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MICROSIMULATION FRAMEWORK FOR URBAN  35 

PRICE-TAKER MARKETS 36 

 37 

ABSTRACT 38 

In the context of integrated transportation and other urban engineering infrastructure systems, 39 

there are many examples of markets, where consumers exhibit price-taking behaviour. While this 40 

behaviour is ubiquitous, the underlying mechanism can be captured in a single framework. Here, 41 

we present a microsimulation framework of a price-taker market that recognizes this generality 42 

and develop efficient algorithms for the associated market clearing problem. By abstracting the 43 

problem as a specific graph theoretic problem (i.e. maximum weighted bipartite graph), first we 44 

are able to exploit algorithms that are developed in graph theory. We then explore their 45 

appropriateness in terms of large-scale integrated urban microsimulations. Based on which, we 46 

further develop a generic and efficient clearing algorithm that takes advantage of the features 47 

specific to urban price-taker markets. This clearing solution is then used to operationalize two 48 

price-taker markets, from two different contexts, within a microsimulation of urban systems. The 49 

initial validation of results against the observed data generally shows a close match.  50 
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1.    INTRODUCTION 51 

The importance of microsimulation as a framework, to analyse integrated urban infrastructure 52 

systems, has been emphasized in recent integrated transportation and land use modelling 53 

literature (Wegner, 1995; Miller and Roorda, 2003; Miller, 2008; Hunt, Kriger, and Miller, 54 

2005). Microsimulation provides a comprehensive and flexible framework for modelling the 55 

behaviour of individual agents as well as representing the various processes that drive urban 56 

evolution (Orcutt, 1957, 1990). In the microsimulation of urban systems, two important 57 

dimensions to capture are the decision making of individual agents (or groups of agents1), and 58 

their interactions with other agents in the markets. In the past forty years, modelling and analysis 59 

of decision making (e.g. households and firms’ location, mode, and vehicle choice decisions, 60 

etc.) in the urban context have received considerable importance from economics, transportation, 61 

environment, energy, real estate, and urban planning literature. However, the modelling of inter-62 

agent interactions within urban markets (e.g. housing, freight, airline seats auctions, etc.) remains 63 

relatively unexplored (Miller et al., 2004, Zhang and Levinson, 2004). 64 

Farooq (2011) conceptualized urban markets as the encapsulation of interactions between 65 

seller/producer and buyer/consumer agents that result in the exchange of a service/good and a 66 

monetary transaction. The goal of both buyers and sellers within this interaction is to achieve 67 

some desirable gain in terms of their profit/utility. Based on how the monetary value is 68 

formulated in this interaction, these markets can be categorized as either Price-Taker or Price-69 

Formation markets. In both price-taker and price-formation markets there exist producer/seller 70 

and consumer/buyer agents that are profit/utility maximizers with varying levels of information 71 

about the market. Producers list their good at a certain asking price in the market. Consumers 72 
                                                
1 Decision Making Unit (DMU) is the generic term used for individual or group of agents that are involved in 
decision making (Miller, 2005a, b). 
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form their choice sets from the available options in the market. In the price-taker case consumers 73 

are assumed to accept the asking price as it is and determine the gain in their utility/profit at that 74 

price. By comparing the relative gains among the choices available to it, a consumer may decide 75 

on choosing one option. In terms of microsimulation, the modelling of price-taker market 76 

clearing problem thus becomes a matching problem in which the modeller is interested in finding 77 

out “who gets what”. The price determination and choice set formation models are exogenous to 78 

the clearing process. At a given exogenously determined price surface for the stock and choice 79 

sets of the buyer agents, the sequence of individual level clearing in the market thus guides the 80 

matching process. 81 

This can be contrasted with price-formation markets, in which prices do not remain fixed 82 

during the clearing process but rather are determined within the market clearing process. In terms 83 

of microsimulation, the modelling of price-formation market clearing problem is a matching 84 

problem in which the modeller is interested in finding out “who gets what at what price”. 85 

Examples of classic approaches that used market equilibrium to formulate prices are Alonso 86 

(1964), Putman (1983), Echenique et al. (1990), Martinez (1992), Anas and Arnott (1993), 87 

(1994), and de la Barra (1995). Farooq (2011) proposed a disequilibrium-based comprehensive 88 

microsimulation framework for modelling urban price-formation markets and operationalized it 89 

for the owner-occupied housing market in the Greater Toronto and Hamilton Area within the 90 

