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Abstract

1 Microsimulation of urban systems evolution requires synthetic population as a key

input. Currently, the focus is on treating synthesis as a �tting problem and thus vari-

ous techniques have been developed, including Iterative Proportional Fitting (IPF) and

Combinatorial Optimization based techniques. The key shortcomings of these proce-

dures include: a) �tting of one contingency table, while there may be other solutions

matching the available data b) due to cloning rather than true synthesis of the popula-

tion, losing the heterogeneity that may not have been captured in the microdata c) over

reliance on the accuracy of the data to determine the cloning weights d) poor scalability

with respect to the increase in number of attributes of the synthesized agents. In order

to overcome these shortcomings, we propose a Markov Chain Monte Carlo (MCMC) sim-

ulation based approach. Partial views of the joint distribution of agent's attributes that

are available from various data sources can be used to simulate draws from the original

distribution. The real population from Swiss census is used to compare the performance

of simulation based synthesis with the standard IPF. The standard root mean square

error statistics indicated that even the worst case simulation based synthesis (SRMSE

= 0.35) outperformed the best case IPF synthesis (SRMSE=0.64). We also used this

methodology to generate the synthetic population for Brussels, Belgium where the data

1Forthcoming: Transportation Research Part B: Methodological. Date accepted: September 21, 2013
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availability was highly limited.

Keywords: Markov chain Monte Carlo simulation, population synthesis, agent based

model, integrated urban systems planning

1. Introduction

Large-scale activity based travel demand and land use evolution models that take

into account the individual agent decisions and interactions, are actively been developed

in research and practice (Waddell, 2002; Miller and Roorda, 2003; Arentze and Tim-

mermans, 2004; Balmer et al., 2006; Miller et al., 2011). These behavioural and market

oriented models are an active tool for detailed impact forecasting of transportation, land

use, environmental, and energy related policies.

Among other data, these simulations require at least a base year population of agents

(households, families, and/or persons) and their attributes. These attributes are then

used in various behavioural models estimated on a sample and implemented in the simu-

lations for forecasting. The attributes are needed for not only the base year population,

but also for the future years population. Agent level data on the complete population in

a study area is almost never available{not including the few exceptions like Switzerland

where the complete census is available for research. Instead in most cases a microsample

called public use micro sample (PUMS) with out any high resolution location informa-

tion is available. It may not have information on associations of agents either. Travel

surveys conducted by governmental bodies (e.g. municipality) provide a sample for use.

In addition to that census and travel surveys also provide aggregate level data at various

zonal systems. There might also be various other bits and pieces of information that

are available to the researcher about the population. These various sources that are

partial views of the population are used to reconstruct it, using synthesis techniques.

Future year population can either be generated using the endogenous demographic up-

date mechanism or by generating new population every year using a synthesis technique.

Demographic update is not the topic of this paper, but is extensively covered in Farooq

et al. (2009) and elsewhere.

The existing population synthesis techniques focus on �tting a single contingency

table to the available data. Using that as the ground truth the microsimulations are run

to produce the outputs. In existing literature there is no investigation or discussion on

the error that may be propagated forward via this approach due to: a) incompleteness of

the data b) systematic and deliberate tampering of the data at source to conserve privacy

c) di�erences in the de�nitions, aggregation levels, scale, etc. d) assumptions and short

coming of the �tting procedures. Moreover, due to unavailability of the data on real

population (ground truth) in most of the cases, there rarely has been a complete and

systematic analysis done on the performance of the proposed techniques. In this context
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we propose a new approach that uses all the partial views of the joint distribution of the

real population, available through various data sources, in order to draw the synthetic

populations from it. We have access to the census on the real population of Switzerland,

which we used for the comprehensive performance assessment. The proposed approach

is able to overcome major issues faced by the existing approaches, while maintaining

at least the same level of accuracy as the leading approaches outlined in the existing

literature.

The rest of the paper is organized as follow: we �rst describe the types of available

datasets that can be used in the synthesis. Existing literature is outlined and key short-

comings are discussed. We then formally introduce the problem statement and present

our methodology to address the problem. Various performance comparison experiments

and a case study are presented. In the last section we discuss key features of the proposed

approach and present conclusions.

2. Available data sources

Traditionally, primary data sources to construct a synthetic population have been

census and travel surveys. Other sources include: household spending survey, labour

force survey, statistics from revenue agency, real estate cadaster etc. Although, they are

rarely used in the existing literature. The information from these sources is available in

two di�erent forms: sample of individual agents and cross-classi�cation tables. These

data are associated to one or more spatial zoning systems.

2.1. Zoning systems

The data is available at certain aggregations of space that is de�ned by a zoning

system. The aggregation may be based on certain maximum density levels, physical

obstacles (river, street etc.), and political boundaries. There may also be hierarchy of

aggregations within each zoning system. For instance, in case of Canadian census the low-

est level of zone is called dissemination area where 400 to 700 persons are living/working.

One level above is the census tract where the limit is 2,500 to 8,000 persons. Further ag-

gregations are census sub-division, division, and municipality, respectively. The zoning

system also changes with time i.e. a discrimination area in year 2001 census, may have

been divided into two in 2010 census, so as to satisfy the constraint on number of persons.

