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AbstractThis paper presents a new paradigm for 
hoi
e set generation inthe 
ontext of route 
hoi
e. We assume that the 
hoi
e sets 
ontainall paths 
onne
ting ea
h origin-destination pair. These sets are ingeneral impossible to generate expli
itly. Therefore, we propose animportan
e sampling approa
h to generate subsets of paths suitablefor model estimation. Using only a subset of alternatives requiresthe path utilities to be 
orre
ted a

ording to the sampling proto
olin order to obtain unbiased parameter estimates. We derive su
h asampling 
orre
tion for the proposed algorithm.Estimating models based on samples of alternatives is straightfor-ward for some types of models, in parti
ular the Multinomial Logit(MNL) model. In order to apply MNL for route 
hoi
e, the utilitiesmust also be 
orre
ted to a

ount for the 
orrelation using, for in-stan
e, a Path Size (PS) formulation. We show that the PS should be
omputed based on the full 
hoi
e set. Again, this is not feasible ingeneral, and we propose an operational solution, 
alled the ExtendedPS.We present numeri
al results based on syntheti
 data. The resultsshow that models in
luding a sampling 
orre
tion are remarkably bet-ter than the ones that do not. Moreover, the Extended PS appears tobe a good approximation of the true one.
1 IntroductionRoute 
hoi
e models play an important role in many transport appli
a-tions. The modeling is 
omplex for various reasons and involves severalsteps before the a
tual route 
hoi
e model estimation. We start by givingan overview of the modeling pro
ess in Figure 1. In a real network a verylarge set of paths (a
tually in�nitely many if the network 
ontains loops)
onne
t an origin so and a destination sd. This set, referred to as the uni-versal 
hoi
e set U , 
annot be expli
itly generated. In order to estimate aroute 
hoi
e model, a subset of paths needs to be de�ned and path gener-ation algorithms are used for this purpose. There exist deterministi
 andsto
hasti
 approa
hes for generating paths.Deterministi
 methods always generate the same set M of paths fora given origin-destination pair. Most of them are based on some formof repeated shortest path sear
h. This type of approa
h is 
omputation-2



ally appealing thanks to the eÆ
ien
y of shortest path algorithms. Exam-ples are link elimination (Azevedo et al., 1993), link penalty (de la Barraet al., 1993) and labeled paths (Ben-Akiva et al., 1984). Instead of perform-ing repeated shortest path sear
hes, a 
onstrained enumeration approa
h re-ferred to as bran
h-and-bound has re
ently been proposed. Friedri
h et al.(2001) present an algorithm for publi
 transport networks, Hoogendoorn-Lanser (2005) for multi-modal networks and Prato and Bekhor (2006) forroute networks.Sto
hasti
 methods generate an individual (or observation) spe
i�
 sub-set Mn. A
tually, most of the deterministi
 approa
hes 
an be madesto
hasti
 by using random generalized 
ost for the shortest path 
om-putations. Ramming (2001) proposes a simulation method that produ
esalternative paths by drawing link 
osts from di�erent probability distribu-tions. The shortest path a

ording to the randomly distributed generalized
ost is 
al
ulated and introdu
ed in the 
hoi
e set. Re
ently, Bovy andFiorenzo-Catalano (2006) proposed the doubly sto
hasti
 
hoi
e set gener-ation approa
h. It is similar to the simulation method but the generalized
ost fun
tions are spe
i�ed like utilities and both the parameters and theattributes are sto
hasti
. They also propose to use a �ltering pro
ess su
hthat, among the generated paths, only those satisfying some 
onstraintsare kept in the 
hoi
e set.On
e M (or Mn) has been generated, a 
hoi
e set Cn for individual
n 
an be de�ned in either a deterministi
 way by in
luding all feasiblepaths, Cn = M (or Cn = Mn), or by using a probabilisti
 model P(Cn)where all non-empty subsets Gn of M (or Mn) are 
onsidered. De�ning
hoi
e sets in a probabilisti
 way is 
omplex due to the size of Gn and hasnever been used in a real size appli
ation. See Manski (1977), Swait andBen-Akiva (1987), Ben-Akiva and Bo

ara (1995) and Morikawa (1996)for more details on probabilisti
 
hoi
e set models. Cas
etta and Papola(2001) (Cas
etta et al., 2002) propose to simplify the 
omplex probabilisti

hoi
e set models by viewing the 
hoi
e set as a fuzzy set in a impli
itavailability/per
eption of alternatives model.The formal evaluation of the relevan
e and realism of generated 
hoi
esets is diÆ
ult in pra
ti
e sin
e the a
tual 
hoi
e sets in general are un-known to the modeler. Several resear
hers, in
luding Ramming (2001),Hoogendoorn-Lanser (2005), Bekhor et al. (2006), Bovy and Fiorenzo-Catalano (2006), Prato and Bekhor (2006), Bekhor and Prato (2006), van3