ILUTE (Miller et al., 2011) modelling system. Other examples of operational urban price-91 

formation markets can be found in Waddell et al. (2003), Ettema et al. (2006), and Devisch et al. 92 

(2008).  93 

The focus of this paper is on the urban price-taker markets. Here we present a generalized 94 

clearing framework developed for the urban price-taker markets, by reducing the clearing 95 
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problem of the market to a graph theoretic problem. Such a market is represented as a bipartite 96 

graph in which consumers and products/producers are the vertices of the two sides; choice sets 97 

are the edges; and the unidirectional/bidirectional preferences are the weights on the edges. By 98 

doing so, the algorithms developed for finding the solution for maximum weighted bipartite 99 

matching problem are directly used to find the clearing solution for the urban price-taker 100 

markets. The generalized nature of the formulation ensures that the proposed mechanism can be 101 

used for clearing various urban markets that comes under the category of price-taker market. The 102 

market clearing problem discussed here is equivalent to an assignment problem, which is a 103 

special case of a class of linear programming problems called the transportation problem. To 104 

find a solution for an assignment problem, the predominantly used algorithm for transportation 105 

problems, called transportation simplex, is inefficient (Winston, 1991). Thus, in the literature, 106 

alternative approaches are developed to find the solution for assignment problems. As an initial 107 

exploration, here we first employ the most commonly used algorithm of such category, in order 108 

to explore various features and appropriateness of these graph theoretic algorithms in the context 109 

of large-scale integrated urban microsimulations. Based on this analysis we then develop an 110 

algorithm for optimum allocation under the computational and memory constraints that may rise 111 

due to the very large size of the market, in the microsimulation of urban systems. 112 

The rest of the paper is organized as follows. Section 2 lists the model’s assumptions, 113 

introduces the market model structure, clearing problem, and develops the methodology for 114 

finding the clearing solution. Section 3 then presents our proposed solution which adopts a 115 

probabilistic individual utility maximization approach. In Section 4, we present the application of 116 

the proposed framework to two important urban markets. In the last section, we present our 117 

concluding remarks and future directions of the research. 118 
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2. PRICE-TAKER MARKETS: MODEL STRUCTURE 119 

2.0    Key Assumptions and Definitions 120 

There are two types of agents in the market: consumer agents (persons, households and firms, 121 

etc.) and producer agents (persons, households, airlines, builders, landlords, etc.). The 122 

assumptions concerning each of these agents are listed below. 123 

Generic assumptions: 124 

• Agents maximize their individual profit/utility 125 

• Agents are non-cooperative with varying degrees of information about the market 126 

• The market perceptions (information) of agents are updated as they spend more time in 127 

the market 128 

• Agents have the option to stay or leave the market at any time 129 

• The utility function for both consumer and producer agents are exogenously defined 130 

Consumer assumptions: 131 

• Each consumer is looking for a single unit of good to purchase/lease 132 

• There is an exogenous mechanism that generates a choice set for each consumer. This 133 

process models the choice set generation process of the consumer. The choice sets 134 

generated by this process for all the consumers will then be used by the clearing 135 

mechanism. There may be an indirect interaction between market clearing and choice 136 

set generation process. For instance: the shortage of certain type of good in short-term 137 

that is resulted by faster clearing of that type, may cause the choice set generation 138 

mechanism to adjust the choice set of the active consumers based on their reaction 139 

• Due to changing market perceptions, buyers may update their choice sets over time 140 
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• The differences among the behaviour of consumers are captured in the utility function 141 

and the choice set generation mechanism 142 

Producer assumptions: 143 

• Each producer is offering a single unit of good for sale/lease 144 

• Due to changing market perceptions, producers may adjust their valuation of a good 145 

Definitions 146 

Vertex [v in set V]: an object that may represent certain real life entity (for instance, 147 

person, household) 148 

Edge [e in set E]: connects one vertex to another. It may convey the relationship between 149 

the two vertices that it connects together (for instance, two persons connected by a sibling 150 

edge) 151 

Weight of an edge [w in set W]: It is an integer or a real value associated with an edge. It 152 

may convey the intensity of a relationship between the two vertices the edge is connecting 153 

Association of an edge: It is the set of two vertices that an edge is connected to 154 

Graph [G = (V; E, W)]: It is an ordered pair consisting of a set of vertices V connected by 155 

edges from set E having weights from set W 156 

Adjacent vertices (vi, vj): Two vertices vi and vj in a graph that are directly connected by an 157 

edge (eij) of the same graph 158 

Cardinality: Number of elements in the set. If 𝐴 = 𝑎, 𝑏, 𝑐,𝑑 , then the cardinality 𝐴  is 4 159 