The travel surveys are available at the lowest level of aggregation called Tra�c Anal-

ysis Zone (TAZ). TAZs are usually de�ned based on road network; its size may vary

depending on the agency conducting the survey; and may not overlap with any of the

census zoning system. Another zoning system that may be used is the postal code

system.
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2.2. Sample of individuals

Statistics bureau of a country among other surveys also conducts periodic census of

the entire population. The periodicity of this census range from 5 (in case of Canada)

to 10 years (USA, Switzerland etc.). While the whole dataset is almost never available

for the research (with some exceptions, like that of Switzerland), bureaus do provide a

representative sample for public use. In North America, this sample of individual agents

is called Public Use Micro Sample (PUMS) and in the UK and few other countries, Sam-

ple of Anonymised Records (SARs). In this paper we use the term PUMS. This sample

is only available at a large spatial area (for instance, City of Toronto, London etc.), so

as to make sure that the privacy of the individuals is protected. The size of sample

may range from 1% to 5% of the total population. The sample may contain range of

demographic and socioeconomic information on households, families, and persons. The

exact location, income details, and some other details may be missing due to privacy

concerns. Furthermore, census bureau may hide information on certain individuals, if

they deem it to be exposing individuals' identity.

Another source of the sample is the travel survey, usually conducted by the urban

regions, municipalities, counties, etc. The focus of this survey is on the travel demand

patterns of agents and mode shares, but it also has some information on socieconomics

and demographics of agents. There is more uctuation here in terms of the details, size,

and periodicity of travel survey among the regions/countries. The periodicity of travel

surveys of the neighbouring regions may not coincide and it may also not coincide with

that of census.

Various �tting based procedures (e.g. IPF) use the sample to initialize the con-

tingency table, which is a multidimensional table representing the frequency of each

combination of attributes categories (Beckman et al., 1996).

2.3. Cross-classi�cation tables

At various zoning level (for instance, dissemination area and census tracts in case of

Canada. Or sectors and communes in case of Belgium and France), Statistics bureau

also releases the cross-classi�cation tables for socioeconomics and demographics (for in-

stance, income by age at sector level). These tables are usually 1 to 3 dimensional

tables. Marginal distribution/counts of an attribute can be directly constructed from

1 dimensional table or by aggregating the higher dimension tables for each category of

an attribute. They are used in �tting based procedures as control totals. The higher

dimensional cross-classi�cation tables can also be used to generate conditional-marginal

distribution/count of one attribute on the other attributes that are present in the table.

In the proposed methodology we make use of both marginals and conditional-marginals

distribution/counts 1.

1From here on we will use the term marginal to represent the marginal distribution/counts and
conditional to conditional-marginal distribution/counts.
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Higher dimensions tables are not released due to privacy concerns{the cell values may

be small enough to reproduce the population. In the available tables, if the cell values

were very small, usually they had been rounded o� to zero by the bureau. There is

also a random rounding of values done by the Statistics bureau, so as to make it further

di�cult to reproduce the baseline population.

Details on various techniques used to anonymize the census data can be found in

Sweeney (2002), Dalenius and Reiss (1982), Brand (2002), and else where. The point

to be noted here is that the available data has already been treated with various such

anonymization techniques and thus a population synthesized by �tting based techniques

may not be completely representative of the real population.

3. Literature review

Dealing with the incomplete/missing multivariate dataset has extensively been stud-

ied in statistics and applied probability literature. Schafer (1997) presented various

approaches to create imputations on multivariate datasets with missing values. The

imputation techniques can be divided into two groups: joint modelling and fully condi-

tional speci�cation (Buuren, 2007). In joint modelling, a parametric distribution π(X|θ)

is assumed for the data X. With the appropriate prior for the parameter θ, Bayesian

framework is used to draw from the posterior predictive distribution π(xmis|xobs). Here

the assumption is that the data gathering mechanism is ignorable. Common forms of

parametric distributions used are multivariate normal, log-linear, and the general loca-

tion model (Holford, 1980). One of the most commonly used speci�cation, especially

in transportation research is the log-linear model. In this case, the cell probability in

a contingency table is assumed to be made up of two components (Schafer, 1997): a)

multiplicative e�ect of each variable b) e�ect of association among the variables. Using

speci�c assumptions and eliminating certain terms (the details of which can be found in

Deming and Stephan (1940) and Schafer (1997)) bring in the equality constraint called

odd-ratio on the contingency table. Using this constraint and the aggregate marginals an

optimization based classical �tting method has been developed by Deming and Stephan

(1940). This method is commonly known as Iterative Proportional Fitting (IPF) method

and was introduced in transportation literature by Duguay et al. (1976) to synthesize

households survey data. It was later used by Beckman et al. (1996) to create synthetic

population for TRANSIMS (LaRon et al., 1996) using census cross tabulations and sam-

ple. Since then IPF has been the workhorse for synthesizing population for activity based

travel demand and land use models.

The IPF based techniques involve two step process. In the �tting step, a Contingency

Table (CT) is �tted to the available marginals. PUMS is used to initialize the CT. The

underlying assumption here is that the sample represents the true correlation structure

among the attributes. And the odd ratio property of IPF will ensure that the �tted CT

will maintain this structure. Final �tted CT is generated by iteratively adjusting the cell
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values so as to minimize deviation from the marginals of the attributes. For a �tting to

work the attribute should be present in the sample and its marginals should be available.

IPF involves maintaining ΠI
i=1(ki) cells in memory, where I is the number of attributes,

k represents categories. Note that all the attributes have to be discrete and with limited

categories. Fitting for large number of attributes quickly becomes computationally and

memory-wise expensive. Pritchard and Miller (2012) used sparse matrix manipulation

techniques, but was limited to synthesizing 8 attributes. IPF �tting can not di�erentiate

between structural and sampling zero. In the literature, various methods have been sug-

gested to avoid sampling zero issues, including Guo and Bhat (2007), Auld et al. (2009),

and others. Recent literature in IPF based �tting (Arentze et al., 2007; Ye et al., 2009)

has also concentrated on simultaneous �tting of CTs for di�erent types of agents (for in-

stance, household and persons together). Schafer (1997) proposed a Bayesian procedure

for computing the �tted CT. Here the cell values are treated as random variables with

constrained Dirichlet priors. A Markov Chain Monte Carlo (MCMC) process is designed

to retrieve a realization of CT from the posterior Dirichlet. While this method is a step

forward in terms that the cell values are treated as RVs, the method has limitations.