Set of all paths U from so to sd

M ⊆ U Mn ⊆ U

Deterministi
 Sto
hasti


P(i|Cn) P(i) =
∑

Cn∈Gn

P(i|Cn)P(Cn)

Deterministi
 Probabilisti

Path generation
Choi
eset formation
Route
hoi
e modelFigure 1: Choi
e Set Generation OverviewNes et al. (2006), Bovy (2007) and Fiorenzo-Catalano (2007), have proposedvarious measures of quality of the generated sets. Empiri
al analysis showthat no 
hoi
e set generation algorithm is able to fully reprodu
e observedpaths.In the 
ontext of our new paradigm based on sampling from the uni-versal 
hoi
e set, these measures do not apply, as all possible paths belongto the 
hoi
e set. Moreover, the observed path is always in the sample bydesign. The validation of our approa
h is based on the veri�
ation thatunbiased estimates of the parameters are obtained.In the following se
tion we give an introdu
tion to sampling of alter-natives. We des
ribe the proposed algorithm in Se
tion 3 and we 
ontinueby deriving the sampling 
orre
tion in Se
tion 4. In Se
tion 5 we presentnumeri
al results based on syntheti
 data and des
ribe the heuristi
 for
omputing the Extended Path Size attribute. Finally we present 
on
lu-sions and issues for future resear
h.
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2 Sampling of AlternativesThe Multinomial Logit model 
an be 
onsistently estimated on a subset ofalternatives (M
Fadden, 1978) using 
lassi
al 
onditional maximum likeli-hood estimation. The probability that an individual n 
hooses an alter-native i is then 
onditional on the 
hoi
e set Cn de�ned by the modeler.This 
onditional probability is
P(i|Cn) =

eVin+lnq(Cn |i)

∑

j∈Cn

eVjn+lnq(Cn |j)
(1)and in
ludes an alternative spe
i�
 term, lnq(Cn|j), 
orre
ting for samplingbias. This 
orre
tion term is based on the probability of sampling Cn giventhat j is the 
hosen alternative, q(Cn|j). See for example Ben-Akiva andLerman (1985) for a more detailed dis
ussion on sampling of alternatives.Bierlaire et al. (to appear) have re
ently shown that Multivariate ExtremeValue (also 
alled Generalized Extreme Value) models 
an also be 
onsis-tently estimated and propose a new estimator.Importan
e sampling of alternatives has been used in the literature. Forexample, Ben-Akiva and Watanatada (1981) use samples of destinations forpredi
tion and Train et al. (1987) sample alternatives for the estimation oflo
al telephone servi
e 
hoi
e models. A sampling of alternatives approa
hhas however never been used for route 
hoi
e modeling, to the best of ourknowledge.If all alternatives have equal sele
tion probabilities, the estimation onthe subset is done in the same way as the estimation on the full set of al-ternatives. Indeed, q(Cn|i) is equal to q(Cn|j) ∀ j ∈ Cn and the 
orre
tionsfor sampling bias 
an
el out in Equation (1). A simple random samplingproto
ol is however not eÆ
ient if the full set of alternatives is very large.The sample should in
lude attra
tive alternatives sin
e 
omparing a 
hosenalternative to a set of highly unattra
tive alternatives would not providemu
h information on the 
hoi
e. In order to ensure that attra
tive alter-natives are in
luded, the sample would need to be prohibitively large.When using a sampling proto
ol sele
ting attra
tive alternatives withhigher probability than unattra
tive alternatives (importan
e sampling),the 
orre
tion terms in Equation (1) do not 
an
el out. Note that if al-ternative spe
i�
 
onstants are estimated, all parameter estimates ex
ept5



the 
onstants would be unbiased even if the 
orre
tion is not in
luded inthe utilities (Manski and Lerman, 1977). In a route 
hoi
e 
ontext it is ingeneral not possible to estimate alternative spe
i�
 
onstants due to thelarge number of alternatives and the 
orre
tion for sampling is thereforeessential. Therefore, the key element of our approa
h 
onsists in designinga sto
hasti
 path generation algorithm su
h that the probability q(Cn|i)
an easily be derived. We propose a simple example in the next se
tion.
3 A Stochastic Path Generation ApproachThis sto
hasti
 path generation approa
h is 
exible and 
an be used invarious algorithms in
luding those presented in the literature. We start bydes
ribing the general approa
h and then fo
us on a spe
i�
 instan
e basedon a biased random walk.For a given origin-destination pair (so, sd), the general approa
h as-so
iates a weight with ea
h link ℓ = (v, w) based on its distan
e to theshortest path a

ording to a given generalized 
ost. More pre
isely, theweight ω(ℓ|a, b) is de�ned by the double bounded Kumaraswamy distribu-tion (proposed by Kumaraswamy, 1980), that is