Disjoint sets: Sets whose intersection is the empty set. There is no common element 160 

between the disjoint sets. If 𝐴 = 𝑎, 𝑏, 𝑐,𝑑  and 𝐵 = 𝑓,𝑔, ℎ  then set A and B are disjoint 161 
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2.1    Model Structure 162 

Suppose that in a price-taker market, there are N consumers interested in buying/leasing a 163 

differentiated good offered by M producers, offering one good each. Before making a selection, 164 

consumers generate a list of goods (i.e. choice set) that are of interest. They establish preferences 165 

for each good within their choice set which are based on their consumption behaviour and the 166 

attributes of the goods. Producers may also assign a value to the good that influences their 167 

preferences for each consumer. If the choice set and individual degree of preferences for all 168 

consumers/producers are known, we can express the market in the form of a bipartite graph (G). 169 

A bipartite graph is a type of graph that has two disjoint vertex sets, such that no two vertices in 170 

the same set are adjacent (Wilson, 1979; Gondran and Minoux, 1984; and Cormen et al., 2001). 171 

Let the graph in Figure 1 be represented by G = (C, P; E), where C and P are the two disjoint 172 

sets and 𝐸 ⊆ 𝐶×𝑃 represents the set of edges between the vertices of the two sets. Note that the 173 

intersection of sets C and P is a null set and the cardinality of their union is the sum of their 174 

individual cardinalities. Also, if 𝐸! ⊂ 𝐸 is a set of edges strictly between vertices in set C and 175 

𝐸! ⊂ 𝐸 is a set of edges strictly between vertices in set P then the cardinality of both 𝐸! and 𝐸! 176 

is strictly zero. An alternate way of defining this property is that every edge in set E is associated 177 

with one and only one vertex from each of the two disjoint vertex sets (C and P). 178 

 179 

Figure 1: A Bipartite Graph G = (C, P; E) 180 
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In Figure 1, let set C represent the list of consumers and let set P represent the list of 181 

producers in the market. The preferences between C and P are represented by the edges between 182 

them, which belong to set E with the weights on each edge representing the individual degree of 183 

preference. These edges can be unidirectional or bidirectional. The unidirectional edges represent 184 

the case where only consumers generate a choice set and assign a certain degree of preference to 185 

each choice. An example of such a case is the rental housing market where the renters look at the 186 

available options in the market and form their choice sets and preferences. In the case of 187 

bidirectional edges, the mutual preferences are formed as a function of individual preferences of 188 

both consumers and producers to each other. An example of this case is potential couples that are 189 

matched in an abstract process which we define as a “marriage market”. Both rental and 190 

marriage markets are discussed in more detail in Section 4. 191 

2.2    Price-Taker Market Clearing as a Matching Problem of a Bipartite Graph 192 

The clearing problem for an urban price-taker market requires using the available choice sets and 193 

the degrees of preferences to determine the one-to-one matching between consumers and 194 

producers. This matching problem, under the graph abstraction of the market defined in the 195 

previous section, can be restated as a problem of finding the maximum weighted bipartite 196 

matching. This approach provides the “best” possible matches that can be made for the market at 197 

hand. Suppose that for every edge e in set E, there is an associated weight w in set 𝑊:𝐶×𝑃 → ℝ 198 

then G = (C, P; E, W) and the problem of finding maximum weighted bipartite matching can be 199 

defined as finding a graph G* = (C, P; E*, W*) such that the cardinality of E* equals cardinality 200 

of C and P. Every vertex in set C is connected to one and only one vertex in set P by an edge in 201 

E* and there are no more than one edge associated with each vertex. Moreover, there doesn’t 202 
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exist a graph G** = (C, P; E**, W**) such that the sum of weights in W** is greater than sum of 203 

weights in W*  204 

i.e.  𝑊∗(𝑐, 𝑒 𝑐 )!∈! ≥ 𝑊∗∗(𝑐, 𝑒 𝑐 )!∈! , where 𝑒:𝐶 → 𝑃. 205 

In the graph theory literature, the problem of maximum weighted matching or assignment 206 

has extensively been studied and various efficient algorithms have been developed for this 207 

purpose. The problem has proven to be a special case of the minimum cost flow problem, and 208 

thus can be solved using linear programming algorithms (Burkard et. al., 2009). Hungarian 209 

algorithm is the most commonly used solution for the assignment problem and various variants 210 

of it are proposed in the literature. In ILUTE, we first used one such modified version of the 211 