First the assumption of the prior distribution is very restrictive{it has to be such that

the posterior can be retrieved. Secondly, the synthesized population is still the result of

one realization of the �tted cell values out of posterior. To our knowledge, this extension

of IPF has not been explored in the transportation literature.

The second step of IPF based techniques involves creating the synthetic population

using the �tted CT. This is done by cloning/replication of the sample, based on cell

weights. The fractions are incorporated in the synthetic population using Inverse Trans-

form Sampling in a Monte Carlo simulation (Beckman et al., 1996).

Another �tting based method that has been used to some extent in the transporta-

tion literature is based on Combinatorial Optimization (CO). In this method a weight

(w = {0, 1}) is added to the sample. For each zone the population is synthesized by

replicating the sample and optimizing these weights in order to minimize the di�erence

from the zonal marginals (Voas and Williamson, 2000; Lu, 2011). Openshaw and Rao

(1995), Williamson et al. (1998), and Voas and Williamson (2000) used Simulated An-

nealing (SA) as an optimization tool to produce the synthetic population. Ryan et al.

(2009) compared the CO based methods with the IPF and concluded that CO produced

lesser variance. Another advantage is that it has lower memory requirements, though

the convergence time of CO based techniques is very high. In case of SA based opti-

mization, the process can be very wasteful and time consuming. The resulting synthetic

population from CO based methods is still cloning/replication based. Here too, more

attributes mean more constraints that will result in complicated optimization. Like IPF,

CO also requires the information on attributes both in the sample and marginal level.

There is also, no guarantee that the optimal solution in terms of matching marginals can

be achieved in reasonable amount of time.
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Barthelemy and Toint (2013) developed a sample-free synthesis method that is based

on various discrete and continuous optimization procedures. Their method is a step

forward in �tting based methods, as it gives more exibility in terms of data needs.

The developed procedure however involves various complicated and hierarchical �tting

steps (for each aggregation level where the data is available), entropy maximization, tabu

search, and various ad hoc matching rules. The approach does not guarantee the simul-

taneous matching of the control totals for both households and persons. The method

was applied to synthesize Belgian population with limited attributes. The generalization

of the methodology, so as it can be used for other cases is not very clear.

One of the early examples of directly drawing from distribution can be found in

TORUS (Miller et al., 1987), which microsimulated the households' location choice de-

cision in Toronto area. In TORUS, to generate an agent's attributes, all the available

distributions were sampled independently while making sure that there were no logical

inconsistencies among the realized attributes (for instance, a 2 years old cannot have a

university degree). It used the zonal marginals and partial conditionals available from

the census. A comprehensive literature review on population synthesis methods can be

found in M�uller and Axhausen (2011), Lu (2011), and Pritchard (2008).

There are few major issues that can be pointed out in the existing approaches. First

of all, it is assumed that these approaches are robust enough that they can reproduce

one contingency table that is representative of the real population. Given the fact that

the data is incomplete and has purposely been tampered with sophisticated anonymizing

techniques, the assumption does not remain valid. Second, usually these techniques �t

the marginals and controlling for the additional conditionals/joint distribution results in

combinatorial issues. For instance, if A, B, and C are to be synthesized from marginal on

A, B, C and joint distribution on AB. This will require adding another dimension in the

contingency table so that we can �t for AB in addition to A, B, and C. Moreover, it has to

be done for each additional constraint, which can become an issue when agents with large

number of attributes have to be synthesized. Third, there are two distinct levels of error

that are introduced by these methods: a) matching of the marginals only, may result

in distortion of the underlying joint distribution during the �tting step b) based on the

weights from the �tted CT, the actual realization of the synthetic population is achieved

by replication and running Monte Carlo simulation on the PUMS. This may further add

to the error. E�ectively, the population is synthesized by increasing/decreasing the mass

at known points in the attribute space (usually known from the PUMS), rather than

reproducing a continuous distribution surface in that space. A consequence of which is

that it is not possible to synthesize an agent with attribute values present in the real

population, but missing in the sample (such can occur more frequently in continuous

attributes). Fourth, these methods require a well de�ned form of raw data i.e. a) big

enough and well representative microsample b) the zonal control totals on the attributes

that are needed to be synthesized. Additionally, they require that the information on

the attributes is present at both sample and marginal level. Lastly the convergence is
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very slow{especially if there is a zero value for a category in the marginal, but a non-

zero value for any cell associated to it in the initialized contingency table (Bishop et al.,

1975; Brown and Fuchs, 1983). Note that this situation may occur if the sample is not

consistent.

4. Methodology

4.1. Problem de�nition

In a spatial region under consideration at any point in time there exists a true pop-

ulation. The individual agents in the population are characterized by a set of attributes

X = (X1, X2, ..., Xn)2. These attributes may be discrete (e.g. marital status) or con-

tinuous (e.g. income). In the true population, they have a unique joint distribution,

represented by πX(x). We do not have access to πX(x) and most likely it is hard to

draw from. Instead, only partial views of πX(x) from various types of data sources are

available. These partial views are in the form of marginals, conditionals, and samples.

