
Starting with UrbanSim: On the Creation of

an Introductory Project

Olivier Gallay

Transport and Mobility Laboratory (Transp-OR)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1 Installation of OPUS (formerly known as

UrbanSim) on Windows XP SP2

• Install the New Opus Installer (Beta Version) for UrbanSim1 (in
May 2010, the latest available version was 4.3.0), available at:

http://www.urbansim.org/Download/WindowsInstaller

The file should be named OPUS-4.3.0.exe and has a size of around
650 Mb. This version of OPUS/UrbanSim works with Python 2.6

– If asked, choose to reinstall Python 2.6 (if you have an older
version of Python already installed on your computer, it is better
to uninstall it)

– When asked to choose the components:

∗ Type of install: Developper

∗ Install for all users

∗ Directories: default

∗ Install Python 2.6.2

∗ Select: Eclipse, Other, External

1In the sequel, we will speak of OPUS and UrbanSim interchangeably.

1



– OPUS base installation directory:

C:\opus

(in this folder, you will find after installation a folder named src

containing the source code and a folder data containing the data
for the example projects of Eugene and Seattle)

– Eclipse Workspace:

C:\workspace

(note that Eclipse will also be used to run MATSim)

It is a silent installer, so just let it run (it can take some time)!

– Graphviz Setup Wizard: just confirm and click ”next”

– GraphicsMagick Setup Wizard: just confirm and click ”next”

N.B: The OPUS Installer should have automatically installed Python
additional packages which allow Python to exchange with MySQL (and
also with OPUS) on Windows XP SP2. If it is not the case and if you
have problems related to that, c.f. Section 3.

N.B: It is always possible to run again the Windows Installer to in-
stall additional packages or components.

2 Running Examples

• Launch the OPUS GUI (Start/All Programs/OPUS GUI, or if you
want to use the command line: cd opus; cd src; opus gui)

• If you want to incorporate the additional examples given by Paul Wad-
del in Zurich (in particular san antonio zone, that will be useful to
work thereafter on the Brussels case), you have to:

– Replace the folder C:\opus\project configs with the new pro-
vided project configs folder

– Replace the folder C:\opus\src with the new provided src folder

– Place the provided san antonio zone and psrc parcel folders in
C:\opus\data

OPUS has to be relaunched to be able to access to the additional
examples.

2



• Open the project san antonio zone

• Run a simulation: → “Scenarios” onglet → right click on
“san antonio baseline” → “Run this scenario” → “Start Simulation”

• Create an indicator:

– → “Results” onglet → right click on “zone indicator batch”
→ Add new indicator visualization:

∗ Type: Table

∗ Dataset name: zone (for example)

∗ Choose and add the indicators you want to draw (with the
“+” button)

∗ Create (click “Ok”)

– Right click on “zone indicator batch” → Run indicator batch on...:
selected run or base year data

3 Data Importation and Exportation From

OPUS to MySQL - Setting Up a Working

Database

• In order to be able to import and export data to and from UrbanSim,
you obviously have to install a database on your computer. To install
MySQL on Windows XP, you must follow precisely the instructions
given at:

http://www.urbansim.org/Download/InstallingMySQL

During the installation process of MySQL Server, you will have to
choose a password for your MySQL platform that we will denote there-
after by password 1.

In brief, throughout the installation process of MySQL, you will have
to:

– Download and run the latest version of the Windows Installer
found at:

http://dev.mysql.com/downloads

3



– Proceed to a “Typical” installation

– You can skip “Sign-Up”

– Then, you have to configure MySQL Server to work with Urban-
Sim:

∗ Choose “Detailed Configuration”

∗ Select “Developer Machine”

∗ Choose “Non-Transactional Database Only”

∗ Select “Manual Setting” with “200” concurrent connections

∗ Select “Enable TCP/IP Networking” with Port Number 3306

∗ Choose “Standard Character Set”

∗ Select “Install As Windows Service” with Service Name “MySQL”

∗ Select “Include Bin Directory in Windows PATH”

∗ Select “Modify Security Settings” and type as root password:

password 1

At the end of the installation and configuration processes, you still have
to enter precisely the three following commands in the MySQL
Command Line Client (Start/All Programs/MySQL/MySQL Server
5.1/MySQL Command Line Client):

∗ GRANT create, delete, drop, index, insert, select,

update, alter, create temporary tables, file, reload

ON *.* TO urbansim@localhost IDENTIFIED BY ’password 1’;

∗ SET PASSWORD FOR ’urbansim’@’localhost’ =

OLD PASSWORD(’password 1’);

∗ FLUSH PRIVILEGES;

The above three command lines will allow UrbanSim to access the
MySQL database. The chosen password for MySQL (i.e. password 1)
has still to be correctly indicated to UrbanSim (it is mandatory since
UrbanSim will thereafter access to the MySQL database for data im-
portation and exportation). This can be done either by editing the
following .xml file:

C:\opus\settings\database server configurations.xml

4



or through the GUI interface where one of the buttons (’Open Database

Connection Settings’) on the main panel allows us to do so. We have
here to modify the following database connection:

mysql test database server

(this database connection will be used thereafter within the OPUS
csv to sql and sql data to opus tools). For that particular database
connection, the host name has to be set to localhost and the password
to password 1 (the user name remains urbansim, as it should be al-
ready fixed). After editing the database server configurations.xml

file, one must finally have:

<mysql test database server setexpanded="True">

<protocol choices="postgres|mssql|mysql|sqlite"

type="string">mysql</protocol>

<host name type="string">localhost</host name>

<user name type="string">urbansim</user name>

<password type="password">password 1 </password>

</mysql test database server>

N.B: Although it has not been useful in my case (hence I have not had to
do that), Nicolas Coulombel indicates that after completing the set up of
MySQL, it might be necessary to install the executable found at:

http://www.technicalbard.com/files/MySQL-python-1.2.2.win32-py2.6.exe

in order to solve some communication issues between Python and MySQL
(see Windows installation notes on the UrbanSim website for more informa-
tion).