ω(ℓ|a, b) = 1 − (1 − xℓ
a)b. (2)

a and b are shape parameters and xℓ ∈ [0, 1] represents a measure of dis-tan
e to the shortest path and is de�ned as
xℓ =

SP(so, sd)

SP(so, v) + C(ℓ) + SP(w, sd)
, (3)where C(ℓ) is the generalized 
ost of link ℓ, and SP(v1, v2) is the generalized
ost of the shortest path between nodes v1 and v2. Note that xℓ equals one if

ℓ is part of the shortest path and xℓ → 0 as C(ℓ) → ∞. In Figure 2 we showthe 
umulative distribution fun
tion for di�erent values of a when b = 1.The weights assigned to the links 
an be 
ontrolled by the de�nition of thedistribution parameters. High values of a when b = 1 yield low weights forlinks with high 
ost. Low values of a have the opposite e�e
t.Note that other distributions with suitable properties 
an be used. Itis also worth mentioning that this idea presents similarities in its naturewith the approa
h proposed by Dial (1971).6
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Figure 2: Kumaraswamy Distribution: Cumulative Distribution Fun
tionOn
e a weight has been assigned to ea
h link, various methods 
an beapplied. Bierlaire and Frejinger (2007b) propose a gateway approa
h, usedby Bierlaire and Frejinger (2007a) for modeling long distan
e route 
hoi
ebehavior in Switzerland. Note also that the method 
an be generalized tosubpaths instead of links, in order to better re
e
t behavioral per
eptions(see Frejinger and Bierlaire, 2007 and Frejinger, 2008).In this paper, we use a biased random walk algorithm whi
h is appro-priate for the importan
e sampling approa
h. First, it generates any pathin U with non-zero probability. Se
ond, path sele
tion probabilities 
an be
omputed in a straightforward way.Given an origin so and a destination sd, an ordered set of links Γ isgenerated as follows:
Initialize v = so, Γ = ∅

Loop While v 6= sd perform the following
Weights For ea
h link ℓ = (v, w) ∈ Ev, where Ev is the set of outgoinglinks from v, we 
ompute the weights based on (2) where xℓ isde�ned by

xℓ =
SP(v, sd)

C(ℓ) + SP(w, sd)
. (4)7



Note that this is equivalent to (3) where so = v.
Probability For ea
h link ℓ = (v, w) ∈ Ev, we 
ompute

q(ℓ|Ev, a, b) =
ω(ℓ|a, b)

∑
m∈Ev

ω(m|a, b)
(5)

Draw Randomly sele
t a link (v, w∗) in Ev based on the above prob-ability distribution.
Update path Γ = Γ ∪ (v, w∗)

Next node v = w∗.The algorithm biases the random walk towards the shortest path ina way 
ontrolled by the parameters of the distribution. The algorithm
orresponds to a simple random walk if a uniform distribution (spe
ial
ase of Kumaraswamy distribution with a = 0 and b = 1) is used. Notehowever that a simple random walk does not generate paths with equalprobability.The probability q(j) of generating a path j is the probability of sele
tingthe ordered sequen
e of links Γj

q(j) =
∏

ℓ∈Γj

q(ℓ|Ev, a, b), (6)where q(ℓ|Ev, a, b) is de�ned by (5).With this algorithm, it is easy to 
ompute path sele
tion probabilitiesand it is not 
omputationally demanding sin
e at most |V |2 shortest path
omputations are needed for any number of observations, where V is thenumber of nodes in the network.Note that existing sto
hasti
 path generation approa
hes may also beviewed as importan
e sampling approa
hes. We are however unaware ofhow to 
ompute the sampling 
orre
tion in a straightforward way for thesealgorithms.
4 Sampling CorrectionAs dis
ussed in Se
tion 2, the 
orre
tion terms q(Cn|j) ∀ j ∈ Cn mustbe de�ned for this type of sampling proto
ol in order to obtain unbiasedparameter estimates. 8