We want to develop a synthesis procedure that lets us use these views to draw a synthetic

population as if we were drawing from πX(x). At the same time, it can be ensured that

the empirical distribution πX̂(x̂) of X̂ in the realized synthetic population is as close to

πX(x) as possible.

4.2. Simulation based approach

As mentioned in subsection 4.1, we are interested in synthesizing independent pop-

ulations by drawing agents from the joint distribution of the attributes in the real pop-

ulation, instead of �tting a single optimization based solution. This distribution is not

known and is hard to directly draw from. Markov Chain Monte Carlo (MCMC) methods

are computer based simulation techniques that can be used to simulate a dependent se-

quence of random draws from very complicated stochastic models/processes (Hastings,

1970). These methods provide exibility in terms of using various data sources at vari-

ous spatial scale; bring in prior knowledge in a systemic way; wherever the data is not

available, implement assumptions in a coherent manner; and are computationally and

memory-wise robust. These techniques have been extensively used in various other do-

mains including physics, image processing, etc.

Here we propose using MCMC techniques to draw from the real population distri-

bution πX(x) to obtain a synthetic population, instead of using the conventional �tting

procedures. Using MCMC techniques can overcome the major shortcoming of �tting

based techniques that are pointed out in section 3, while maintaining at least the same

quality of the synthetic population, with at most the same amount of data as the �tting

based techniques require. In this section, we �rst describe how such a MCMC technique

can be operationalized. We then design and implement comparative experiments to com-

pare its performance with the IPF. The last part of the section discusses the results and

implication.

2where n is the number of attributes we are interested to synthesize.
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4.2.1. Using Gibbs sampling for synthesis

As the joint distribution πX(x) of attributes X is unknown and is highly complex

to directly draw from, we propose to use Gibbs sampling to generate the synthetic

population. Gibbs sampler is a MCMC method that uses the conditionals π(Xi|Xj = xj,

for j = 1...n & i , j) = π(Xi|X−i) for i = 1, ..., n to simulate drawing from the joint

distribution πX(x) (Geman and Geman, 1984). The key challenge here is to prepare the

conditional distributions of the attributes using all the available data about the attributes

of the population.

4.2.2. Preparation of conditionals

In the straightforward case, these conditionals can be counts by category for each

attribute. This may be available from the census zonal statistics table or can be directly

constructed from the PUMS. In practice though, it is rarely the case where the full-

conditionals in this form are available for all the attributes in X. Here, we can use

parametric models to construct the conditional distributions. The exibility of using such

parametric models is that the data from various sources (PUMS, zonal marginals, etc.)

can be combined to estimate the parameter values. In section 5, we show how discrete

choice models can be estimated, where the dependent variable is used from PUMS; some

of the independent variables are from the sample as well, and other independent variables

are from the zonal marginals.

4.2.3. Dealing with incomplete conditionals

There may be cases where not enough data is available to construct the full con-

ditional for an attribute over all the other attributes. Suppose that in π(X1|X−1) =

π(X1|X(2...k),X((k+1)...n)) only the incomplete conditional π(X1|X(2...k)) is available. In

such a situation, we can assume the conditional independence of X1 on X((k+1)...n), given

π(X1|X(2...k)). Thus π(X1|X−1) = π(X1|X(2...k)). In the worst case, where only marginals

are available, we can use π(X1|X−1) = π(X1). Furthermore, we can also use the domain

knowledge about the incomplete part of the conditional to construct full conditionals.

This may result in a case where π(X1|X(2...k), X((k+1)...n) = a) = πa(X1|X(2...k)) and

π(X1|X(2...k), X((k+1)...n) = b) = πb(X1|X(2...k)). To give a concrete example, for in-

stance, if we do not have the data on the head of the household conditioned upon age,

we can assume that the probability of a child to be head of the household as zero, while

making a di�erent assumption for adults.

4.2.4. Realization of synthetic population

Using the full and consistent conditionals, if the Gibbs sampler is ran for an extended

amount of iterations, it eventually reaches a stationary state. At that point any draw

will be as if the draw was from π(x) (Train, 2003). To avoid the correlation between the

consecutive draws, certain number of draws between two recorded draws are skipped.

Now using this mechanism, a synthetic population can be realized by simply drawing

the number of individuals equaling the size of the required population. Note that we can

realize any number of synthetic populations X̂. Depending on the quality of the data, the
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distribution πX̂(x̂) of X̂ in the resulting synthetic population will be as close to πX(x) as

possible. Moreover, two independently generated populations will have similar statistics

(with some simulation noise), but the agents in the two populations may not be the same.

For computational e�ciency, one can store the warmed up state of the Gibbs sampler.

So every time a new synthetic population is needed, the sampler can directly start from

the previously stored state. Another option can be that a large pool of agents are being

drawn and stored using the warmed up Gibbs sampler. Later whenever a realization of

synthetic population is needed it can be drawn from the pool.

4.3. Experiments on a real population: Swiss census

As most of the synthesis methods in recent literature are primarily based on IPF (for

instance, Guo and Bhat (2007); Ye et al. (2009); Auld et al. (2009); and Pritchard and

Miller (2012)), this paper is restricted to comparison of the simulation based methodology

to IPF only. Comparison between IPF and combinatorial optimization based �tting can

be found in Ryan et al. (2009). The experiments here are designed as such that both

methods (IPF and simulation based) are provided with the same amount of data about

the real population. The output of each method is then analyzed in terms of how good

the marginals and joint distribution of the real population are reproduced. In the end,

Standardized Root Mean Square Error (SRMSE) based goodness of �t test is performed

on each case and results are compared.