• Before being able to use the data importation and exportation tools
of UrbanSim, one has to create first a database in MySQL. To
do this, write the following command in the MySQL Command Line
Client:

CREATE DATABASE brussels;

Warning: no capital letters should be used in the name of the
databases, nor in the names and entries of the tables com-
posing the databases (otherwise errors will appear in the UrbanSim

5



data importation and exportation tools). To check that the database
has been created correctly:

SHOW DATABASES;

• Use the csv to sql tool (available in the GUI: Data/Tools/tool library/
data conversion tools, you have to right click on csv to sql tool and
select “Execute Tool...”).

Warning: no blank should appear in the csv file path (e.g.
’Documents and Settings’ should be replaced by
’Documents and Settings’). To avoid this problem, the csv files to be
imported in UrbanSim should be placed directly at the root of the hard
drive (e.g. C:\).

The database server connection field must be set to:

mysql test database server

The database name must be set to brussels (the one you just cre-
ated) and the output table name should be directly chosen as the
one wanted to appear thereafter in UrbanSim (it can be for example
households for estimation).

N.B: Alternatively, the conversion and importation from .csv files to
MySQL databases can be done via a MySQL GUI (e.g. Navicat Lite,
see Section 4).

• Use the sql data to opus tool (available in the GUI: Data/Tools/Tool
Library/opus data import export). This tool directly converts the data
from MySQL into the UrbanSim cache format. Note that OPUS has
to be relaunched in order that the imported data are visible in the GUI.

The database server connection field must be set to:

mysql test database server

The database name must be set to brussels (the one you just created),
the table name must be the one chosen before in the csv to sql tool
(for example households for estimation), the opus data year must
be set for example to 2001 and the opus data directory must be:

6



C:\opus\data\san antonio zone\base year data

• In order to have a good example of a working and consistent dataset,
you can create a database from the san antonio zone example. In
order to proceed, you have to create first a database san antonio in
your MySQL Server, and then you can use (after having loaded the
san antonio zone example) the opus data to sql tool with the fol-
lowing parameters:

– Database Server Connection: mysql test database server

– Database Name: san antonio

– Opus Data Directory: C:\opus\data\san antonio zone\base year data

– Opus Data Year: 2005

– Opus Table Name: ALL

4 Managing Data

• In addition to the MySQL Server that you have installed on your com-
puter, it is useful, in order to manage your data in a more comfortable
way, to install a tool to visualize and edit your MySQL databases. I
would advise not to use the “official” MySQL Workbench GUI (not
easy to familiarize with), but to use instead a tool named Navicat
Lite:

http://www.navicat.com/download/download.html

• After the installation process of Navicat Lite, you have to create a
connection between Navicat Lite and your MySQL Server:

File → New Connection → MySQL...

– Connection Name: mysql connect()

– Host Name / IP Address: localhost

– Port: 3306

– User Name: root

– Password: password 1

– click on “save password”

7



• To open the connection to your MySQL Server from Navicat Lite, you
have to right click on mysql connect() → Open Connection. From that
point, all the databases of your MySQL Server are mirrored on Navicat
Lite and all the management of your databases can be done from now
via Navicat Lite.

Figure 1: Navicat Lite Exploration Window

• N.B: There exists a python script that generates a minimal empty
database (basically, this script is generating the mandatory tables, and
you have to fill them afterwards) for the zone version of UrbanSim (see
Section 6 for more details):

create elixir schema for zone model.py

5 Starting from the San Antonio Example -

Some Problems One Might Encounter

• The idea here is to use the san antonio zone example as a basis and
to import the available data for Brussels in order to estimate simple

8



models for Brussels. The available data for Brussels being of course
different from the one available for San Antonio, it will take some ef-
forts to compile them in the same format.

Warning: when incorporating the Brussels data into the san antonio zone

example (the data of San Antonio can be removed directly in the folder
C:\opus\data\san antonio zone\base year data\2005), the available
data for Brussels are for the year 2001 and have thus to be incorporated
for the year 2001. A new folder named 2001 must be created in:

C:\opus\data\san antonio zone\base year data\2001

and the data available for Brussels will be placed in this folder. Do not
forget to change the project configuration file

C:\opus\src\san antonio\configs\san antonio zone.xml

in the following way:

<base year type="integer">2001</base year>

Alternatively, you might also simply put your available data for Brus-
sels as if they were for year 2005 in the following folder:

C:\opus\data\san antonio zone\base year data\2005

• Some data (more precisely some tables) are missing in the dataset avail-
able for Brussels in order to be able to estimate and run the different
models. Having a look at the set of tables that are mandatory for the
zone version of UrbanSim:

http://www.urbansim.org/Documentation/Zone/WebHome

the situation can be summarized as follows:

1) Mandatory tables that exist in the Brussels dataset:

∗ annual employment control totals

∗ annual household control totals

∗ buildings

∗ development event history

9



∗ households

∗ households for estimation

∗ jobs

∗ jobs for estimation

2) Mandatory tables that are missing in the Brussels dataset:

∗ annual relocation rates for households

∗ annual relocation rates for jobs

∗ building sqft per job

∗ building types

∗ employment sectors

∗ home based status

∗ target vacancies

∗ travel data

∗ zones

3) Tables that are not mandatory, but that exist in the Brus-
sels dataset:

∗ 2001 sect

∗ gridcells

∗ job tot

∗ realestate

• Let us now try to estimate a very simple model and to do so let
us restrict our attention on a single variable of a particular model
(let us consider here the variable cost to income ratio within the
household location choice model). Not surprisingly, we get error
messages when estimating the model that tables are missing in order
to estimate correctly the model. UrbanSim successively indicates that
nine tables are actually missing:

∗ annual relocation rates for households

∗ building types

∗ target vacancies

∗ zones

and

∗ development constraint

∗ development types

10



∗ development type group definitions

∗ job building type

∗ urbansim constraints

• These missing tables have to be created somehow and the idea
here is to use, for each of the above missing tables, the available table
for San Antonio and take inspiration of it to construct a coherent table
for Brussels. This can be done by first exporting all the available data
for San Antonio from OPUS with the opus to sql tool. To do this,
you first have to create a san antonio database in MySQL. Then, after
having opened the san antonio zone example, export the data of San
Antonio from OPUS with the opus to sql tool:

– Database Server Connection: mysql test database server

– Database Name: san antonio

– Opus Data Directory: C:\opus\data\san antonio zone\base year data

– Opus Data Year: 2005

– Opus Table Name: ALL

From this point, the data of San Antonio are available and can thus be
managed in Navicat Lite. The missing tables for Brussels can now be
copied from San Antonio in Navicat Lite to be modified thereafter to
cope with the Brussels case.

N.B: All the data management can be done with Navicat Lite using
SQL queries (alternatively, some missing tables can be created with
Matlab or Excel, saved as .csv files and then be imported to Navi-
cat Lite2) and only when the dataset seems to be finalized and coher-
ent, you might import the dataset into OPUS with the sql to opus

tool, thus placing your mandatory and minimal dataset for Brussels,
in OPUS cache format, in:

C:\opus\data\san antonio zone\base year data\2005

In that folder, we have now the available data for Brussels and the nine
additional missing tables that have been created by taking inspiration
from the san antonio zone example.

2Warning: Importation in Navicat Lite has to be done from .txt files in UTF-8 format.

11



• At this point, using in some sense data that have been inspired from
the san antonio zone project, you might still have some compatibility
problems and get the following error message when estimating a simple
model (see Fig. 2):

tuple index out of range

Figure 2: tuple index out of range error message.

for example for a variable entitled

self.location id name

• While tables inspired from the san antonio zone project like:

∗ annual relocation rates for households

12



∗ building types

∗ development constraint

∗ development types

∗ development type group definitions

∗ job building type

∗ target vacancies

∗ urbansim constraints

should not be the cause of the error stated above as they are mostly pro-
viding general attributes for the project. Tables like zones for example
are likely to be problematic since they involve entries that represent
an identity that can appear in several other tables (i.e. some links are
made with other tables using this kind of identity entry). For example,
the values of the attribute zone id in the buildings table of Brussels
might be different from the ones of the attribute zone id in the zones

table, leading to a tuple index out of range error. In that regard,
one has to carefully check all the identity entries in all the tables (i.e.
xxx id), and more generally the entries that appear in more than one
table, and check that each value of these entries can be found in all
the tables having the same entries. Concerning the available data for
Brussels, one has for example to generate a new specific zones table for
Brussels with the same values of the entry zone id as in the provided
gridcell table. In particular, one has to pay special attention to
the following entries:

– zone id in:

∗ zones

∗ buildings

∗ jobs

∗ building sqft per job

∗ development constraints

∗ development event history

∗ scheduled development events

∗ scheduled employment events

∗ travel data (here from zone id and to zone id)

– sector id in:

∗ employment sectors

∗ employment ad hoc sector group definitions

13



∗ jobs

∗ jobs for estimation

∗ annual employment control totals

∗ annual job relocation rates

∗ scheduled employment events

– building id in:

∗ buildings

∗ households

∗ households for estimation

∗ jobs

∗ jobs for estimation

∗ scheduled development events

∗ scheduled employment events

– building type id in:

∗ building types

∗ buildings

∗ development constraints

∗ development event history

∗ target vacancies

– race id in:

∗ race names

∗ annual household control totals

∗ households

∗ households for estimation

– group id in:

∗ employment ad hoc sector groups

∗ employment ad hoc sector group definitions

– household id in:

∗ households

∗ households for estimation

∗ employment ad hoc sector group definitions

– job id in:

∗ jobs

14



∗ jobs for estimation

– home based status in:

∗ home based status

∗ jobs

∗ jobs for estimation

∗ annual employment control totals

• Even with this new (carefully checked) dataset, containing now all the
mandatory tables for the zone version of UrbanSim, you might get an
error message of the type:

missing model specifications

when estimating the models. This error is due to the fact that some
model specifications are missing in your dataset. To handle
this, you can take these specifications data, in OPUS cache file for-
mat, in the original base year data folder of San Antonio and copy
them into the new base year data folder that you have created for
Brussels. Alternatively, you might also copy in Navicat Lite these
model specifications from the san antonio database (the one exported
from the san antonio zone example in OPUS) and paste them in your
brussels database. You will also be able to manage and modify these
model specifications and coefficients data (to cope with the Brussels
case) in Navicat Lite. Do not forget that after the addition or the
modification of some tables of the brussels database, you have to ex-
port it again to OPUS.