Hungarian algorithm in order to implement the clearing process for the urban price-taker market. 212 

3. PRICE-TAKER MARKETS: CLEARING SOLUTIONS 213 

3.1    Hungarian Algorithm 214 

Kuhn (1955) used the König’s matching theorem (König, 1931) and Egerváry’s generalization of 215 

it to the weighted bipartite case (Egerváry, 1931) in order to derive the Hungarian algorithm for 216 

finding the maximum weight perfect matching in a bipartite graph (Frank, 2004). The Hungarian 217 

algorithm is based on a linear programming approach that involves transforming the problem 218 

into combinatorial optimization problem. Suppose the graph G = (C, P; E, W) in Figure 2a is 219 

represented by M which is a 𝑛×𝑛 matrix. The rows in matrix M represent set C and its columns 220 

represent the set P. The value of each cell represents the weight of the edge between vertices. If 221 

there is no edge between the two pair of vertices, then the cell value is blank.  222 
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The steps of Hungarian algorithms are as follows 2 (Winston, 1991). 223 

Step 0: Transform the problem into a minimization problem. 224 

Step 1: For each row, subtract off the minimum cell value from rest of the cells. Each row 225 

will have at least one zero and all the values will be greater than or equal to zero. 226 

Step 2: For each column, subtract off the minimum cell value from rest of the cells. Each 227 

row and column will have thus at least one zero. 228 

Step 3: Go through the rows and columns and use lines to cover the zeros in the matrix in 229 

such a way that all the zeros are covered and that no more lines have been drawn than 230 

necessary. Use horizontal line for row and vertical for column. 231 

Step 4: Optimality test: 232 

i. If the count of the lines is n, choose a combination from the modified 233 

matrix in such a way that the sum is zero 234 

ii. If the number of the lines is less than n, go to Step 5. 235 

Step 5. Find the smallest element which is not covered by any of the lines. Then subtract 236 

it from each entry which is not covered by the lines and add it to each entry which is 237 

covered by both a vertical and a horizontal line. Go back to Step 3. 238 

 239 

                                                
2 It is interesting to note that the original algorithm was proposed at the time when computers were not widely in 
use. It was thus designed for the matrix to be solved on a piece of paper. 
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   240 

a. G = (C, P; E, W)   b. G* = (C, P; E*, W*) 241 

Figure 2: Weighted bipartite graph 242 

Note that Kuhn (1955) designed the algorithm for the case of a square matrix, but in the 243 
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original Hungarian algorithm proposed by Kuhn (1955) has a time complexity of 𝑂( 𝐸 𝐶 𝑃 )3.  249 

In the worst case (𝐸 = 𝐶×𝑃) the complexity becomes a polynomial of order 4. Tomizawa (1971) 250 

proposed some modifications to the original algorithm to reduce the complexity to a polynomial 251 

of order 3. In the current implementation of ILUTE, we implemented the version proposed by 252 

Tomizawa.  253 

3.2    Issues with a System Optimal Solutions 254 

Winston (1991) showed that the solution computed by the Hungarian algorithm would provide 255 

the optimal solution to assignment type problems. This implies that a market clearing solution 256 

                                                
3 Time complexity O() of an algorithm explains how it’s computational time will respond to the change in the size 
input (Cormen et al., 2001). Hungarian algorithm’s computational time is a product function of number of edges and 
total vertices. 
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that employs the Hungarian algorithm presents a system optimal solution, where the maximum 257 

sum of profits/utilities is obtained given a certain market. However, system optimal conditions 258 

may not be the best way to represent true urban market conditions, as can be observed in the case 259 

of user vs. system optimal flows in transportation networks or in modelling the marriages within 260 

demographic update module of an agent-based urban modelling system. Both consumers and 261 

producers are not expected to sacrifice their individual profits/utilities to improve society’s 262 

overall utility. If that were the case, drivers would use longer individual routes just to keep the 263 

system level travel time low. Or brides and grooms may not marry their true love for the sake of 264 

the greater good of the society! 265 

Furthermore, a deterministic system optimal solution leaves out the impact of uncertainty 266 

on the urban price-taker markets. Arguably, this stochasticity is an important driver for these 267 

markets’ results. A landlord seeking to rent out an apartment will not wait until he has surveyed 268 

all possible tenants. Often instead the landlord settles on one of the first tenants that meets his 269 

asking price. In a similar vein, people who get married forgo the possibility of finding a better 270 

match had they remained single. Clearly, these two simple examples illustrate that the rather 271 

strong assumptions with a deterministic system optimal solution fails to capture important 272 

features of urban price-taker markets. 273 

Finally, another shortcoming of the Hungarian algorithm for this application is the 274 

computational and memory size requirements that come from manipulating large matrices 275 

involved in the algorithm (i.e. operationalization for very large-scale markets). Gillett (1976) and 276 