4.3.1. Data description and preparation

The Swiss census for year 2000 was used as the data source for the experiments, where

we had access to the attributes of real population. We selected the spatial area associ-

ated with postal code CH1004 (western side of the city of Lausanne) as the testbed. The

population of CH1004 in year 2000 was 28,533 persons. For synthesis experiments, we

selected four attributes: age (8 categories), sex (2), household size (6), education level (4).

Based on what is commonly available to the researcher (see section 2 for details), two

di�erent set of information were made available to both methods: a) microsample b) ag-

gregate conditionals (for instance, π(age|sex, hhld size, edu level), π(sex|age, hhld size, edu level),

...) in the form of cross-tabulations for the population in CH1004. The experiments were

designed such that on one side the size of the sample was changed while on the other

side the completeness of the conditionals was changed.

The sample sizes that were used for the experiments are 1%, 3%, 5%, 10%, and 20%.

Depending on the country the PUMS is available at 1%, 3%, and 5%. However, we also

wanted to test the e�ect of larger samples, so we included the 10%, and 20% sizes in

the samples as well. We prepared these samples by drawing from the real population of

CH1004 using a uniform selection probability and without replacement of the already

sampled individuals.
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For the conditionals, experiments were designed such that we started from full-

conditionals (every attribute conditioned upon other). Then sequentiality removing

the sex related information from the conditionals of other attributes (for instance, from

π(age|sex, hhld size, edu level) to π(age|hhld size, edu level)). It was assumed that

for conditionals where the sex is missing the distribution is independent of sex given

other attributes. All the conditionals were prepared directly from the real population of

CH1004 by counting the agents for each category of the attributes.

Table 1: List of available sample sizes

No. Sample Size

1 20%

2 10%

3 5%

4 3%

5 1%

A complete list of available information can be found in Table 1 and 2. For IPF, not

all the 20 combinations of sample and conditionals were needed to be tested. The reason

being that IPF in its basic form converts all the conditionals to marginals. So, for IPF we

performed 5 experiments with varying sample sizes and marginals generated by collapsing

full conditionals (FullCond). For simulation based methods, all the 20 combinations

could have been tested, but here we tested for only 4 di�erent conditionals without

using any of the samples. Note that it means that lesser information was used in the

simulation based method as compared to the IPF. Later in section 5, we have illustrated

how both sample and partial conditionals/marginals can be combined to generate input

for the simulation based method. Next three sub-sections describe the individual details

of these experiments, results, and comparison.

4.3.2. IPF based synthesis

We used the standard two step process outlined in Beckman et al. (1996) to generate

synthetic population using IPF procedure (i.e. �tting, and cloning process). For �tting

process, the given sample was used to initialize the contingency table (CT). We knew

the location of structural zero cells from the real population. The sample zero cells were

thus initialized to a small value. This made sure that the sampling zero cells can evolve

during the �tting process. The CT contained 384 cells that represents the combination

of categories of the four attributes. As the standard �tting process uses marginals only,

the conditionals were converted to marginals for all 4 attributes. Note that IPF can

also use conditionals, but it very quickly becomes a combinatorial issue. The CT has

to be �tted not only to the conditionals but also to the marginals for the attributes in

the conditionals. Moreover, all the attributes-combinations have to be present in sample

too. To get a close �t between generated and available marginals, a minimum absolute

di�erence of 0.00001 and maximum iteration size of 10 billion was used.
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Table 2: List of available conditionals

No. ID Conditionals

π(age|sex, hhld size, edu level)

1 FullCond π(sex|age, hhld size, edu level)

π(hhld size|age, sex, edu level)

π(edu level|age, sex, hhld size)

π(age|��sex, hhld size, edu level)

2 Partial 1 π(sex|age, hhld size, edu level)

π(hhld size|age, sex, edu level)

π(edu level|age, sex, hhld size)

π(age|��sex, hhld size, edu level)

3 Partial 2 π(sex|age, hhld size, edu level)

π(hhld size|age,��sex, edu level)

π(edu level|age, sex, hhld size)

π(age|��sex, hhld size, edu level)

4 Partial 3 π(sex|age, hhld size, edu level)

π(hhld size|age,��sex, edu level)

π(edu level|age,��sex, hhld size)

In the second step, cloning of the sample using the �tted CT was performed. Frac-

tions in the CT table were dealt with running a Monte Carlo simulation as suggested by

Beckman et al. (1996). Note that, for IPF, the completion of conditionals does not mat-

ter, as they have to be converted to marginals anyway. Hence, we focused our analysis

on size of the sample only.

Figure 1 shows the comparison between the census and IPF with 20% sample and the

marginals of the four attributes. The IPF produces a near perfect �t for the marginals.

It is because the CT �tting algorithm is speci�cally designed to iteratively reduce the

di�erence between available marginals and that of the CT. However, if we compare the

joint distribution of the agents synthesized by IPF to the distribution of real population

in the census (Figure 2), we see more variation. With the value of 0.97 for the slope,

IPF is under predicting the distribution. The R2 value is 0.91, which indicates that even

with as large as 20% sample, there is still a 9% variation in the population that is not

reproduced in the synthetic population. By looking closely it can be observed that the

�t is worst for the points in the four dimensional attributes space, where the probability

values are low. It means that the type of agents who are very few in the real population

(for instance, 100 years old male with a university degree) are not very well reproduced

in the synthetic population.

By decreasing the sample size to 10% there is no e�ect on the slope of the �t (Figure

3), but the R2 value is decreased marginally. It can thus be concluded that there is not

much of a gain in using a 20% sample than 10%, as both samples are well representative

of the population. Here again, the �t is worst for the combination of attribute categories
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Figure 1: Comparison of marginals for the four attributes

for which the probability of existence is low. Moreover, the �t for other combinations

decreases as well.