There are 14 tables that contain the mandatory model specifications
and coefficients, which have to be added to the brussels zone dataset3:

– home based employment location choice model coefficients

– home based employment location choice model specification

– household location choice model coefficients

– household location choice model specification

– non home based employment location choice model coefficients

– non home based employment location choice model specification

3As explained later in Section 7, these tables are automatically repopulated after the
successful estimation of a model in OPUS.

15



– non residential development location choice model coefficients

– non residential development location choice model specification

– real estate price model coefficients

– real estate price model specification

– residential development location choice model coefficients

– residential development location choice model specification

– urbansim constants

– scenario information

• At this point, the dataset for Brussels contains all the necessary data
in order to be able to estimate models4. However, you might get the
following error message (see Fig. 3):

missing package name

Indeed, the type and size of the entries in your brussels database
cannot be chosen freely. Unless you make the necessary modifica-
tions in the corresponding python files, the type and size of the entries
composing your tables must be exactly the same compared to the ex-
isting entries in the san antonio database. Hence, you have to check
carefully, in Navicat Lite, the type and size of all your entries compos-
ing your MySQL databases.

Note that, by default, when you import a .csv file into Navicat Lite
(e.g. when you have created a table in Matlab or Excel), the variable
type and size will be set automatically to text and 0 for all entries.
Hence, you will have to carefully change the type and size for all of
these entries to cope exactly with the san antonio database.

However, even if you fix correctly the type and size of all your entries,
some problems might surprisingly occur when exporting your database
to OPUS (with the opus to opus tool). For example, the buildings

table, which should have entries either of type and size int,11 or

4More precisely, it is actually not mandatory to create the tables
xxx model specifications and xxx model coefficients in order to be able to
estimate the models. Indeed, as explained in Section 7, proceeding to the estimation of
the models in OPUS will automatically create these tables. However, it is mandatory to
proceed to the estimation of the models (and hence to create these tables) before being
able to simulate the models.

16



Figure 3: missing package name error message.

float,0 (with respect to the buildings table of the san antonio zone

example), is impossible to export to OPUS. To solve this problem, the
type and size of the entries:

– non residential sqft capacity

– residential units capacity

– land area

– average value per unit

have to be fixed to text and 0.

More generally, when an entry (existing in the san antonio database
and not in the brussels database) is empty in one of your table, the

17



type and size have to be set to text and 0, and not to the type and
size of the corresponding entry in the san antonio database. We have
to proceed in this way because when an entry is empty, it is automati-
cally set to WIDEMEMO or NULL, which does not match with an int type
for example. To avoid such kind of problems, you can also remove in
your database all the columns which have only empty values (they are
useless and can hence only raise problems).

Warning when creating your dataset (summary):

– One has to be very careful to be consistent with the xxx id entries
(i.e. zone id, building id, etc.) that appear in several different
tables. Indeed, these variables make the link between the different
tables (like key attributes do so in MySQL databases).

– The type and size (format) (e.g. float,12 / text,0 / etc) in
the brussels database must be exactly consistent with the corre-
sponding entries in the san antonio database. One should double
check the newly created database with regard to that in order to
avoid thereafter some errors when estimating the models.

– The missing entries in the brussels database (in comparison with
the san antonio database) should be set to type text and size 0

(remember that all the formatting of your database entries can be
easily done in Navicat Lite).

– The names chosen for the entries in the tables composing the
brussels dataset must be consistent (exactly the same) with the
names of the existing entries in the corresponding tables compos-
ing the san antonio database.

6 Some Useful Facts about OPUS / Urban-

Sim

• OPUS possesses a Python based modularized architecture that facili-
tates the insertion of additional plug-ins.

• OPUS has an architecture by layer:

– urbansim (general layer)

– urbansim zone (zone layer)

– san antonio zone (project layer)

18



In other words, san antonio zone is the child of urbansim zone, which
is itself the child of urbansim. Specifications at the child level (e.g.
zone layer, then project layer) predominate over the parent level.

• Each of the above layer is composed of Python files (that can be found
in C:\opus\src) and is covered by an additional .xml layer that is
actually composed of the following files:

– urbansim.xml: model general specifications, database connec-
tions, data tools, etc.

– urbansim zone.xml: model parameters, model arguments, etc.

– san antonio zone.xml: project precise model specifications (vari-
able sets considered for each model or submodel to be estimated),
definition of the submodel groups, definition of the variables com-
posing the variable library, estimation parameters, scenario in-
formations, indicator definitions, information on your previously
executed runs (gives the access to the results data of the previous
simulations), etc.