Winston (1991) reported that in large-scale assignment problems, finding the minimum number 277 

of lines in the serial version of the Hungarian algorithm might not be computationally cost 278 

effective. 279 
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3.3    A Probabilistic Approach 280 

To deal with these issues in the serial implementation, we propose a probabilistic approach that 281 

relaxes the assumptions made regarding the maximization of the market’s overall utility by 282 

introducing some stochasticity in the approach. Our proposed method is more representative of 283 

the real life markets and is less burdensome with respect to computational time and memory 284 

requirements as well.  285 

The simple algorithm for finding G* = (C, P; E*, W*) is as follows: 286 

Step 1: With a predefined random distribution, pick between set C or P4 287 

Step 2: From the selected set, choose a vertex v1 using another predefined random 288 

distribution 289 

Step 3: For v1 choose v2 such that 𝑤!" ≥ 𝑤!!∀  𝑉 → 𝑣!, where V is the set that was not 290 

chosen in Step 1 291 

Step 4: Remove v1 and v2 and all the edges associated with them 292 

Step 5: Stop if either C or P becomes null set. Else, go to Step 1 293 

The probabilistic approach reduces the complexity of the matching processes to 294 

𝑂(𝑚𝑎𝑥  ( 𝐶 , 𝑃 )). Note that this algorithm results in linear complexity compared to cubic in the 295 

case of the Hungarian algorithm. Moreover, it is not dependent on the number of edges thus 296 

reducing the variability between the worst and best cases. The probabilistic approach does not 297 

guarantee perfect matching, but gives us an adequate solution that respects both individual 298 

profit/utility maximization and uncertainty. This approach is more representative of the real 299 

                                                
4 Examples: predefined random distribution can be uniform (0.5, 0.5) such that both sets have equal probability of 
being chosen. Or it can be restricted to choosing from only one set by setting the probability of selection to 1 
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price-taker markets in transportation, where due to the sequence of events and the limited 300 

amount of information available to the agents, the clearing of market doesn’t always result in a 301 

perfect matching.  302 

4.    APPLICATIONS 303 

4.1    Price-Taker Markets in ILUTE 304 

In the urban systems modelling and microsimulation research, many urban markets can be 305 

expressed as the price-taker market formulation introduced in Section 2. A few examples of such 306 

markets include: labour, rental housing, airline seat auctions, bus routes, and spot-freight 307 

markets. Here we present the operationalization of two very important markets within ILUTE, 308 

using the price-taker market formulation. 309 

The microsimulation modelling of activity-based travel demand and land use evolution 310 

requires maintaining the socio-economic characteristics of individual decision makers 311 

throughout the simulation horizon. This can be achieved by the implementation of a 312 

sophisticated demographic update mechanism within these systems. In ILUTE, the demographic 313 

update involves various processes that deal with a person’s birth, education-level, driving 314 

licence, aging, death, marriage, divorce, and migration—the details of which can be found in 315 

Miller et al. (2008). 316 

4.2    Marriage Market Model 317 

For this paper, the process of managing agents’ marriages in the simulation is of particular 318 

interest. In terms of the implementation of this process in a microsimulation framework, 319 

marriages can be abstracted as a market clearing problem in which currently single males and 320 

females are to be matched according to their mutual preferences. To achieve that, we reduce the 321 
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process to a price-taker market formulation, which we call a marriage market. This market 322 

matches prospective husbands and wives together within a utility maximization framework.  323 

At each time step in the ILUTE microsimulation, the decision of whether to look for a 324 

potential marital partner for all adults is first evaluated. This results in two pools of single men 325 

and single women. The marriage process then determines the choice set for every individual 326 

using predefined search criteria (e.g. spatial proximity, age difference, etc.). The random utility 327 

based model that was estimated by Choo et al. (2008) was adapted for ILUTE and is used to 328 

compute the utility of each potential couple. These utilities are based on the potential couple’s 329 

income(s), education, and the male/female ratios in their respective geographic areas. 330 