Note that in most of the cases, the PUMS or any other microsample is only available

for 5% or less of the population. Figure 4, 5, and 6 show the �ts for the 5%, 3%,

and 1% sample with the real population, respectively. For 5% sample the �t is still

comparable to larger samples, but for 3% and 1% the scatter in the �t signi�cantly

increases. The most probable reason behind it is the fact that IPF is only focusing on

�tting the marginals. So, it may be able to reproduce marginals, but if the sample is not

representative enough, there is no guarantee of reproducing the actual joint distribution

of the population. These results suggest that for IPF to reproduce the joint distribution

reasonably, a microsample size of at least 5% is needed.

Another important point to note here is that in all the above experiments, the infor-

mation on all the attributes was present at both sample and marginals level. In practical

cases, usually this is not the case. It is thus expected that the quality of the synthesized

joint distribution will decrease further. A similar experiment can easily be designed to

13



Figure 2: Fit between real and IPF population (20% sample)

Figure 3: Fit between real and IPF population (10% sample)

prove this point, by using for instance only 3 marginals (assuming that 4th one is miss-
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Figure 4: Fit between real and IPF population (5% sample)

Figure 5: Fit between real and IPF population (3% sample)

ing) and then running IPF �tting on the 3-dimensional CT 3. In these experiments we

3In such an experiment performed but not reported here, it was observed that the �t decreased by
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Figure 6: Fit between real and IPF population (1% sample)

made sure that there are no sampling zeros in the initial CT. In practice, again this is

not the case. This is another source of further degradation of the synthesized population.

4.3.3. Simulation based synthesis

Exactly the same amount of data (samples and conditionals) was provided to the

Gibbs sampler, as been previously provided to the IPF procedure. In the following re-

sults, the Gibbs sampler ignored the information in the sample and used the conditionals

only. It thus used lesser information than IPF to generate the synthetic population. Later

in the Section 5, we have illustrated that sample and aggregate information (for instance,

partial conditionals or marginals) can also be fused together in various ways to produce

better conditionals. Thus making the best use of all the information available to us from

various sources.

In order to generate the results, we �rst warmed up the Gibbs sampler to a steady

state by running it for 20,000 iterations. To avoid warming up every time a realization

is needed, we drew a pool of 1 million agents. The agents were drawn from every 20th

iteration after warmup, so as to avoid any correlation between the successive draws.

This pool was then used to extract 20 populations for CH1004 (28,533 agents) and the

results were generated based on the averages from them. Figure 7 shows the marginals

generated using full conditionals (FullCond):

π(age|sex, hhld size, edu level), π(sex|age, hhld size, edu level),

30%.
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Figure 7: Comparison of marginals for the four attributes

π(hhld size|age, sex, edu level), and π(edu level|age, sex, hhld size).

Like IPF, simulation based synthesis is also able to reproduce the actual marginals for

the four attributes. The �t between real population and synthesized population for full

conditionals (Figure 8) is practically perfect with slope of 1 and R2 value of 0.999. The

minor deviations in the values are due to the randomness in the simulation process. Un-

like IPF, simulation is able to minimize deviations for both large and small probability

values.

We also investigated the variance in the joint distributions from various realized

populations. Figure 9 shows the plot for the joint distribution of real population (black

colour), and 20 realizations of the synthesized populations superimposed upon it. Each

point on x-axis represents the combination of categories from 4 attributes, while y-

axis represents the count. The values are sorted in ascending order, based on the real

population. It can be observed that all the realizations have a close match among them

17



Figure 8: Fit between real and simulation based population (FullCond)

and also with the real population.

Figure 9: Joint distribution of four attributes (20 simulation runs)

In practice though, it is hardly the case that the full conditionals are available. In

fact, there is a deliberate attempt to keep the conditionals incomplete in order to avoid

18



Figure 10: Fit between real and simulation based population (Partial 1)

any privacy concerns. Therefore, we also experimented with synthesizing the population

using incomplete conditionals. Figure 10 shows the �t of the synthetic population to the

real population for partial conditionals (Partial 1):

π(age|hhld size, edu level), π(sex|age, hhld size, edu level),

π(hhld size|age, sex, edu level), and π(edu level|age, sex, hhld size).

The simulation under predicts the slope by 2%, and the �t remains good (R2=0.99).

The smaller probabilities combinations were also predicted well. In the third experi-

ment, we used further depleted conditionals (Partial 2):

π(age|hhld size, edu level), π(sex|age, hhld size, edu level),

π(hhld size|age, edu level), and π(edu level|age, sex, hhld size).

Figure 11 shows the �t. Again, the slope is very close to 1 and the �t is very high.

In the fourth experiment, we further depleted the conditionals by not having any at-

tribute conditioned upon the sex (Partial 3):

π(age|hhld size, edu level), π(sex|age, hhld size, edu level),

π(hhld size|age, edu level), and π(edu level|age, hhld size).

In Figure 12 one can observe that there is no further depletion in the �t. It is because of

the fact that our assumption that education level's partial conditional is uniform along
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age is consistent with the actual situation in the population. This shows the exibility

of the approach. Especially, in cases where even if the information is incomplete, with

the proper assumptions and domain knowledge, we can still synthesize a good population.

We also analysed the ability of simulation base procedure in terms of reproducing

the correlation structure (including higher order correlations). Here too, a good �t was

observed between real and simulated population. Appendix Appendix A reports the

correlation, 1st and 2nd order partial correlation while in Appendix Appendix B the

�rst seven raw standardized moments are reported.