We de�ne a sampling proto
ol for path generation as follows: a set C̃nis generated by drawing R paths with repla
ement from the universal setof paths U using the biased random walk method des
ribed before, andthen adding the 
hosen path to it (|C̃n| = R + 1). We assume without lossof generality that U is bounded with size J. Note that J is unknown inpra
ti
e. Ea
h path j ∈ U has sampling probability q(j) de�ned by (6).The out
ome of this proto
ol is (k̃1n, k̃2n, . . . , k̃Jn) where k̃jn is the num-ber of times alternative j is drawn (∑j∈U k̃jn = R). Following Ben-Akiva(1993) we derive q(Cn|j) for this sampling proto
ol. The probability of anout
ome is given by the multinomial distribution
P(k̃1n, k̃2n, . . . , k̃Jn) =

R!
∏

j∈U k̃jn!

∏

j∈U

q(j)
ekjn . (7)The number of times alternative j appears in C̃n is kjn = k̃jn + δjc, where cdenotes the index of the 
hosen alternative and δjc equals one if j = c andzero otherwise. Let Cn be the set 
ontaining all alternatives 
orrespondingto the R draws (Cn = {j ∈ U | kjn > 0}). The size of Cn ranges from one to

R + 1; |Cn| = 1 if only dupli
ates of the 
hosen alternative were drawn and
|Cn| = R + 1 if the 
hosen alternative is not drawn nor were any dupli
ates.The probability of drawing Cn given the 
hosen alternative i (randomlydrawn kin − 1 times) 
an be de�ned using Equation (7) as

q(Cn|i) = q(C̃n|i) =
R!

(kin − 1)!
∏

j∈Cn

j6=i

kjn!
q(i)kin−1

∏

j∈Cn

j6=i

q(j)kjn (8)where the produ
ts now are over all elements in Cn sin
e the terms foralternatives that are not drawn (kjn = 0) equal one. Equation (8) 
an bereformulated as
q(Cn|i) =

R!

1

kin

∏

j∈Cn

kjn!

1

q(i)

∏

j∈Cn

q(j)kjn = KCn

kin

q(i)
(9)where

KCn
=

R!
∏

j∈Cn
kjn!

∏

j∈Cn

q(j)kjn .Note that the positive 
onditioning property is trivially veri�ed, that is
q(Cn|i) > 0 =⇒ q(Cn|j) > 0 ∀j ∈ Cn.9



We 
an now de�ne the probability (1) that an individual 
hooses alternative
i in Cn as

P(i|Cn) =
e

Vin+ln“
kin
q(i)

”

∑

j∈Cn

e
Vjn+ln“

kjn

q(j)

” , (10)where KCn
in Equation (9) 
an
els out sin
e it is 
onstant for all alternativesin Cn. When using the previously presented biased random walk algorithmwe 
onsequently only need to 
ount the number of times a given path j isgenerated as well as its sampling probability given by Equation (6) whi
hare both straightforward to 
ompute.

5 Numerical ResultsThe numeri
al results presented in this se
tion aim at evaluating the impa
ton estimation results of� the sampling 
orre
tion,� the de�nition of the Path Size (PS) attribute and� the biased random walk algorithm parameters.Syntheti
 data are used for whi
h the true model stru
ture and parametervalues are known. Based on this data we then evaluate di�erent modelspe
i�
ations with the t-test values of the parameter estimates with respe
tto (w.r.t.) their 
orresponding true values. In the following we refer to aparameter estimate as biased if it is signi�
antly di�erent from its truevalue at 5% signi�
an
e level (
riti
al value: 1.96).
5.1 Synthetic DataThe network is shown in Figure 3 and is 
omposed of 38 nodes and 64 links.It is a network without loops and the universal 
hoi
e set U 
an thereforebe enumerated (|U | = 170). The length of the links is proportional to thelength in the �gure and some links have a speed bump (SB).Observations are generated with a postulated model. In this 
ase weuse a Path Size Logit (PSL) model (Ben-Akiva and Ramming, 1998 and10



Ben-Akiva and Bierlaire, 1999), and we spe
ify a utility fun
tion for ea
halternative i and observation n:
Uin = βPS lnPSU

i + βLLengthi + βSBNbSBi + εin, (11)where βPS = 1, βL = −0.3, βSB = −0.1 and εin are i.i.d. Extreme Valuewith s
ale 1 and lo
ation 0. The PS attribute is de�ned byPSUi =
∑

a∈Γi

La

Li

1
∑

j∈U

δaj

(12)where Γi is the set of links in path i, La is the length of link a, Li the lengthof path i and δaj equals one if path j 
ontains link a, zero otherwise. Notethat we expli
itly index U to emphasize on whi
h path set it is 
omputed.3000 syntheti
 observations have been generated by simulation, asso
iatinga 
hoi
e with the alternative having the highest utility.
5.2 Model SpecificationsSampling Corre
tionWithout WithPathSize C MNoCorr

