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Abstract

This paper presents a new paradigm for choice set generation in
the context of route choice. We assume that the choice sets contain
all paths connecting each origin-destination pair. These sets are in
general impossible to generate explicitly. Therefore, we propose an
importance sampling approach to generate subsets of paths suitable
for model estimation. Using only a subset of alternatives requires
the path utilities to be corrected according to the sampling protocol
in order to obtain unbiased parameter estimates. We derive such a
sampling correction for the proposed algorithm.

Estimating models based on samples of alternatives is straightfor-
ward for some types of models, in particular the Multinomial Logit
(MNL) model. In order to apply MNL for route choice, the utilities
must also be corrected to account for the correlation using, for in-
stance, a Path Size (PS) formulation. We show that the PS should be
computed based on the full choice set. Again, this is not feasible in
general, and we propose an operational solution, called the Extended
PS.

We present numerical results based on synthetic data. The results
show that models including a sampling correction are remarkably bet-
ter than the ones that do not. Moreover, the Extended PS appears to
be a good approximation of the true one.

1 Introduction

Route choice models play an important role in many transport applica-
tions. The modeling is complex for various reasons and involves several
steps before the actual route choice model estimation. We start by giving
an overview of the modeling process in Figure [l In a real network a very
large set of paths (actually infinitely many if the network contains loops)
connect an origin s, and a destination s4. This set, referred to as the uni-
versal choice set U/, cannot be explicitly generated. In order to estimate a
route choice model, a subset of paths needs to be defined and path gener-
ation algorithms are used for this purpose. There exist deterministic and
stochastic approaches for generating paths.

Deterministic methods always generate the same set M of paths for
a given origin-destination pair. Most of them are based on some form
of repeated shortest path search. This type of approach is computation-



ally appealing thanks to the efficiency of shortest path algorithms. Exam-
ples are link elimination (Azevedo et al., 1993), link penalty (de la Barra
et al., 1993) and labeled paths (Ben-Akiva et al., 1984). Instead of perform-
ing repeated shortest path searches, a constrained enumeration approach re-
ferred to as branch-and-bound has recently been proposed. Friedrich et al.
(2001) present an algorithm for public transport networks, Hoogendoorn-
Lanser (2005) for multi-modal networks and Prato and Bekhor (2006) for
route networks.

Stochastic methods generate an individual (or observation) specific sub-
set M,. Actually, most of the deterministic approaches can be made
stochastic by using random generalized cost for the shortest path com-
putations. Ramming (2001) proposes a simulation method that produces
alternative paths by drawing link costs from different probability distribu-
tions. The shortest path according to the randomly distributed generalized
cost is calculated and introduced in the choice set. Recently, Bovy and
Fiorenzo-Catalano (2006) proposed the doubly stochastic choice set gener-
ation approach. It is similar to the simulation method but the generalized
cost functions are specified like utilities and both the parameters and the
attributes are stochastic. They also propose to use a filtering process such
that, among the generated paths, only those satisfying some constraints
are kept in the choice set.

Once M (or M,,) has been generated, a choice set C, for individual
n can be defined in either a deterministic way by including all feasible
paths, C, = M (or C,, = M,), or by using a probabilistic model P(Cy)
where all non-empty subsets G,, of M (or M,,) are considered. Defining
choice sets in a probabilistic way is complex due to the size of G,, and has
never been used in a real size application. See Manski (1977), Swait and
Ben-Akiva (1987), Ben-Akiva and Boccara (1995) and Morikawa (1996)
for more details on probabilistic choice set models. Cascetta and Papola
(2001) (Cascetta et al., 2002) propose to simplify the complex probabilistic
choice set models by viewing the choice set as a fuzzy set in a implicit
availability /perception of alternatives model.