Figure 11: Fit between real and simulation based population (Partial 2)
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Figure 12: Fit between real and simulation based population (Partial 3)

4.3.4. Statistical comparison of the results

In literature the performance of synthesis procedures has been assessed using the

Standardized Root Mean Square Error (SRMSE) (M�uller and Axhausen, 2011; Pritchard

and Miller, 2012). For this purpose, in most of the cases only marginals or conditionals

are used to assess the �t between real and synthetic population. Here we have access to

the joint distribution so we evaluated the �t to that. SRMSE is de�ned in terms of the

distance from the actual distribution (Pit�eld, 1978). It can be computed as:

SRSME =

[∑m
i=1 ...

∑n
j=1(Ri...j − Ti...j)

2/N
]1/2∑m

i=1 ...
∑n
j=1(Ti...j)/N

Where N is the total number of agents; Ri...j is the number of agents with attribute

values i...j in the population synthesized; and Ti...j is the number of agents with at-

tribute values i...j in the actual population. A value of zero means perfect match, while

the higher values represent a bad �t. From Table 3, one can clearly observe that even the

20% sample based IPF population (SRMSE=0.637) is outperformed by the population

generated by simulation for 3 out of 4 conditionals being incomplete (SRMSE=0.350).

We also tested, but have not reported the extreme case where only four marginals and

no sample is available. In that case, both methods give the same statistical �t.

While the same amount of data was available to both methods, IPF is �rst of all not

able to capitalize on the information in the conditionals (it converts them to marginals).

Secondly, it is overly dependent upon the sample to keep the correlation, while �tting
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marginals only. Simulation based procedure however, in these experiments is using lesser

information (no information from the sample) and even then is able to outperform the

IPF in terms of reproducing the joint distribution.

Table 3: Goodness of �t statistics (Standardized Root Mean Square Error)

Input IPF Simulation

20%Sample 0.637 -

10%Sample 0.708 -

5%Sample 0.750 -

3%Sample 0.910 -

1%Sample 1.420 -

FullCond - 0.130

Partial 1 - 0.240

Partial 2 - 0.340

Partial 3 - 0.350

Furthermore, the simulation based procedure is more exible in terms that informa-

tion coming from sample or any other sources can be fused together using a model or

sampling procedure (e.g. Metropolis Hasting sampling) to draw from the full condition-

als. This has a very strong positive implications in the cases where the data is very

limited and all the available data has to be utilized in the most e�cient way possible.

In the next section we present such case and show that simulation based procedures are

able to synthesize population even with very limited data availability.

5. Application: Greater Brussels Area

The proposed methodology is implemented for a real case study, where a synthetic

population is generated for the base year of an integrated land use and transport model

for the region of Brussels. The agents to synthesize in this case were households (h)

and for this the 2001 Census of Belgium and a household survey was available from

Hubert and Toint (2002). The area of study consists of 151 communes that are further

divided in 4945 sectors (i). The Census statistics contained aggregate information for

the 1.2 million households of the area of study. The household survey provided detailed

information for a sample of 1367 households (approximately 0.1% of the total household

population). For the land use model, the synthetic households needed to be described

in terms of size, number of workers, number of children, car ownership, education level

and income level. Table 4 describes the discrete levels for each of the required household

attributes.

All of the attributes were available as marginals at the sector level from the Census

and as variables in the travel survey. Additionally, the travel survey indicated the sector
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Table 4: Household attributes

Attribute levels

Income level of the household (inch) 1 (0-1859 Euros)

2 (745-1859 Euros)

3 (1860-3099 Euros)

4 (3100-4958 Euros)

5 (>4959 Euros)

Household size (sizeh) 1,2,3,4,5+

Number of children (childrenh) 0,1,2+

Number of workers (workersh) 0,1,2+

Number of cars (carsh) 0,1,2,3+

Number of people with university degree (univh) 0,1,2+

Dwelling type (vh) house (3 types), apartment

Sector (i) 4945

(i) in which a household's residence is located.

Because of the relatively small size of the detailed sample, complete conditionals

cannot be generated directly from counts. Therefore, a set of models describing the con-

ditional probabilities of some attributes was generated. These models allowed to explain

the value of an attribute as a function of the rest of the attributes of the household

(in the travel survey), while simultaneously relating them with marginal distributions

associated with the location (i) of the household. Discrete choice models were estimated

for the dwelling-type, car-ownership, education-level and income-level attributes. The

conditionals for the three remaining attributes (household size, number of children and

number of workers) were calculated directly from counts in the travel survey. The choice

models explained the level of a particular household attribute (xh) as a function of other

household attributes and variables describing spatial attributes (xi).

Estimation results for the four discrete choice models are shown in appendix Ap-

pendix C. Table 5 shows the relationships between attributes that were modelled and

the household and sector attributes that were used as explanatory variables. The intro-

duction of spatial information produced a richer set of conditional distributions, which

was equivalent to having a di�erent conditional for each sector.

Table 5: Modelled conditionals for Great Brussels Area

attribute household variables spatial variables

inch carsh,workersh,univh, vh incomei
carsh inch,workersh,univh, vh, childrenh incomei, car ownershipi
univh inch,workersh univi
vh carsh, sizeh surfacevi
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A pool of approximately 100 million households was generated. The synthetic pop-

ulation of approximately 1.2 million households was then realized by sampling out of it.

Because the land use model required a single household per dwelling unit, the sample was

performed by sector and by dwelling type. Therefore the synthetic population matched

perfectly to the number of households by sector and dwelling type.

