.1303 0.3429 61.98
B3_R_2 0.1510 0.2739 44.86 B5_I_2 0.0692 0.2182 68.30
B3_R_3 0.1443 0.2754 47.60 B5_I_3 0.1160 0.3000 61.32
B3_R_4 0.1527 0.3111 50.91 B5_I_4 0.1640 0.3429 52.15
B4_I_1 0.1470 0.3111 52.74 B5_R_1 0.1789 0.3887 53.99
B4_I_2 0.1564 0.3500 55.31 B5_R_2 0.1296 0.2958 56.17
B4_I_3 0.0839 0.2291 63.37 B5_R_3 0.2141 0.4444 51.83
B4_I_4 0.1065 0.2754 61.33 B5_R_4 0.1977 0.4200 52.93

Table 6: Mixed-ordering payoff vs. unmixed best-ordering payoff with
percentage decrease

Table 6 reports, for the 24 test scenarios, the payoff of the mixed
security-strategy ordering for the vehicle’s route compared with the payoff
of the pure strategy where the vehicle always plays the routing with the
lowest Z. The mixed strategy, as expected, provides a better overall payoff
with up to 68% reduction compared to the corresponding best ordering.

4 Second level optimization

We can further reduce the potential payoff for the robber by limiting the
size of the set of nodes with maximum payoff. The method proposed in
section 2.1 ensures the minimization of the maximum payoff but does not
prevent this payoff from being spread over multiple nodes. By reducing the
size of the set VB defined above, we reduce the likelihood of intersections
between nodes the vehicle traverses and the set of VB. We thus propose
a second-level optimization, in which the sum of rj for all nodes is mini-
mized subject to a guarantee on the maximal payoff computed in the first
level optimization. Let Z∗

p be the optimal payoff computed with the first
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level optimization of section 2.1. The second level optimization can be
formulated as follows:

Zp = argminP

∑
j∈V

∑
(i,j)∈E

(pij) αj


s.t.

1

|B|

∑
B

∑
(i,k)∈E ′|k=j∈V

(pik) αj ≤ Z∗
P ∀j ∈ V

∑
i∈V ′

(pij) =
∑
k∈V ′

(pjk) ∀j ∈ V ′

∑
i∈V ′

(pij) = 1 ∀j ∈ B ′ ∪ {d ′}

pij ≥ 0 ∀(i, j) ∈ E ′

Table 7 reports, for each instance, the average number, over all possible
bank orderings, of nodes with maximal payoff obtained before and after
the second-level optimization, and the percentage reduction. Remarkably,
the size of the set is reduced between 61.90% and 83.66%.

Once we reduce the size of the maximal-payoff-nodes set, we can recom-
pute the ordering-game matrix and estimate the new order-mixing payoff
of our routing strategy. The robber now has a smaller set of ambush sites
overlapping between different orderings, and consequently the payoff is sub-
stantially reduced.

Table 8 shows the expected payoff for the second-level-optimization
routing (second in the table) and the percentage decrease in expected pay-
off (gap1 in the table) compared with single-level-optimization ordering
(labeled with mixed in Table 6) and the percentage decrease (gap2 in the
table) with respect to the best bank ordering (labeled with best in Table 6).
The multi-level routing strategy allows to reduce further the expected pay-
off by up to 19.83% by better reorganizing the overall network flow.
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M1
A M2

A (%) M1
A M2

A (%)
B3_I_1 39.00 13.17 66.24 B4_R_1 35.46 9.71 72.62
B3_I_2 42.00 16.00 61.90 B4_R_2 31.63 9.50 69.96
B3_I_3 37.17 8.00 78.48 B4_R_3 32.67 10.00 69.39
B3_I_4 36.00 8.50 76.39 B4_R_4 34.33 9.13 73.42
B3_R_1 30.83 7.33 76.22 B5_I_1 36.62 9.82 73.19
B3_R_2 32.17 11.67 63.73 B5_I_2 40.97 15.67 61.76
B3_R_3 32.83 10.67 67.51 B5_I_3 39.88 11.10 72.17
B3_R_4 33.67 9.50 71.78 B5_I_4 34.25 7.92 76.89
B4_I_1 37.04 9.17 75.25 B5_R_1 35.00 9.96 71.55
B4_I_2 35.96 5.88 83.66 B5_R_2 35.70 13.83 61.27
B4_I_3 38.58 15.88 58.86 B5_R_3 34.19 5.98 82.50
B4_I_4 38.83 11.67 69.96 B5_R_4 34.33 11.46 66.63

Table 7: Average size of the set of nodes with maximum payoff for before
and after second-level optimization and relative gap

second gap1 gap2 second gap1 gap2
B3_I_1 0.1006 7.95 62.26 B4_R_1 0.1597 12.96 58.66
B3_I_2 0.0908 13.45 62.71 B4_R_2 0.1620 12.15 61.43
B3_I_3 0.1638 16.02 31.76 B4_R_3 0.1703 15.02 55.90
B3_I_4 0.1058 12.91 57.20 B4_R_4 0.1593 15.61 52.79
B3_R_1 0.1865 10.42 52.02 B5_I_1 0.1095 15.99 68.06
B3_R_2 0.1310 13.29 52.19 B5_I_2 0.0555 19.83 74.58
B3_R_3 0.1214 15.87 55.92 B5_I_3 0.0956 17.65 68.15
B3_R_4 0.1416 7.25 54.47 B5_I_4 0.1365 16.79 60.19
B4_I_1 0.1286 12.50 58.65 B5_R_1 0.1571 12.14 59.57
B4_I_2 0.1473 5.83 57.92 B5_R_2 0.1151 11.19 61.07
B4_I_3 0.0739 11.94 67.74 B5_R_3 0.1969 8.02 55.70
B4_I_4 0.0879 17.43 68.07 B5_R_4 0.1692 14.38 59.70

Table 8: Second-level mixed strategy and relative gap w.r.t. single-level
mixed strategy and single-level best ordering
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5 Conclusions and outlook

Our paper has suggested a multi-destination routing method for fund trans-
fers under conditions of risk. Based on the assumptions above, our method
allows substantial reduction in robber payoffs by a two-level game and a
primary and secondary optimization. This method is very much applicable
to urban-ambush problems, and exploits more of such urban network than
common path-based routing methods.

The second-level optimization proposed above may be applicable in
more contexts, as it permits to identify the truly critical nodes that limit
further improvement. Further use could also be made of our multiple-layer
network. By introducing the multiple layers, our model allows the imposi-
tion of an approximate temporal framework onto a problem with flow-based
solution. Thus, some of the benefits of path-based solutions are joined with
the ease of the flow-based solution. Our multi-layer network could thus be
used to approximate ambush success rates that vary in function of the time
of day. If we assume that layers correspond approximately to a given period
in the day, i.e. the link between the depot and bank 13 is transited between
07h00 and 08h00, then we can adjust the α’s to be commensurate with the
traffic and danger conditions at this hour. And so on for each layer. Fur-
thermore, to approximate varying sums in the bank car over the course of
the day, we could add a money constant $b to our optimization that varies
in function of the layer b in the set B. A risk equation incorporating a
varying α and a varying $ would appear as:

rj =
1

|B|

∑
b∈B

$b

∑
(i,k)∈E ′|k=j∈V

(pik) αb
j

However, extension of this flow-based method to multiple vehicles should
be undertaken with care. The assumption that vehicles will not react dy-
namically to ambushes becomes increasingly false with increased number
of vehicles. It is very unlikely that a number of bank cars will continue on
their assigned routes after one has set off the klaxon.
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