• OPUS data structure:

folder in OPUS (within the base year data folder) ↔ table
file in OPUS (opus cache format .li4 or .li6) ↔ entry

Note that the data, in OPUS cache format, can only be read in OPUS
(see Fig. 4). All the data edition must be done outside OPUS, in
Navicat Lite for example.

• As explained above, the specific configuration of a project (e.g.
here san antonio zone, a zone project) is defined in:

C:\opus\project configs\san antonio zone.xml

and more general specifications are found in:

C:\opus\src\urbansim zone\configs\urbansim zone.xml

• Models: they can be parent (name written in black in the GUI) or
child (name written in blue in the GUI). A parent model is generally
defined at the urbansim layer or at the urbansim zone layer and not
at the project layer. A child model is usually defined at the project
layer (e.g. san antonio zone layer).

19



Figure 4: Data visualization in OPUS.

• To estimate a model, you have to select the “Models” onglet in the
GUI, right click on the model you want to estimate and choose “Run
Estimation”, and then click on “Start Estimation” on the right part of
the window.

• In order to modify a model, it has first to be changed to “make node
local” (child): this action will create a specific portion of code with the
attributes of the parent (e.g. from urbansim zone.xml for example)
at the project layer (i.e. in san antonio zone.xml) and hence one can
modify the model to be specific with the project at hand.

You can add, modify or remove a variable expression into a model:

– Expand the model you want to modify

– Expand “specification”

– Right click on “submodel” and choose “Edit Submodel”

– You can add or remove variables

– You can also create a new variable, e.g. the average household
size:

20



zone.aggregatehousehold.persons, function=mean

• To delete a model (or a submodel), go to the “Models” onglet of
the GUI → specification → right click on the model (the submodel)
to remove → delete. Of course, one can also remove the specific part
of the code dedicated to the model to be deleted in the corresponding
.xml files. One has here to be careful to remove the specific code in all
the .xml files (i.e. in all layers).

• There exists a difference between model variables and model indica-
tors: indicators are possible to look at in the result manager.

• Visualization of a new indicator:

– Create your variable using an expression and add it to the variable
library in the GUI (see Fig. 6). It is better to check it against data
to be sure that the written expression is valid. The variable must
be selected to be used as both a Model Variable and an Indicator.

– In the Results Manager tab of the GUI, you can create a new
indicator batch and configure an indicator visualization to display
the created variable.

• As explained later, the specifications and variables of the different
models are predefined in the different .xml files. More precisely, the
two files urbansim.xml and urbansim zone.xml, the parent files of
san antonio zone.xml, contain general specifications and parameters
of the models. The specific configuration of the models will be defined
at the project layer, in san antonio zone.xml.

• When running a scenario:

– The first year and the last year to simulate can be changed in the
GUI, or alternatively in san antonio zone.xml

– When you expand san antonio baseline and then “models to run”
→ you can choose the models that you want to run during your
simulation

• If needed, OPUS tools like the sql data to opus tool are also modifi-
able. To do that, they have to be “make node local”.

• There exists a script that generates a minimal empty database
for the zone version of UrbanSim (all the created mandatory tables
are empty and have to be populated thereafter):

21



create elixir schema for zone model.py

Line 6 in this file has to be put into comment:

# metadata.bind =

"sqlite:////Users/pwaddell/sqlite/sample zone.db"

and line 8 has to be uncommented and modified as:

metadata.binf="mysql://urbansim:password 1@localhost/sample zone"

A database sample zone has to be created (with the MySQL command
line) priorly to the execution of the python script file. To execute the
file, open a terminal, go into the folder where the python script is
located and execute the following command:

python create elixir schema for zone model.py

This empty database will be useful to determine which tables will be
available for Brussels and which table will have to be created. This
empty database will also be useful to determine which entries will have
to compose the tables and also to check the format (type and size) of
these entries.

• The value -1 for an entry in a table means “ignore that attribute”.

• When copying files from another project, do not copy the entire opus

directory (there might arise some problems thereafter when opening
OPUS), but stick to the src, data and project configs folders.

• It is essential to often make back ups of your project configuration files.
Indeed, even an insignificant change to your project (like the creation
of an indicator) can make everything crashes...

7 Model Estimation

• One can define the model specifications in the “Models” onglet of
the GUI (see Fig. 5), or alternatively in the .xml files. More precisely,
we can choose the set of variables on which the model will be estimated
via a linear regression.

22



Figure 5: Model definition in OPUS.

• When the variable (or indicator) that one wants to consider is not
already contained in the Variable Library, one can create new specific
variables or indicators (see Fig. 6). The list of functions that can
be used in the expressions defining variables can be found in the OPUS
“Users Guide and Reference Manual” (www.urbansim.org).

• Several model parameters, including the sample size and the table on
which the model will be estimated, can be edited in the “Models” onglet
of the GUI (see Fig. 7) or in the file urbansim zone.xml. In particu-
lar, it is possible to estimate a model on a different (typically smaller)
dataset than the one that will be used for simulation. For exam-
ple, the estimation dataset used by the household location choice

model is households for estimation, and not households. In or-
der to modify that, one can go on the “Models” onglet of the GUI →
household location choice model→ structure→ prepare for estimate

→ agents for estimation: households for estimation.