PS(C) MCorr
PS(C)

U MNoCorr
PS(U) MCorr

PS(U)Table 1: Model Spe
i�
ationsTable 1 present the four di�erent model spe
i�
ations that are usedin order to evaluate both the PS attribute and the sampling 
orre
tion.For ea
h of these models we spe
ify the deterministi
 term of the utilityfun
tion as follows
MNoCorr

PS(C) Vin = µ
(
βPS lnPSC

in − 0.3Lengthi + βSBNbSBi

)

MCorr
PS(C) Vin = µ

(
βPS lnPSCin − 0.3Lengthi + βSBNbSBi + ln(

kin

q(i)
)

)

MNoCorr
PS(U) Vi = µ

(
βPS lnPSU

i − 0.3Lengthi + βSBNbSBi

)

MCorr
PS(U) Vin = µ

(
βPS lnPSUi − 0.3Lengthi + βSBNbSBi + ln( kin

q(i)
)

)
.

11
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The PS attribute based on sampled paths is de�ned byPSCin =
∑

a∈Γi

La

Li

1
∑

j∈Cn

δaj

. (13)Note that the two �rst spe
i�
ations are based on (13) and the two laston (12). βL is �xed to its true value and we estimate µ, βPS and βSB. Inthis way the s
ale of the parameters is the same for all models and we 
an
ompute the t-tests w.r.t. the 
orresponding true values.
5.3 Estimation ResultsFor a spe
i�
 parameter setting of the biased random walk algorithm (10draws, Kumaraswamy parameters a = 5 and b = 1, length is used asgeneralized 
ost for the shortest path 
omputations), we generate one 
hoi
eset per observation and estimate the models. The 
orresponding estimationresults are reported in Table 2. The t-test values show that only the modelin
luding a sampling 
orre
tion and PS 
omputed based on U (MCorr

PS(U)) hasunbiased parameter estimates.The models in
luding sampling 
orre
tion have smaller varian
e of therandom terms 
ompared to the models without 
orre
tion. (Re
all that
µ2 is inversely proportional to the varian
e.) The standard errors of theparameter estimates are also in general smaller indi
ating more eÆ
ient es-timates. Moreover, the model �t is remarkably better for the models with
orre
tion 
ompared to those without. Despite of this the model with PS
omputed based on sampled 
hoi
e sets (MCorr

PS(C)) has biased parameter es-timates. Hen
e, these results support the hypothesis that the PS should be
omputed based on the true 
orrelation stru
ture, otherwise the attributebiases the results. In a real appli
ation it is however not possible to 
om-pute PS based on the true 
orrelation stru
ture sin
e U 
annot be expli
itlygenerated. This is further dis
ussed in the following se
tion.We now analyze the estimation results as a fun
tion of two of the bi-ased random walk algorithm parameters: the Kumaraswamy distributionparameter a and the number of draws. First we note from Figure 4 that,as expe
ted, the number of generated paths in
rease with the number ofdraws but de
rease as a in
rease. Re
all from Figure 2 that the higherthe value of a the more the biased random walk is oriented towards the13



True MNoCorr
PS(C) MCorr

PS(C) MNoCorr
PS(U) MCorr

PS(U)PSL PSL PSL PSL PSL
βL �xed -0.3 -0.3 -0.3 -0.3 -0.3

µ̂ 1 0.182 0.724 0.141 0.994standard error 0.0277 0.0226 0.0263 0.0286
t-test w.r.t. 1 -29.54 -12.21 -32.64 -0.2
β̂PS 1 1.94 0.411 -1.02 1.04standard error 0.428 0.104 0.383 0.0474
t-test w.r.t. 1 2.20 -5.66 -5.27 0.84
β̂SB -0.1 -1.91 -0.226 -2.82 -0.0867standard error 0.25 0.0355 0.428 0.0238
t-test w.r.t. -0.1 -7.24 -3.55 -6.36 0.56Final log likelihood -6660.45 -6082.53 -6666.82 -5933.98Adj. rho-square 0.018 0.103 0.017 0.125Null log likelihood: -6784.96, 3000 observationsAlgorithm parameters: 10 draws, a = 5, b = 1, C(ℓ) = LℓAverage size of sampled 
hoi
e sets: 9.66BIOGEME (Bierlaire, 2007, and Bierlaire, 2003) has been used for allmodel estimationsTable 2: Path Size Logit Estimation Results