The formal evaluation of the relevance and realism of generated choice
sets is difficult in practice since the actual choice sets in general are un-
known to the modeler. Several researchers, including Ramming (2001),
Hoogendoorn-Lanser (2005), Bekhor et al. (2006), Bovy and Fiorenzo-
Catalano (2006), Prato and Bekhor (2006), Bekhor and Prato (2006), van
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Figure 1: Choice Set Generation Overview

Nes et al. (2006), Bovy (2007) and Fiorenzo-Catalano (2007), have proposed
various measures of quality of the generated sets. Empirical analysis show
that no choice set generation algorithm is able to fully reproduce observed
paths.

In the context of our new paradigm based on sampling from the uni-
versal choice set, these measures do not apply, as all possible paths belong
to the choice set. Moreover, the observed path is always in the sample by
design. The validation of our approach is based on the verification that
unbiased estimates of the parameters are obtained.

In the following section we give an introduction to sampling of alter-
natives. We describe the proposed algorithm in Section [Bl and we continue
by deriving the sampling correction in Section @l In Section Bl we present
numerical results based on synthetic data and describe the heuristic for
computing the Extended Path Size attribute. Finally we present conclu-
sions and issues for future research.



2 Sampling of Alternatives

The Multinomial Logit model can be consistently estimated on a subset of
alternatives (McFadden, 1978) using classical conditional maximum likeli-
hood estimation. The probability that an individual n chooses an alter-
native i is then conditional on the choice set C, defined by the modeler.
This conditional probability is

e Vin Hn g(Cn i)

P(ICh) = (1)

o § ¢ Vin Hn a(Ca )

J€Cn

and includes an alternative specific term, In q(C,,|j), correcting for sampling
bias. This correction term is based on the probability of sampling C,, given
that j is the chosen alternative, q(C,.|j). See for example Ben-Akiva and
Lerman (1985) for a more detailed discussion on sampling of alternatives.
Bierlaire et al. (to appear) have recently shown that Multivariate Extreme
Value (also called Generalized Extreme Value) models can also be consis-
tently estimated and propose a new estimator.

Importance sampling of alternatives has been used in the literature. For
example, Ben-Akiva and Watanatada (1981) use samples of destinations for
prediction and Train et al. (1987) sample alternatives for the estimation of
local telephone service choice models. A sampling of alternatives approach
has however never been used for route choice modeling, to the best of our
knowledge.

If all alternatives have equal selection probabilities, the estimation on
the subset is done in the same way as the estimation on the full set of al-
ternatives. Indeed, q(Cn/i) is equal to q(C.|j) V j € C,, and the corrections
for sampling bias cancel out in Equation ([I). A simple random sampling
protocol is however not efficient if the full set of alternatives is very large.
The sample should include attractive alternatives since comparing a chosen
alternative to a set of highly unattractive alternatives would not provide
much information on the choice. In order to ensure that attractive alter-
natives are included, the sample would need to be prohibitively large.

When using a sampling protocol selecting attractive alternatives with
higher probability than unattractive alternatives (importance sampling),
the correction terms in Equation () do not cancel out. Note that if al-
ternative specific constants are estimated, all parameter estimates except



the constants would be unbiased even if the correction is not included in
the utilities (Manski and Lerman, 1977). In a route choice context it is in
general not possible to estimate alternative specific constants due to the
large number of alternatives and the correction for sampling is therefore
essential. Therefore, the key element of our approach consists in designing
a stochastic path generation algorithm such that the probability q(C,i)
can easily be derived. We propose a simple example in the next section.

3 A Stochastic Path Generation Approach

This stochastic path generation approach is flexible and can be used in
various algorithms including those presented in the literature. We start by
describing the general approach and then focus on a specific instance based
on a biased random walk.