• As shown in Figs. 8 and 9, when one estimates a model, the esti-
mated coefficients, as well as the specific corresponding model specifi-
cation, are written (and consequently available) in the base year data

23



Figure 6: Variable creation in OPUS.

dataset (e.g. the household location choice model coefficients

and household location choice model specification tables for the
household location choice model). Accordingly, the estimation
of the models could be done outside OPUS and the estimated co-
efficients and specification simply written thereafter in the correspond-
ing tables (e.g. household location choice model coefficients and
household location choice model specification). However, if one
wants to proceed like this, one has to be very careful with consistency
issues when writing “by hand” in these two particular tables, and es-
pecially when writing the specification (i.e. the variables) that have
to be correctly written in the OPUS expression language (or must be
variables that are already existing in the OPUS variable library).

• When one has specific employment sectors (i.e. job.sector id),
like it is the case for Brussels, then the submodels of the
employment location choice model have to be modified accordingly.

• To be able to estimate a particular submodel (e.g. within the
employment location choice model), the dataset used for estimation
must contain sufficient number of entries from the type to be estimated

24



Figure 7: Model parameters in OPUS.

(i.e. sector id) in the submodel (here, the jobs for estimation ta-
ble is concerned).

• To be able to estimate the home based employment location choice

submodel, one must have a sufficient number of home-based jobs
(home based status=1) in your jobs for estimation table. Other-
wise, you get the following error (see Fig. 10):

no attribute coefficients error

• One has to check that the jobs table effectively contains a zone id

attribute, especially when one wants to proceed to a zone-aggregation
of the jobs. OPUS do not seem to be able to link first a job to a building
(via the building id attribute) and then a building to a zone (via the
zone id attribute).

• With report to the specific building types we have for Brussels, one has
to redefine variables like is retail or is office:

is retail = building.building type id=4

25



Figure 8: Model specification table in OPUS dataset.

8 Model Simulation

• One can choose the models that we want to run during the sim-
ulation in the “Scenarios” onglet of the GUI (see Fig. 11), or alterna-
tively in the file san antonio zone.xml.

• Before running a simulation, one has to check (again in the “Scenar-
ios” onglet of the GUI, or in the file san antonio zone.xml) that
the set of tables to be cached for the simulation is correct
(see Fig. 12). All the necessary tables have to be selected in the
GUI (this is not done automatically by the program) or specified in
the file san antonio zone.xml. One also has to carefully check that
all the tables to be cached are effectively available in your dataset.
In comparison with the san antonio zone project, one has to untick
the household characteristics for ht table, that does not exist for
Brussels.

• During the simulation, the different models are run sequentially
following the list defined in the “Scenarios” onglet of the GUI (see Fig.
13). This order can be modified in the file san antonio zone.xml.

26



Figure 9: Model coefficients table in OPUS dataset.

The simulation is also done year after year (i.e. all the models are
simulated for the first year, then all the models are simulated again
for the next year and so on). Note that there are hence no potential
conflicts between inputs and outputs of the different models. Indeed, all
the models are using the tables of the preceding year for the simulation
of the current year5.

• Some models need other models to have been already run
before they can be executed themselves. These specific prerequi-
sites are defined in urbansim zone.xml, in the third line of the model
definitions. This is notably the case for the following models:

– The household relocation model has to be run priorly to the
execution of the household location choice model. Indeed, it
is intuitive to understand that one has first to determine whether a
household is intended to move before computing where this house-

5To simulate the year 2006, all the models will use the tables available for 2005. Then,
to simulate the year 2007, all the models will use the tables created during the simulation
for the year 2006. And so on.

27



Figure 10: no attribute coefficients error message.

hold will effectively move.

– Similarly, the employment relocation model has to be run pri-
orly to the execution of the employment location choice model.

When running the household location choice model alone for ex-
ample, we get the following error message (see Fig. 14):

NoneType attribute

• Control totals are currently used, but one also can imagine to use
fertility and mortality models instead of that or in addition to that. The
annual household control totals table must contain, like it is done
in the san antonio zone project, only one total number of households

28



Figure 11: Models to be run during a simulation in OPUS.

for each year. Your dataset must contain the two following tables in
order to work correctly with control totals:

– annual household control totals

– annual employment control totals

• Simulation results are written automatically in your dataset
(the tables are automatically created by OPUS) (see Fig. 15).

• One can run an indicator (c.f. Section 6) to visualize the obtained
results (see Fig. 16). As already mentioned, an indicator can be
created in the same one creates a variable.

• An example of simulation results is given in Fig. 17.

• It might happen that your computer gets out of memory during the
simulation. In that case you get the following error message (see Fig.
18):

MemoryError

29



Figure 12: Tables to be cached during a simulation in OPUS.

9 Some Hints to Proceed with the New Data

for Brussels

• Start from the san antonio zone example (or you can also create a
model from template, the zone version, and take inspiration on the
san antonio zone example thereafter)

– Open the san antonio zone example and save the project as
brussels zone.xml (a file brussels zone.xml will be created in
C:\opus\project configs)

– Create a file brussels zone.xml in:

C:\opus\src\brussels zone\configs

To do this (and to build the mandatory source project package),
create first a folder brussels zone in:

C:\src

For that, open Python and type:

30



Figure 13: Sequential run of the models during a simulation in OPUS.

from opus core.opus package import create package

then

create package(’C:/opusworkspace’, ’brussels zone’)

Then, the folder brussels zone that has been created in the
C:/opusworkspace folder should be moved and placed into the
directory C:\opus\src. If not already created, create a configs

folder in C:\src\brussels zone. Copy the files baseline.py and
baseline extimation.py from C:\src\san antonio zone\configs
into C:\src\brussels zone\configs. Finally, create (if not al-
ready created) a file brussels zone.xml (by copying the corre-
sponding file of the san antonio zone, the eugene zone or the
psrc zone examples) into the folder C:\src\brussels zone\configs.