The two pools of males and females that are active in the marriage market here can be 331 

represented by the set C and P of the bipartite graph formulated in Section 2. A node in set C can 332 

represent a male in the pool of potential husbands, and a node in set P can represent a female in 333 

the pool of potential wives. The choice sets of all the individuals active in the marriage market 334 

can be expressed by the edges between sets C and P, while the mutual utility is represented by 335 

the weight on the edges between the sets’ elements (i.e. the potential couple). This reduces the 336 

marriage market to the price-taker formulation suggested in Section 2. Moreover, the clearing of 337 

marriage market then becomes equivalent to the problem of finding the maximum bipartite graph 338 

under the conditions defined in Section 2. Note that the edges in the case of the marriage market 339 

are bidirectional, which represents the fact that the weight on each edge is a function of the 340 

utilities of both the potential bride and groom. 341 

4.3    Marriage Market Operationalization within ILUTE 342 

In the current version of ILUTE (ILUTE v1.0 which is under development), a generic class 343 

called the StaticMarket (Figure 3) is implemented as a super class representing the price-taker 344 
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markets. This class encapsulates all the generic features of such a market, and it is based on the 345 

theoretical framework described in Section 2. The two clearing algorithms discussed in this 346 

paper, are at the moment, implemented in two separate versions of the StaticMarket. However, 347 

we intend to merge them in a single class that provides the option for the children of this class to 348 

select the exact clearing process. Various realizations of price-taker markets, including the 349 

MarriageMarket and RentalMarket, are then inherited from the StaticMarket and implement the 350 

specific features required by the markets they represent. 351 

 352 

Figure 3: Class structure of price-taker markets within ILUTE 353 

 Figure 4 displays a sample relational class diagram for the StaticMarket superclass and 354 

the markets it represents. The superclass contains bidder and good objects that correspond to 355 

both sides of a market, as well as the necessary engines for market operation and clearing. 356 

 357 

Figure 4: Sample relational class diagram 358 
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4.4    Marriage Market Simulation Results 359 

This subsection presents results from the implementation of the MarriageMarket in the ILUTE 360 

model system. We simulated an initial population representative of the Greater Toronto 361 

Hamilton Area for a period of 15 years (1986–2001). Figure 5 shows the age distribution of 362 

married people in ILUTE as compared to a representative dataset for the GTHA in 2001. For the 363 

most part, the age distribution of married persons is reproduced fairly well. In addition to 364 

maintaining the marital age distribution throughout the simulation, it is also important to 365 

correctly model the age people decide to get married. Table 1 then shows the mean age of brides 366 

and grooms in ILUTE along with comparable historical data. The results are very strong for 367 

simulating the mean marrying age of single and divorced individuals. However, there is some 368 

divergence for the widowed class, which is not unreasonable due to the smaller market share of 369 

widowed persons and the results’ inherent dependency on simulating deaths. 370 

 371 

Figure 5: Comparison of results for age distribution of married-individuals, between ILUTE and 372 
Survey of Household Spending (SHS) for year 2001 373 
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Table 1: Average age by previous marital status of the newly married individuals in (2001) 374 

Average Age of 
Newly Weds 

Statistics 
Canada ILUTE % 

Error 

Groom 
Single 29.7 29.1 -2.1 
Widowed 62.4 50.9 -22.6 
Divorced 43.8 44.2 0.9 

Brides 
Single 27.6 27.3 -1.1 
Widowed 55.4 47.5 -16.6 
Divorced 40.3 41.7 3.4 

 375 

 Expanding on the results from Table 1, the marriage rates by age group (i.e. number of 376 

marrying persons divided by the size of the age group) for males and females are displayed on 377 

Figure 6. While the general trend is captured by the model, ILUTE shows systematically higher 378 

marriage rates than the census data.  379 

 380 

Figure 6: ILUTE and census marriage rates by age group (2001) 381 
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results now focus on how well the ILUTE MarriageMarket matches potential couples. Table 2 383 
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shows the distribution of newly wedded couples by age group. Again, the general trend is 384 

captured by the MarriageMarket, with majority of newly married persons being under 35. Note 385 

that historical GTHA values were not available, so national (i.e. Canadian) values were used as 386 

proxies. Besides age, income differences were used to pair up possible marriage matches. Figure 387 

7 shows the distribution of income differences for married couples in the ILUTE simulation in 388 

2001. These results display strong performance in comparison to census values.  389 

Table 2: Distribution of newly married couples by age group (2001) 390 

ILUTE (GTHA Values, 2001) 