For a given origin-destination pair (s,,sq), the general approach as-
sociates a weight with each link { = (v,w) based on its distance to the
shortest path according to a given generalized cost. More precisely, the
weight w({|a, b) is defined by the double bounded Kumaraswamy distribu-
tion (proposed by Kumaraswamy, 1980), that is

w(la,b)=1—(1—x,%". (2)

a and b are shape parameters and x; € [0, 1] represents a measure of dis-
tance to the shortest path and is defined as

SP(Sovsd)
SP(so,v) + C(£) + SP(w, sq)’

Xg = (3)
where C({) is the generalized cost of link £, and SP(vy,v;) is the generalized
cost of the shortest path between nodes v; and v,. Note that x, equals one if
{ is part of the shortest path and x; — 0 as C(£) — oco. In Figure 2 we show
the cumulative distribution function for different values of a when b = 1.
The weights assigned to the links can be controlled by the definition of the
distribution parameters. High values of a when b = 1 yield low weights for
links with high cost. Low values of a have the opposite effect.

Note that other distributions with suitable properties can be used. It
is also worth mentioning that this idea presents similarities in its nature
with the approach proposed by Dial (1971).
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Figure 2: Kumaraswamy Distribution: Cumulative Distribution Function

Once a weight has been assigned to each link, various methods can be
applied. Bierlaire and Frejinger (2007b) propose a gateway approach, used
by Bierlaire and Frejinger (2007a) for modeling long distance route choice
behavior in Switzerland. Note also that the method can be generalized to
subpaths instead of links, in order to better reflect behavioral perceptions
(see Frejinger and Bierlaire, 2007 and Frejinger, 2008).

In this paper, we use a biased random walk algorithm which is appro-
priate for the importance sampling approach. First, it generates any path
in U with non-zero probability. Second, path selection probabilities can be
computed in a straightforward way.

Given an origin s, and a destination s4q, an ordered set of links I is
generated as follows:

Initialize v=s,, ' =0
Loop While v # s4q perform the following

Weights For each link { = (v, w) € &,, where &, is the set of outgoing
links from v, we compute the weights based on () where x, is

defined by sp( |
Vv, 84

C(¢) +SP(w,sq)

Xg =

(4)
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Note that this is equivalent to () where s, = v.
Probability For each link { = (v, w) € &,, we compute
w({a,b)

(E,,a,b)=
q({| ) S w(ma,b)

()

Draw Randomly select a link (v, w*) in £, based on the above prob-
ability distribution.

Update path T'=T U (v, w*)

*

Next node v =w*.

The algorithm biases the random walk towards the shortest path in
a way controlled by the parameters of the distribution. The algorithm
corresponds to a simple random walk if a uniform distribution (special
case of Kumaraswamy distribution with a = 0 and b = 1) is used. Note
however that a simple random walk does not generate paths with equal
probability.

The probability q(j) of generating a path j is the probability of selecting
the ordered sequence of links [j

a(G) =] Ja(t€,, a,b), (6)

tet

where q({|€,, a,b) is defined by (H).

With this algorithm, it is easy to compute path selection probabilities
and it is not computationally demanding since at most [V|? shortest path
computations are needed for any number of observations, where ) is the
number of nodes in the network.

Note that existing stochastic path generation approaches may also be
viewed as importance sampling approaches. We are however unaware of
how to compute the sampling correction in a straightforward way for these
algorithms.

4 Sampling Correction

As discussed in Section B, the correction terms q(C.lj) V j € C,, must
be defined for this type of sampling protocol in order to obtain unbiased
parameter estimates.



We define a sampling protocol for path generation as follows: a set Cn
is generated by drawing R paths with replacement from the universal set
of paths U using the biased random walk method described before, and
then adding the chosen path to it (ICNn! =R+ 1). We assume without loss
of generality that U/ is bounded with size J. Note that J is unknown in
practice. Each path j € &/ has sampling probability q(j) defined by (@l).

The outcome of this protocol is (Em,ih, . ,Eln) where iin is the num-
ber of times alternative j is drawn (3_;, Kin = R). Following Ben-Akiva
(1993) we derive q(C,|j) for this sampling protocol. The probability of an
outcome is given by the multinomial distribution

~ - Rl .
P(Kin, Kon, ... k) = 7~HQ(5)]9“- (7)
Hjeu kiﬂ! jeu

The number of times alternative j appears in CNTL is kjn = iin + djc, where ¢
denotes the index of the chosen alternative and §;. equals one if j = c and
zero otherwise. Let C,, be the set containing all alternatives corresponding
to the R draws (C, ={j € U | kjn > 0}). The size of C,, ranges from one to
R+ 1; |C.] = 1 if only duplicates of the chosen alternative were drawn and
|C..l = R+ 1 if the chosen alternative is not drawn nor were any duplicates.