14



shortest path. Figure 5 shows the absolute value of the t-tests w.r.t. thetrue values for the MCorr
PS(U) model. With few ex
eptions the parameters areunbiased for both 10 and 40 draws and for all values of a. (A line is shownat the 
riti
al value 1.96.) These results indi
ate that for this example theestimation results are robust w.r.t. to the algorithm parameter settings.The other three model spe
i�
ations (MNoCorr

PS(C) , MCorr
PS(C) and MNoCorr

PS(U) ) havebiased estimates for at least one parameter for all values of a and for allnumber of draws. The detailed results are presented in the Appendix.
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Figure 4: Average Number of Paths in Choi
e Sets
5.4 Heuristic for Extended Path SizeIn a real appli
ation where U 
annot be generated it is not possible to
ompute the PS attribute on the true 
orrelation stru
ture. It is important,though, to 
ompute it based on a set of paths larger than the sampled set Cn.It is therefore interesting to �rst study, for the previous example, how manypaths are needed in order to obtain unbiased parameter estimates. Se
ond,we propose a heuristi
 for 
omputing a PS attribute that approximates thetrue 
orrelation stru
ture.We generate an extended 
hoi
e set Cextendedn for ea
h observation inthe network shown in Figure 3. This 
hoi
e set is only used for 
omputingthe PS attribute. In addition to all paths in Cn we randomly draw (uniformdistribution) a number of paths from U\Cn and add these to Cextendedn . The15
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deterministi
 utilities for a model in
luding sampling 
orre
tion are nowde�ned as
Vin = µ

(
βPS lnPSCextendedin − 0.3Lengthi + βSBNbSBi + ln( kin

q(i)
)

) (14)where PSCextendedin =
∑

a∈Γi

La

Li

1
∑

j∈Cextendedn
δaj

.The estimation results as a fun
tion of the average size of Cextendedn are shownin Figure 6 where x-axis ranges from the average number of paths in Cn(9.66) up to |U | = 170. For ea
h parameter estimate we report the absolutevalue of the t-test w.r.t. its true value. An important improvement ofthe t-test values 
an be noted after only 20 additional paths in Cextendednwhere both the speed bump and PS 
oeÆ
ients are unbiased. The s
aleparameter is unbiased from 80 additional paths. Even though many paths(average number in Cextendedn approximately 0.5|U |) are needed in order forall parameter estimates to be unbiased, we 
an improve signi�
antly theestimates by using an extended 
hoi
e set for the PS 
omputation.Note that the purpose of the results presented in Figure 6 is to have anindi
ation of the parameter estimates when the PS attribute is 
omputed onmore paths than those in Cn. Ea
h data point 
orrespond to one randomsample of paths. More samples would be needed in order to perform adeeper analysis, but this is already a 
lear indi
ation on the need for usinglarger sets for 
omputing the PS attribute.
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t-testw.r.t.
truevalue

Figure 6: Estimation Results for Corre
ted model as a Fun
tion of the
Cextendedn Average Size 17



In order to use an extended 
hoi
e set for the PS 
omputation in a realnetwork, we need to generate paths su
h that the true 
orrelation stru
tureis approximated. That is, the number of paths in the extended 
hoi
e setusing ea
h link in the network should re
e
t the number of paths in U usingea
h link. For this purpose we propose a re
ursive gateway algorithm thatuses the general sto
hasti
 approa
h presented in Se
tion 3. An extended
hoi
e set Cextended is de�ned for ea
h origin-destination pair as follows:� For ea
h link in the network we generate a path and add it to Cextendedif it is not already present.� A path is generated by re
ursively drawing links based on weightsde�ned by (2) and (3).� In order to avoid sele
ting links s
attered over the network, we update
so, sd, v and w in Equation (3) ea
h draw so that higher probabilitiesare assigned to links 
lose to already sele
ted links than those furtheraway, as illustrated below.The Extended PS attribute for alternative j and observation n is then
omputed based on Cextendedn = Cextended ∪ Cn.We illustrate the heuristi
 with a small network in Figure 7 where wegenerate a path (dashed links in part IV) for link (2, D) (bold link in partI). The weight for a link ℓ = (v, w) in the �rst iteration is given by (we use

a = b = 1):
ω(ℓ) =

SP(O, 2)