– Create a folder in C:opus/data named brussels zone inside which
(opus/data/brussels zone) you will be able to place the (consis-
tent) base year data folder that you have constructed for Brus-
sels (containing your brussels data in OPUS cache format, i.e.
.li4, .li6, .li8, .is1 or .lf4 files)

31



Figure 14: NoneType attribute error message.

– Open the brussels zone.xml files (for example with Eclipse) and
change all references to san antonio zone by brussels zone (c.f.
Report on UrbanSim by Peter Goodings Swartz, 2008, pages 10
and 11)

– Then one has to create a coherent datasaset and possibly adapt
the models...

10 List of the Models That Work

• household transition model:
Adds new households or removes households to match control totals.
This model uses the annual household control totals table, that

32



Figure 15: Simulation results written in OPUS dataset.

must be present in your dataset.

• household relocation model:
Predicts households decision to relocate within the city. This model
uses the annual household relocation rates table, that must be
present in your dataset.

• household location choice model:
Predicts location choices for new or moving households. This model is
estimated over the households for estimation table.

• employment transition model:
Adds new jobs or removes jobs to match control totals. This model uses
the annual employment control totals table, that must be present
in your dataset.

• employment relocation model:
Predicts job (employer) decision to relocate within a region. This model
uses the annual job relocation rates table, that must be present in
your dataset.

33



Figure 16: Creation of an indicator batch in OPUS.

• employment location choice model:
Predicts location choices for new or moving jobss. This model is esti-
mated over the jobs for estimation table.

• distribute unplaced jobs model:
Allocates sectors of employment proportionally. This model works on
the jobs table.

• scheduled development events model:
Handles and executes scheduled development events. This model uses
the scheduled development events table, that is present in your dataset.

• scheduled employment events model:
Handles and executes scheduled employment events. This model uses
the scheduled employment events table, that is present in your dataset.

34



Figure 17: Example of OPUS simulation results (here the indicator is the total number of
persons per zone).

11 What Still Does Not Work

(a) Development Project Location Choice Models

• This concerns three models that are very closely related:

– development project transition model:
Predicts new development projects to be located.

– residential development project location choice model:
Predicts locations for new residential development projects.

– non residential development project location choice model:
Predicts locations for new non-residential development projects.

• These models are dependent on the specific building types that you
consider in your project (i.e. each created development project will
involve a given building type).

• In the old dataset available for Brussels, there was an almost complete
lack of data concerning the tables to be used by these models.

35



Figure 18: MemoryError error message.

• Actually, both the residential development project location choice

model and the non residential development project location choice

model are estimated on the development event history table (and
not on the scheduled development events table). This table must
contain enough data for all types of building to be estimated
in a dedicated submodel. One has to be very careful when creating
this development event history table since it involves several differ-
ent xxx id entries and it is thus hard to remain consistent with respect
to all other related tables.

• To allow some residential development projects to take place, some
buildings must have a residential units capacity greater than their
current number of residential units. The same is true for non res-

36



idential development projects. One has thus to carefully check the
buildings table regarding that.

(b) Real Estate Price Model

• The real estate price model predicts price per unit for each building
(i.e. it is hence highly more disaggregated than if it was computing the
price per unit for each building type!).

• The problem occurs here because we have specific building types in
our project (that are different from the ones in the san antonio zone

project) and for that reason the submodels that are constituting the
real estate price model have to be modified in order to cope with
our particular building types.

• In that regard, we have tried to simplify or to remove some of the
submodels that were composing the real estate price model to cope
exactly with the Brussels case and to its specific building types. How-
ever, some specificities of the san antonio zone project, probably hard
coded, still remain... And we get thus the following error message when
trying to estimate the real estate price model (see Fig. 19):

different dataset names for variable and dataset

• Starting from scratch in order to create a dedicated real estate price

model is even more messy...

• Note that the tables concerned for the estimation of the real estate price

model are: buildings and building types.

• The outcome of the model is the following: building.average value per unit.

• The same kind of problem has also appeared in the other case studies
(Zurich, Paris). It is not surprising since each of these projects is also
likely to have its own specific building types.

12 What Remains to Do with the New Data

• Results visualization: while the results can now only be visualized
as tables, the creation of shapefiles (corresponding to the zones that
will be defined with the new dataset for Brussels) to be included in

C:\opus\data\brussels zone\shapefiles

37



Figure 19: different dataset error message.

will allow to see the simulation results as graphical (colored) maps
and/or animated maps.

• Integration of a MatSIM add-on in order to incorporate more pre-
cise and fully disaggregated transportation features6. This integration
is far from being straightforward since:

– UrbanSim is a Python based software while MatSIM is Java based.