The probability of drawing C,, given the chosen alternative i (randomly
drawn ki, — 1 times) can be defined using Equation () as

~ R!
Cn i) = Cn i) = i)kin—1 j)kin 8
R e T WL ) CUC
jeCn 7
i#

where the products now are over all elements in C,, since the terms for
alternatives that are not drawn (kj, = 0) equal one. Equation (B) can be
reformulated as

alealt) = =TT ) =k,

—l | kjn! j€Cn

kin
q(i)

(9)

where

R!
Ke, = =———
HjECn kin!

Note that the positive conditioning property is trivially verified, that is

[T a6G)em.

JECn

q(Culi) >0 = q(Cnlj) > 0Vj € Cn.

9



We can now define the probability () that an individual chooses alternative

b)
Z m+1n —) ’

eCn

iin C, as
V1n+1n<

(10)

P(ilCn) =

where K¢, in Equation (b) cancels out since it is constant for all alternatives
in C,,. When using the previously presented biased random walk algorithm
we consequently only need to count the number of times a given path j is
generated as well as its sampling probability given by Equation () which
are both straightforward to compute.

5 Numerical Results

The numerical results presented in this section aim at evaluating the impact
on estimation results of

e the sampling correction,
e the definition of the Path Size (PS) attribute and
e the biased random walk algorithm parameters.

Synthetic data are used for which the true model structure and parameter
values are known. Based on this data we then evaluate different model
specifications with the t-test values of the parameter estimates with respect
to (w.r.t.) their corresponding true values. In the following we refer to a
parameter estimate as biased if it is significantly different from its true
value at 5% significance level (critical value: 1.96).

5.1 Synthetic Data

The network is shown in Figure[3 and is composed of 38 nodes and 64 links.
It is a network without loops and the universal choice set ¢/ can therefore
be enumerated (/| = 170). The length of the links is proportional to the
length in the figure and some links have a speed bump (SB).
Observations are generated with a postulated model. In this case we
use a Path Size Logit (PSL) model (Ben-Akiva and Ramming, 1998 and

10



Ben-Akiva and Bierlaire, 1999), and we specify a utility function for each
alternative i and observation n:

Ui, = Bps In PSY + BrLength; + BsgNbSB; + €in, (11)
where fps = 1, pr = —0.3, psg = —0.1 and ¢4, are i.i.d. Extreme Value
with scale 1 and location 0. The PS attribute is defined by

Lo 1
P =) T (12)
aeli i Z 6(«1]
jeu

where [ is the set of links in path i, L, is the length of link a, L; the length
of path 1 and &4 equals one if path j contains link a, zero otherwise. Note
that we explicitly index U to emphasize on which path set it is computed.
3000 synthetic observations have been generated by simulation, associating
a choice with the alternative having the highest utility.

5.2 Model Specifications

Sampling Correction
Without With
Path C Mf,‘g(%")" Mggfg)

3 NoCorr Corr
Size U | Mpgij) Mesiw

)
Table 1: Model Specifications

Table [0 present the four different model specifications that are used
in order to evaluate both the PS attribute and the sampling correction.
For each of these models we specify the deterministic term of the utility
function as follows

MIS‘S’(%%" Vin = p(Bpsln PS¢, — 0.3Length; + BssNbSB;)

kin
Mggfg) Vin = 1| BpslnPS$, — 0.3Length; + BSBNbSBﬁ—ln(q (i)))

MBS Vi= 1 (BpsInPSY —0.3Length; + BsgNbSB;)

kin
Mggf;,) Vin = 1| BpslnPSY — 0.3Length, + BSBNbSBi—i—ln(q (i)))'

11
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The PS attribute based on sampled paths is defined by

Lo 1
PS{ =) 0. (13)
2L DS
j€Cn

Note that the two first specifications are based on ([[3) and the two last
on (I2)). Py is fixed to its true value and we estimate u, Bpg and Pgg. In
this way the scale of the parameters is the same for all models and we can
compute the t-tests w.r.t. the corresponding true values.