  
Age of Husband 

18-24 25-34 35-44 45-54 55-64 65-74 

A
ge

 o
f W

ife
 18-24 17.1 8.8 1.7 0.2 0.0 0.2 

25-34 0.5 46.7 4.6 0.6 0.1 0.1 
35-44 0.0 1.1 9.6 1.1 0.2 0.1 
45-54 0.0 0.0 0.6 3.7 1.0 0.2 
55-64 0.0 0.0 0.0 0.3 0.6 0.3 
65-74 0.0 0.0 0.0 0.0 0.2 0.3 

Statistics Canada (Canada Values, 2001) 

  
Age of Husband 

18-24 25-34 35-44 45-54 55-64 65-74 

A
ge

 o
f W

ife
 18-24 11.5 12.5 0.8 0.1 0.0 0.0 

25-34 2.8 35.1 9.2 1.0 0.1 0.0 
35-44 0.1 3.1 8.8 3.8 0.6 0.1 
45-54 0.0 0.2 1.4 3.8 1.8 0.3 
55-64 0.0 0.0 0.1 0.4 1.1 0.7 
65-74 0.0 0.0 0.0 0.0 0.1 0.5 

 391 
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 392 

Figure 7: Distribution of income differences (2001) 393 

4.5    Rental Housing Market 394 

Another important application of urban price-taker markets is the market for rental housing. 395 

Housing (rental and owner-occupied) market models are important in the context of urban 396 

microsimulation, as they influence the spatial and temporal distributions of the population in the 397 

region. The two markets may have different dynamics due to regional economics, supply, space-398 

time, and socio-demographics conditions. Though, the two markets influence each other through 399 

agent interactions and lagged signals. Conditions in both rental and owner-occupied housing 400 

markets play key roles in the location decisions of the households. Both market types are 401 

separately implemented in the current version of ILUTE: the owner-occupied housing market is 402 

modelled as a price-formation market (Farooq 2011), while rental housing is modelled as a price-403 

taker market. This clear distinction between the operationalization of two markets in ILUTE 404 

enables it to capture the individual market dynamics while ensuring the interactions between 405 
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them through the loose coupling the two. To our knowledge this is the first time that this 406 

distinction between the two markets has been implemented explicitly in an urban model. These 407 

next two subsections focus on the rental housing market in ILUTE, along with initial model 408 

results. 409 

Each year in ILUTE, households evaluate the decision to change their existing locations. 410 

If a household decides to move, it is then faced with the tenure decision, i.e. whether to get active 411 

in the owner-occupied or rental housing market. This decision is based on probability 412 

distributions generated from the Canadian Census data for various income levels of the 413 

households (Giroux-Cook, 2010). Households that decide to rent a dwelling start the search 414 

process for a potential dwelling. In the current implementation, all the active dwellings in the 415 

market are available for consideration to all the active households. The other option that could 416 

have been used was to randomly choose the choice set for each renter. Elgar et al. (2011) 417 

investigated the choice set generation process for firm’s location choice models and suggested 418 

that in forecasting mode, the model considering all the options out-performed the choice set 419 

generation process where a subset of choices were randomly chosen. They also suggested anchor 420 

points based choice set generation processes in the spatial context. With the availability of better 421 

datasets, a more realistic choice set generation process that is inspired by anchor point based 422 

approach can be developed for renting households. 423 

Rents for the active dwellings are determined using the rent-setting model, developed 424 

using average rent data from the Canadian Mortgage and Housing Corporation (CMHC), 425 

supplemented by Canadian Census data. In the clearing process, the problem is reduced to 426 

finding a maximum weighted bipartite graph, using the formulation and solution suggested in 427 

Sections 2 and 3. In the current version, the income levels of the households determine the 428 
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weight on the edges. Hence, these weights are unidirectional and represent the assumption that 429 

landlords give the dwelling to the interested household with the highest income. However, 430 

Giroux-Cook (2010) recommends that a random utility-based model be developed that 431 

incorporates the preferences of the households. Moreover, it is pointed out that landlords often 432 

screen out the potential renters due to discrimination against race, gender, class, etc. Giroux-433 

Cook suggests that the utility function of the landlord that expresses this behaviour should also 434 

be included in the weight of the edges. In terms of our formulation, the edges will then 435 

correspond to a bidirectional weights. 436 

4.6    Rental Housing Market Simulation Results 437 

For the validation of the rental market, small samples of 10,000 and 50,000 households were 438 

microsimulated from 1986 to 2006 and their evolution were compared with historical data. Table 439 

3 compares the average rental prices in 2001 with census data. Currently the prices forecasted by 440 

ILUTE are lower and have lesser variance compared. This is due to the fact that the current rent 441 

model operational in ILUTE, is insensitive to neighbourhood characteristics, market conditions, 442 

and accessibility. We plan to replace it with a more detailed model, as soon as we have access to 443 

better datasets. 444 

Table 3: Average rents in Year 2001 445 

 

ILUTE Census 

 

Average St. Dev. Average St. Dev. 