6In UrbanSim, the transportation processes are mostly static. Indeed, the travel times
are fixed and are given for each trip between two zones, but they do not take into account
potential congestion effects that might arise when too many people are traveling on the
same route at the same time (i.e. contrary to the rest of the software that includes
fully microsimulated processes, the transportation aspects in UrbanSim are in a sense
aggregated).

38



– The communication and the data transfer between the two soft-
wares during simulation will hence reveal themselves to be tricky.

Appendix 1: Some Words Concerning the Files

Provided in the DVD

The provided DVD contains the following folders:

• Brussels San Antonio Minimal Set Of Files:
The minimal set of files needed to run the Brussels dataset inside the
san antonio zone project (i.e. the project name remains san antonio zone

but the Brussels data are used inside it). This is composed of the fol-
lowing files or folders:

– The san antonio zone.xml file to be placed in

C:\opus\project configs

– The urbansim zone.xml file to be placed in

C:\opus\src\urbansim zone\configs

– The base year data folder to be placed in

C:\opus\data\san antonio zone

– The runs folder to be placed in

C:\opus\data\san antonio zone

• Brussels Minimal Set Of Files:
The minimal set of files needed to run the Brussels dataset as a specific
brussels zone project7. This is composed of the following files or
folders:

– The brussels zone.xml file to be placed in

C:\opus\project configs

– The urbansim zone.xml file to be placed in

C:\opus\src\urbansim zone\configs

7Compared to running the Brussels dataset inside the san antonio zone project, run-
ning the dataset as a specific brussels zone project leads to a MemoryError (not enough
memory) when estimating the household location choice model. Except that, every-
thing seems to run similarly (estimation and simulation).

39



– The brussels zone folder to be placed in

C:\opus\data

• Brussels Original Data:
The dataset received originally from Zachary. The data are provided
in .txt or .csv format, and a base year data folder to be used in
UrbanSim, created with these data, is also given.

• Brussels Updated Data:
The updated dataset for Brussels, where several tables have been mod-
ified and/or created in order to get a consistent and usable dataset. In
more details, this folder contains the following subfolders:

– Base Year Data Folder:
The base year data folder to be used in UrbanSim containing
the updated dataset.

– MySQL Data:
The content of the MySQL database that contains the updated
dataset.

– New Updated Data Computation:
The Matlab and Excel files that have been used to create and/or
modify the updated data.

– New Updated Data Text Files:
The updated dataset in .txt format.

• UrbanSim Installation:
All the necessary files for the installation of OPUS on Windows XP
SP2. In more details, this folder contains the following subfolders:

– MySQL - Navicat:
Installation files for setting up a database (MySQL Server and
Navicat Lite).

– New Examples:
Files received at the UrbanSim Zurich Tutorial concerning ad-
ditional examples of projects (san antonio zone, psrc parcel,
durham zone).

– OPUS:
OPUS 4.3.0 installer file.

– Tortoise:
Tortoise 1.6.12 installer file.

40



• Presentation:
Final version of the September 21st presentation and the corresponding
latex files. Snapshots of different errors that might occur in UrbanSim
and several snapshots of the software running.

• Report:
Final version of the report and the corresponding latex files.

Appendix 2: Installation of the Older Version

4.2.2 of UrbanSim

In the following, we briefly present the main steps to install the older version
4.2.2 of UrbanSim on Windows XP SP2.

• Install the latest stable version of the Windows Installer of Ur-
banSim (on April 2010, it was done through Opus 4.2.2), available
at:

http://www.urbansim.org/Download/WindowsInstaller

The file should be named opus installer.exe.

• Although it should already have been done by the WindowsInstaller,
you have to install once more and properly MySQL on your computer.
To do this, you must follow precisely the instructions given at (see
Section 3):

http://www.urbansim.org/Download/InstallingMySQL

During the installation process of MySQL, you will have to choose a
password for MySQL that we will denote here by password 1. At the
end of the installation process, you have to enter precisely the three
following commands in the MySQL Command Line Client
(Start/All Programs/MySQL/MySQL Server 5.1/MySQL Command
Line Client):

∗ GRANT create, delete, drop, index, insert, select,

update, alter, create temporary tables, file, reload

ON *.* TO urbansim@localhost IDENTIFIED BY ’password 1’;

41



∗ SET PASSWORD FOR ’urbansim’@’localhost’ =

OLD PASSWORD(’password 1’);

∗ FLUSH PRIVILEGES;

The above three command lines will allow UrbanSim to access the
MySQL database. The chosen password for MySQL (i.e. password 1)
has still to be correctly indicated to UrbanSim (it is mandatory since
UrbanSim will thereafter access to the MySQL database for data im-
portation and exportation). This can be done either by editing the
following .xml file:

C:\opus\settings\database server configurations.xml

or through the GUI interface where one of the buttons (’Open Database

Connection Settings’) on the main panel allows us to do so. We have
here to modify the following database connection:

mysql test database server

(this database will be used thereafter in the csv to sql and sql data to opus

tools). For that particular database connection, the host name has to
be set to localhost and the password to password 1 (the user name
remains urbansim). After editing the .xml file, one must finally have:

<mysql test database server setexpanded="True">

<protocol choices="postgres|mssql|mysql|sqlite"

type="string">mysql</protocol>

<host name type="string">localhost</host name>

<user name type="string">urbansim</user name>

<password type="password">password 1 </password>

</mysql test database server>

42