5.3 Estimation Results

For a specific parameter setting of the biased random walk algorithm (10
draws, Kumaraswamy parameters a = 5 and b = 1, length is used as
generalized cost for the shortest path computations), we generate one choice
set per observation and estimate the models. The corresponding estimation
results are reported in TablePl The t-test values show that only the model
including a sampling correction and PS computed based on U/ (M{g7,)) has
unbiased parameter estimates.

The models including sampling correction have smaller variance of the
random terms compared to the models without correction. (Recall that
u? is inversely proportional to the variance.) The standard errors of the
parameter estimates are also in general smaller indicating more efficient es-
timates. Moreover, the model fit is remarkably better for the models with
correction compared to those without. Despite of this the model with PS
computed based on sampled choice sets (MS‘S’(%)) has biased parameter es-
timates. Hence, these results support the hypothesis that the PS should be
computed based on the true correlation structure, otherwise the attribute
biases the results. In a real application it is however not possible to com-
pute PS based on the true correlation structure since ¢/ cannot be explicitly
generated. This is further discussed in the following section.

We now analyze the estimation results as a function of two of the bi-
ased random walk algorithm parameters: the Kumaraswamy distribution
parameter a and the number of draws. First we note from Figure [ that,
as expected, the number of generated paths increase with the number of
draws but decrease as a increase. Recall from Figure [ that the higher
the value of a the more the biased random walk is oriented towards the

13



True || MNSGF | MEE, | MG | Mg,

PSL PSL PSL PSL PSL
By, fixed -0.3 -0.3 -0.3 -0.3 -0.3
n 1 0.182 0.724 0.141 0.994
standard error 0.0277 0.0226 0.0263 0.0286
t-test w.r.t. 1 -29.54 -12.21 -32.64 -0.2
Bps 1 1.94 0.411 -1.02 1.04
standard error 0.428 0.104 0.383 0.0474
t-test w.r.t. 1 2.20 -5.66 -5.27 0.84
PsB -0.1 -1.91 -0.226 -2.82 -0.0867
standard error 0.25 0.0355 0.428 0.0238
t-test w.r.t. -0.1 -7.24 -3.55 -6.36 0.56
Final log likelihood -6660.45 | -6082.53 | -6666.82 | -5933.98
Adj. rho-square 0.018 0.103 0.017 0.125

Null log likelihood: -6784.96, 3000 observations
Algorithm parameters: 10 draws, a =5,b =1, C({) =L,
Average size of sampled choice sets: 9.66
BIOGEME (Bierlaire, 2007, and Bierlaire, 2003) has been used for all

model estimations

Table 2: Path Size Logit Estimation Results

14




shortest path. Figure Bl shows the absolute value of the t-tests w.r.t. the
true values for the Mgg(rzf” model. With few exceptions the parameters are
unbiased for both 10 and 40 draws and for all values of a. (A line is shown
at the critical value 1.96.) These results indicate that for this example the
estimation results are robust w.r.t. to the algorithm parameter settings.
The other three model specifications (MFgZS™, MBS, and MBSEor™) have
biased estimates for at least one parameter for all values of a and for all
number of draws. The detailed results are presented in the Appendix.

BoRrN N W W
o o o o o

Average number of
paths in choice sets
o

N
ou

30 30

20 20
10 10

00 Kumaraswamy parameter a

Number of draws

Figure 4: Average Number of Paths in Choice Sets

5.4 Heuristic for Extended Path Size

In a real application where ¢/ cannot be generated it is not possible to
compute the PS attribute on the true correlation structure. It is important,
though, to compute it based on a set of paths larger than the sampled set C,,.
It is therefore interesting to first study, for the previous example, how many
paths are needed in order to obtain unbiased parameter estimates. Second,
we propose a heuristic for computing a PS attribute that approximates the
true correlation structure.