SP(O, v) + C(ℓ) + SP(w, 2)and the �rst link to be drawn is (O, 3) (part II). The weights are thenupdated a

ording to
ω(ℓ) =

SP(3, 2)

SP(3, v) + C(ℓ) + SP(w, 2)where only one link is possible, namely (3, 2) (part III).The heuristi
 has been tested on the example network (Figure 3) andthe average size of Cextendedn is 57 paths. The estimation results, with de-terministi
 utility spe
i�
ations given by Equation (14), are reported inTable 3 where the referen
e model M
orrPS(C) from Table 2 is also shown. µ̂and β̂SB are 
omparable to the ones obtained by randomly sampling from18
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Figure 7: Illustration of Heuristi
 for Extended Path Size
U\Cn (Figure 6) with the same average size of Cextendedn ; the s
ale parameterestimate µ̂ is improved in M
orrPS(Cextended)


ompared to M
orrPS(C) but remainsbiased and the speed bump 
oeÆ
ient is unbiased in M
orrPS(Cextended)
. ThePS 
oeÆ
ient is biased, this is however expe
ted sin
e Cextendedn is only anapproximation of U . Moreover, this approximation does not have the ni
eproperties of a simple random sample and poorer β̂PS than the results re-ported in Figure 6 seems reasonable. Finally we note that the model �t isremarkably better for M
orrPS(Cextended)

.
6 Conclusions and Future WorkThis paper presents a new paradigm for 
hoi
e set generation and route
hoi
e modeling. We view path generation as an importan
e samplingapproa
h and derive a sampling 
orre
tion to be added to the path utilities.We hypothesize that the true 
hoi
e set is the set of all paths 
onne
tingan origin-destination pair. A

ordingly, we propose to 
ompute the PathSize attribute based on an approximation of the true 
orrelation stru
ture.We present numeri
al results based on syntheti
 data whi
h 
learly showthe strength of the approa
h. Models in
luding a sampling 
orre
tion areremarkably better than the ones that do not. Moreover, unbiased estima-tion results are obtained if the Path Size attribute is 
omputed based on allpaths and not on generated 
hoi
e sets. This is 
ompletely di�erent fromroute 
hoi
e modeling pra
ti
e where generated 
hoi
e sets are assumed to19



True M
orrPS(Cextended)
M
orrPS(C)PSL PSL PSL

β̂L �xed -0.3 -0.3 -0.3

µ̂ 1 0.885 0.724Standard error 0.0259 0.0266
t-test w.r.t. 1 -4.43 -12.21
β̂PS 1 1.52 0.411Standard error 0.102 0.104
t-test w.r.t. 1 5.10 -5.66
β̂SB -0.1 -0.131 -0.266Standard error 0.0281 0.0355
t-test w.r.t. -0.1 -1.10 -3.55Adj. Rho-Squared 0.114 0.103Final Log-likelihood -6006.96 -6082.53Table 3: Estimation Results for Extended Path Size
orrespond to the true ones and Path Size (or Commonality Fa
tor for theC-Logit model Cas
etta et al., 1996) is 
omputed on these generated pathsets. Sin
e it is not possible in real networks to 
ompute these attributes onall paths, we study how many paths are needed in order to obtain unbiasedestimates and we propose a heuristi
 for generating extended 
hoi
e sets.It is important to note that the proposed sampling approa
h 
an beused with Multinomial Logit (MNL) based models (Path Size Logit and C-Logit). A 
onsistent estimator for mixture of MNL (MMNL) models basedon samples of alternatives does not exist but is available for MultivariateExtreme Value models (see Nerella and Bhat, 2004, for an empiri
al studyof the bias in MMNL models when estimated on samples of alternatives).Sin
e the purpose of this paper is to illustrate the proposed method-ology, it is appropriate to use syntheti
 data for whi
h the a
tual modelis known. This allows to test the parameter estimates against their truevalues. A natural next step is to test the approa
h on real data. Moreover,future resear
h 
an be dedi
ated to sampling of alternatives for predi
tion.
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A Estimation ResultsThe following tables show the absolute value of t-test values for the fourdi�erent models dis
ussed in the paper.Kumaraswamy parameter aParameter Nb. Draws 0 1 3 5
β̂SB 5 24.68 21.99 17.12 6.6510 24.20 20.61 16.68 7.2420 21.31 18.10 12.76 7.7130 19.11 15.03 10.52 6.9340 15.99 14.17 8.92 5.89
β̂PS 5 5.17 5.11 0.22 2.4610 5.08 3.98 2.18 2.2020 6.93 5.23 0.30 3.5230 6.93 3.93 0.22 3.2840 4.97 5.12 0.10 3.38
µ̂