Total 610.19 241.13 848.03 392.42 

Figure 8 presents the comparison between the spatial distribution of renter households in 446 

ILUTE and the 2001 census. The spatial trend produced by ILUTE generally seems to match the 447 

historical pattern, with a few exceptions, particularly in the Southwest (Hamilton region). Note 448 
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that a more detailed discussion on the results from the operationalized rental market in ILUTE 449 

can be found in Giroux-Cook (2010). 450 

 451 
Figure 8: Spatial distribution of renter households in Year 2001: Census-ILUTE  452 

(darker shades representing higher densities) 453 

5.    CONCLUDING REMARKS AND FUTURE DIRECTION 454 

In literature, few examples can be found on microsimulation modelling of specific price-taker 455 

markets, for instance: Waddell et al. (2003) presented a housing market model while Leombruni 456 

and Richiardi (2011) proposed a microsimulation labour market model. However in this paper, 457 

taking advantage of the similarities among these markets, we presented a single generic 458 

microsimulation framework for modelling the urban price-taker markets that can we used to 459 

model a wide range of markets. Core concepts from graph theory were used to abstract the 460 

market as a bipartite weighted graph. Commonly used algorithm was first explored for its 461 

appropriateness in the context of large-scale microsimulation of urban systems. Based on which, 462 

then an efficient algorithm was developed to find the solution for the market clearing problem.  463 
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We applied the proposed framework to marriage and rental housing markets within 464 

ILUTE modelling system. Due to unavailability of data on actual marriages, the validation of the 465 

results produced by the implemented marriage markets was performed using indirect means. A 466 

close match was found between the evolved simulation population and census. The choice set 467 

generation process and utility function needs to be revisited in the marriage market. Clear 468 

distinction was made between rental owner-occupied markets. In case of owner-occupied market 469 

the endogenous formation of price is a dominant characteristics, while in case of rental market 470 

the rent levels are very much predetermined. We thus modelled the rental market as a price-taker 471 

market. In case of rental market, the comparison between the simulation results and historical 472 

data demonstrated that the current rental model requires further modifications to improve the 473 

accuracy of its results. The three primary areas of improvement needed are (a) estimates of the 474 

number of households getting active in the renting market and (b) estimates of the dwelling 475 

asking rents (c) choice set generation for the renters. 476 

The framework developed here is very rich in term of representing agents’ behaviour and 477 

market characteristics—agents heterogeneity, differences in choice set formation process, market 478 

segments, supply and demand shocks, are some of the key features that can be represented by 479 

this framework. At the same time, it is highly efficient and scalable in terms of microsimulation 480 

operationalization of various urban markets that display price-taker behaviour by consumers. The 481 

proposed implementation has an order of complexity that is linear function of number of active 482 

consumers or producers (depending on whoever are more) in the market. Using the same 483 

framework, we are in the process of operationalizing the labour force market within ILUTE. 484 

Moreover, as a future research direction, we intend to further extend the application of the 485 

proposed framework in the areas like urban freight transportation and air-travel. 486 
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A full-scale microsimulation of the marriage market for the Greater Toronto and 487 

Hamilton Area requires dealing with approximately one hundred thousand agents (including all 488 

active males and females). Within an urban microsimulation system such as ILUTE this results 489 

in very high memory and computational requirements (as is commonly the case in any large 490 

scale microsimulation of urban systems). To overcome such challenges, as an ongoing research, 491 

we are exploring efficient use of readily available multi-core 64-bit computer architecture, by 492 

exploiting access to larger memories and speedup by parallelization. Because of the complex 493 

nature of interactions between the agents, the parallelization of any type of market is non-trivial. 494 

That requires careful partitioning of the problem, resolving various dependencies, and avoiding 495 

deadlocks. In future, we plan to develop specialized algorithms and data structures that are 496 

capable of handling.  497 
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