We generate an extended choice set C***9°d for each observation in
the network shown in Figure Bl This choice set is only used for computing
the PS attribute. In addition to all paths in C,, we randomly draw (uniform
distribution) a number of paths from U/\C, and add these to Ce*t*nded, The

15
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Figure 5: t-test Values w.r.t. True Values for the Coefficients of MS‘S’@;)
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deterministic utilities for a model including sampling correction are now
defined as

Vin = 1 (Bps In Ps¢extended _ () 3Tength; + BsgNbSB; + In( :(’:) )) (14)

where
L. 1

Gri Ll Z]‘GC%xtended 6(1]

The estimation results as a function of the average size of C****4¢d are shown
in Figure Bl where x-axis ranges from the average number of paths in C,
(9.66) up to /| = 170. For each parameter estimate we report the absolute
value of the t-test w.r.t. its true value. An important improvement of
the t-test values can be noted after only 20 additional paths in Ce*tended
where both the speed bump and PS coefficients are unbiased. The scale
parameter is unbiased from 80 additional paths. Even though many paths
(average number in C®***nded approximately 0.5/1/|) are needed in order for
all parameter estimates to be unbiased, we can improve significantly the
estimates by using an extended choice set for the PS computation.

Note that the purpose of the results presented in Figure [l is to have an
indication of the parameter estimates when the PS attribute is computed on
more paths than those in C,. Each data point correspond to one random
sample of paths. More samples would be needed in order to perform a
deeper analysis, but this is already a clear indication on the need for using
larger sets for computing the PS attribute.

Cextended _
PSiY =

a

Path Size
Speed Bump

—
N
1

Scale Parameter

t-test w.r.t. true value

10 30 50 70 9 110 130 150 170
Average number of paths in Cextended

Figure 6: Hstimation Results for Corrected model as a Function of the
Cextended Average Size
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In order to use an extended choice set for the PS computation in a real
network, we need to generate paths such that the true correlation structure
is approximated. That is, the number of paths in the extended choice set
using each link in the network should reflect the number of paths in I/ using
each link. For this purpose we propose a recursive gateway algorithm that
uses the general stochastic approach presented in Section Bl An extended
choice set Ce***mded i defined for each origin-destination pair as follows:

e For each link in the network we generate a path and add it to Ce*tended
if it is not already present.

e A path is generated by recursively drawing links based on weights
defined by (2) and ().

e In order to avoid selecting links scattered over the network, we update
So, Sd, v and w in Equation (3]) each draw so that higher probabilities
are assigned to links close to already selected links than those further
away, as illustrated below.

The Extended PS attribute for alternative j and observation n is then
computed based on Cextended — Cextended |0

We illustrate the heuristic with a small network in Figure [ where we
generate a path (dashed links in part IV) for link (2, D) (bold link in part
I). The weight for a link { = (v,w) in the first iteration is given by (we use
a=b=1)
B SP(0O,2)
~ SP(O,v) + C(£) + SP(w,2)
and the first link to be drawn is (O,3) (part II). The weights are then
updated according to

w (L)

SP(3,2)

“) = S E ) + SPw.2)

where only one link is possible, namely (3, 2) (part III).