5 0.66 6.52 18.7 29.3510 0.27 6.47 18.34 29.5420 0.06 5.92 18.01 27.4930 0.53 5.75 17.45 26.5140 0.31 5.38 16.93 25.66Table 4: Model MNoCorr
PS(C) (no 
onvergen
e for a > 5 due to µ̂ 
lose to zero)
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Kumaraswamy parameter aParameter Nb. Draws 0 1 3 5
β̂SB 5 28.02 24.67 18.92 5.6310 29.06 25.26 19.90 6.3520 28.38 24.93 18.78 8.2030 28.02 23.96 17.71 9.3140 26.81 22.88 16.47 9.83
β̂PS 5 36.35 28.19 15.18 5.3410 37.07 28.12 14.69 5.2920 35.01 25.84 12.05 3.9830 32.31 23.04 9.81 2.2640 29.17 20.50 7.80 0.94
µ̂

5 3.06 4.54 19.25 31.310 3.69 4.65 19.23 32.6420 3.56 4.43 19.68 32.4130 3.75 4.41 19.15 31.6540 3.37 4.38 18.77 30.99Table 5: Model MNoCorr
PS(U) (no 
onvergen
e for a > 5 due to µ̂ 
lose to zero)
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Kumaraswamy parameter aParameter Nb. Draws 0 1 3 5 7 10 15 20 30
β̂SB 5 1.99 2.10 3.54 4.67 4.73 4.45 2.22 1.34 0.5010 0.48 0.17 3.31 3.56 2.93 2.45 0.72 0.13 1.4020 1.58 1.56 0.06 0.73 1.82 1.22 0.37 0.78 1.9830 2.98 3.76 2.11 0.19 0.95 0.35 0.36 1.48 2.5640 5.19 4.17 3.63 1.31 0.01 0.48 0.70 1.47 2.56
β̂PS 5 4.62 4.87 2.66 3.49 4.36 3.91 4.23 4.70 3.0510 3.93 3.45 5.82 5.66 4.80 3.51 2.81 3.01 3.3420 4.72 4.57 4.22 5.02 6.86 6.40 3.95 3.40 4.1830 3.85 2.99 3.99 5.48 4.64 7.21 5.26 4.39 4.1940 1.62 3.60 3.39 5.25 7.66 7.09 5.75 5.33 4.80

µ̂

5 8.78 10.18 12.56 11.14 12.04 8.12 3.88 2.12 3.2810 8.35 10.03 12.69 12.21 11.66 10.08 5.48 2.86 1.6520 8.26 8.21 10.95 11.26 12.01 10.86 7.05 4.06 1.8330 8.06 6.92 8.03 11.02 11.97 10.38 8.03 3.72 2.0340 7.22 6.84 6.53 10.03 11.97 10.38 8.03 3.72 2.03Table 6: Model MCorr
PS(C)



Kumaraswamy parameter aParameter Nb. Draws 0 1 3 5 7 10 15 20 30
β̂SB 5 1.22 1.94 1.34 0.19 0.46 0.22 1.53 1.17 1.1710 1.79 2.16 1.23 0.56 0.31 0.14 0.86 1.11 1.5820 2.32 2.33 1.42 0.93 0.52 0.60 0.66 0.29 1.0830 1.94 2.08 1.70 0.82 0.82 0.60 0.26 0.65 1.2340 1.85 1.82 1.53 0.90 0.83 0.56 0.16 0.62 0.98
β̂PS 5 2.04 1.67 1.45 0.60 1.31 0.02 0.23 1.85 1.3210 1.77 1.55 1.99 0.85 0.80 0.57 0.18 1.04 1.2720 1.37 1.41 1.59 0.88 1.04 0.79 0.19 0.34 0.9430 1.16 0.95 1.41 0.88 1.07 0.61 0.57 0.24 0.9240 1.17 0.93 0.94 0.67 0.87 0.62 0.58 0.24 0.80

µ̂

5 1.70 1.27 0.48 0.41 1.35 0.36 1.48 1.62 1.1610 2.52 1.38 0.63 0.20 1.19 1.57 0.17 1.22 1.9120 2.03 2.31 0.40 0.07 1.54 2.03 0.83 0.35 0.8430 1.78 2.37 1.55 0.63 1.37 1.51 1.48 0.96 0.4440 2.08 1.36 1.27 0.44 1.37 1.51 1.48 0.96 0.44Table 7: Model MCorr
PS(U)
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