The heuristic has been tested on the example network (Figure ) and
the average size of Ce**nded ig 57 paths. The estimation results, with de-
terministic utility specifications given by Equation ([I4), are reported in
Table B where the reference model Mgy, from Table Bl is also shown. n

and BSB are comparable to the ones obtained by randomly sampling from

18



Figure 7: Illustration of Heuristic for Extended Path Size

U\C,, (FigureB)) with the same average size of C&***m9¢d; the scale parameter

estimate U is improved in ‘1;°Sr(rcextended) compared to M‘l?sr(rc) but remains
biased and the speed bump coefficient is unbiased in M;?Sr(rcextended). The

PS coefficient is biased, this is however expected since C***»9¢d ig only an
approximation of /. Moreover, this approximation does not have the nice
properties of a simple random sample and poorer Bps than the results re-
ported in Figure [f] seems reasonable. Finally we note that the model fit is

remarkably better for MEgt exenaea)-

6 Conclusions and Future Work

This paper presents a new paradigm for choice set generation and route
choice modeling. We view path generation as an importance sampling
approach and derive a sampling correction to be added to the path utilities.
We hypothesize that the true choice set is the set of all paths connecting
an origin-destination pair. Accordingly, we propose to compute the Path
Size attribute based on an approximation of the true correlation structure.

We present numerical results based on synthetic data which clearly show
the strength of the approach. Models including a sampling correction are
remarkably better than the ones that do not. Moreover, unbiased estima-
tion results are obtained if the Path Size attribute is computed based on all
paths and not on generated choice sets. This is completely different from
route choice modeling practice where generated choice sets are assumed to

19



True || MEg(cextenaea) | ME3(c)

PSL PSL PSL
Br fixed -0.3 -0.3 -0.3
n 1 0.885 0.724
Standard error 0.0259 0.0266
t-test w.r.t. 1 -4.43 -12.21
Bps 1 1.52 0.411
Standard error 0.102 0.104
t-test w.rt. 1 5.10 -5.66
BsB -0.1 -0.131 -0.266
Standard error 0.0281 0.0355
t-test w.r.t. -0.1 -1.10 -3.55
Adj. Rho-Squared 0.114 0.103
Final Log-likelihood -6006.96 -6082.53

Table 3: HEstimation Results for Extended Path Size

correspond to the true ones and Path Size (or Commonality Factor for the
C-Logit model Cascetta et al., 1996) is computed on these generated path
sets. Since it is not possible in real networks to compute these attributes on
all paths, we study how many paths are needed in order to obtain unbiased
estimates and we propose a heuristic for generating extended choice sets.

It is important to note that the proposed sampling approach can be
used with Multinomial Logit (MNL) based models (Path Size Logit and C-
Logit). A consistent estimator for mixture of MNL (MMNL) models based
on samples of alternatives does not exist but is available for Multivariate
Extreme Value models (see Nerella and Bhat, 2004, for an empirical study
of the bias in MMNL models when estimated on samples of alternatives).

Since the purpose of this paper is to illustrate the proposed method-
ology, it is appropriate to use synthetic data for which the actual model
is known. This allows to test the parameter estimates against their true
values. A natural next step is to test the approach on real data. Moreover,
future research can be dedicated to sampling of alternatives for prediction.
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A Estimation Results

The following tables show the absolute value of t-test values for the four
different models discussed in the paper.

Kumaraswamy parameter a
Parameter | Nb. Draws 0 1 3 5

5 24.68 21.99 17.12 6.65

10 24.20 20.61 16.68 7.24

Bss 20 21.31 18.10 12.76 7.71
30 19.11 15.03 10.52 6.93

40 15.99 14.17 8.92 5.89

5 5.17 5.11 0.22 2.46

10 5.08 3.98 2.18 2.20

Brs 20 693 523 030 3.52
30 6.93 3.93 0.22 3.28

40 497 512 0.10 3.38

5 0.66 6.52 18.7 29.3b

10 0.27 6.47 18.34 29.54

n 20 0.06 5.92 18.01 27.49
30 0.53 5.75 17.45 26.51

40 0.31 5.38 16.93 25.66

Table 4: Model Mgg(%")" (no convergence for a > 5 due to U close to zero)
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Kumaraswamy parameter a

Parameter | Nb. Draws 0 1 3 5
5 28.02 24.67 18.92 5.63

10 29.06 25.26 19.90 6.35

Bse 20 28.38 24.93 18.78 8.20
30 28.02 23.96 17.71 9.31

40 26.81 22.88 16.47 9.83

5 36.35 28.19 15.18 5.34

10 37.07 28.12 14.69 5.29

Bps 20 35.01 2584 12.05 3.98
30 32.31 23.04 9.81 2.26

40 29.17 20.50 7.80 0.94

5 3.06 454 19.25 31.3

10 3.69 4.65 19.23 32.64

n 20 3.66 4.43 19.68 32.41
30 3.75 4.41 19.15 31.65

40 3.37 4.38 18.77 30.99

Table 5: Model Mg‘s’(%;’)" (no convergence for a > 5 due to U close to zero)

26



Parameter

=)

Nb. Draws
5
10
20
30
40

10
20
30
40

10
20
30
40

0
1.99
0.48
1.58
2.98
5.19

4.62
3.93
4.72
3.85
1.62

8.78
8.35
8.26
8.06
7.22

1 3
210 3.54
0.17 3.31
1.56 0.06
3.76 2.11
417 3.63
4.87 2.66
3.45 5.82
4.57 4.22
299 3.99
3.60 3.39
10.18 12.56
10.03 12.69
8.21 10.95
6.92 8.03
6.84 6.53

Kumaraswamy parameter a

5
4.67
3.56
0.73
0.19
1.31

3.49
5.66
5.02
5.48
5.25

11.14
12.21
11.26
11.02
10.03

7
4.73
2.93
1.82
0.95
0.01

4.36
4.80
6.86
4.64
7.66

12.04
11.66
12.01
11.97
11.97

10
4.45
2.45
1.22
0.35
0.48

3.91
3.51
6.40
7.21
7.09

8.12
10.08
10.86
10.38
10.38

15
2.22
0.72
0.37
0.36
0.70

4.23
2.81
3.95
5.26
5.75

3.88
5.48
7.05
8.03
8.03

20
1.34
0.13
0.78
1.48
1.47

4.70
3.01
3.40
4.39
5.33

2.12
2.86
4.06
3.72
3.72

30
0.50
1.40
1.98
2.56
2.56

3.05
3.34
4.18
4.19
4.80

3.28
1.65
1.83
2.03
2.03

Table 6: Model Mggfé)




Parameter

=)

Nb. Draws
5
10
20
30
40

10
20
30
40

10
20
30
40

0
1.22
1.79
2.32
1.94
1.85

2.04
1.77
1.37
1.16
1.17

1.70
2.52
2.03
1.78
2.08

1
1.94
2.16
2.33
2.08
1.82

1.67
1.55
1.41
0.95
0.93

1.27
1.38
2.31
2.37
1.36

Kumaraswamy parameter a

3
1.34
1.23
1.42
1.70
1.53

1.45
1.99
1.59
1.41
0.94

0.48
0.63
0.40
1.55
1.27

5
0.19
0.56
0.93
0.82
0.90

0.60
0.85
0.88
0.88
0.67

0.41
0.20
0.07
0.63
0.44

7
0.46
0.31
0.52
0.82
0.83

1.31
0.80
1.04
1.07
0.87

1.35
1.19
1.54
1.37
1.37

10
0.22
0.14
0.60
0.60
0.56

0.02
0.57
0.79
0.61
0.62

0.36
1.57
2.03
1.51
1.51

15
1.53
0.86
0.66
0.26
0.16

0.23
0.18
0.19
0.57
0.58

1.48
0.17
0.83
1.48
1.48

20
1.17
1.11
0.29
0.65
0.62

1.85
1.04
0.34
0.24
0.24

1.62
1.22
0.35
0.96
0.96

30
1.17
1.58
1.08
1.23
0.98

1.32
1.27
0.94
0.92
0.80

1.16
1.91
0.84
0.44
0.44

Table 7: Model M%’fin




	Introduction
	Sampling of Alternatives
	A Stochastic Path Generation Approach
	Sampling Correction
	Numerical Results
	Synthetic Data
	Model Specifications
	Estimation Results
	Heuristic for Extended Path Size

	Conclusions and Future Work
	Estimation Results