One of the most important attributes to consider in land use modelling is the income

level. Because of this, we focused our analysis here only on this variable and compared

the simulated average income per commune with the observed values, as shown in �gure

13. The simulated income is computed from an average weighted by the number of

households by income level group. The simulated population reproduces the observed

income distribution with a reasonable �t (R2 = 0.799). Figure 14 shows the spatial

distribution of the error in average income by commune. It can be observed that the

maximum error is less than Euro 375. The remaining variables also reproduce observed

distributions with an adequate �t.

Figure 13: Fit between observed and simulation based income
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Figure 14: Spatial distribution of error in the simulated average income by commune
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6. Discussion and conclusions

Here we presented a novel and operational approach to synthesize the agent popula-

tion required in the microsimulation of urban systems. This approach instead of �tting

a single solution on the available information uses the partial views of the joint distribu-

tion for the agent attributes to draw agents as if they were drawn from the actual joint

distribution. This enables us to draw any number of possible synthetic populations.

The input to the approach can be prepared using models speci�ed from the data (both

cross-classi�cation tables and discrete response models) and where no data is available,

from assumptions based on domain knowledge. Simulation based approach was able to

reproduce the marginals as good as the �tting based approaches with at most the same

amount of data. More importantly, it convincingly out performed other approaches in

retrieving the joint distribution.

In most cases, the available datasets contain incomplete information on the agent

attributes. Di�erent datasets may not be consistent in terms of the de�nitions, spa-

tial aggregation, and time. For privacy reasons they are purposely and systematically

tampered using sophisticated statistical techniques. In this context �tting a single op-

timization based solution does not seem to be an appropriate approach. There can be

many possible solutions to the problem. So, it is better to have the ability to draw

any number of possible synthetic populations from the original joint distribution of at-

tributes. This approach also enhances the reliability of the outputs coming out of the

microsimulation (e.g. MATSim, ILUTE). Instead of running these microsimulation and

producing the outputs based on one �tted synthetic population (O = microsim(psyn)),

they can be integrated over all the possible synthetic populations coming out of the joint

distribution.

O =

∫
psyn

microsim(psyn) f(psyn)dpsyn.

Moreover, this simulation based approach can become a direct part of these mi-

crosimulation as the starting point. This way the population synthesis can be part of

the variance analysis of the whole urban systems microsimulation.

The synthetic population coming out of �tting based approaches is generated by

cloning of the microsample using computed weights. This means that the resulting

population is essentially blowing up of the sample rather than reproducing it from the

heterogeneous points in the attribute space. There can be many cases, where a point in

the attribute space does not exist in the microsample (e.g. due to sampling zero) and/or

in the marginals (e.g. there may not be any marginal available for certain attribute), but

it exists in the real population. Such a point can not be reproducible in the synthetic

population using �tting based methods. On the other hand, the proposed simulation

based procedure (with proper speci�cation of the conditionals) can traverse through the

entire attribute space. This results in a more heterogenous and representative synthetic

population.
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Another unique feature of the simulation based synthesis is that the attributes can be

both discrete and continuous, or any mix of them. Fitting based approaches are limited

to synthesizing discrete attributes only. Due to computational and various other issues,

attributes have to be categorized into rather aggregate categories. On the other hand,

there are many important attributes (for instance, income, commuting distance, etc.)

that behavioural models need as continuous. Simulation based approach can deal with

the mix of attributes without any additional cost. In fact, in terms of implementation, it

is easier to handle the continuous attribute (e.g. it can be stored as a runtime function

rather than an instance of a datastructure).

The input conditionals for the Gibbs sampler are prepared using marginals, partial

conditionals, and estimated models from various sources. Where there is no data avail-

able, bringing in assumptions based on domain knowledge. Due to this the issue of

inconsistency may arise. That is to say, there may not be any unique stationary dis-

tribution that Gibbs sampler can arrive to, which corresponds to all the constructed

conditional. Buuren (2007) and Chen et al. (2011) investigated the behaviour of Gibbs

sampler in the case of inconsistent conditionals. Buuren (2007) concluded that essen-

tially the estimates were still unbiased and had a good practical performance. They

however, suggested that theoretically it is still a research question and deserve further

study. Chen et al. (2011) proposed a technique called Gibbs Ensembles to retrieve the

joint distribution that deviate the least from all the inconsistent conditionals. Our ob-

jective however is to propose a new methodology and not the various improvements on

it, so we restricted to standard Gibbs sampling only. In any future studies, various re-

�nements of Gibbs sampling and other sampling procedures can be investigated.

An important aspect that is not covered in this paper, but is part of ongoing work, is

the generation of associations between di�erent types of agents (household, family, and

person). For any realization, the associations can be treated as edges (with weights),

between two di�erent types of vertices in a bi-partite graph. In the case of associations

between the households and persons agents, for example, there are set of positions avail-

able in the household agents (mother, father, �rst child, etc.) to which an association

may exist for person agents. So, the household positions and person agents form the two

types of vertices in the bi-partite graph and we are interested in reconstructing the joint

distribution of the association weights. Again, a simulation based technique can be used

for reconstructing this distribution. The actual association is then a realization out of

this distribution. The next step of this research is to operationalize the methodology for

association generation.

In the case of IPF, if the future year synthetic population is needed, the base CT is

re�tted to the future years marginals. The assumption here is that the correlation struc-

ture of attributes within the population for future year remains the same as the base

year. The equivalent can be done in simulation based synthesis by resampling based of

future years marginals and conditionals. Another feature of the proposed methodology is
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that the data preparation is completely separate from the actual agent generation. The

simulation requires conditionals that can be generated by any possible mean. It can be

direct counts from the data, a behavioural model, assumptions, parametric distribution,

etc. Here we have only used Gibbs sampling to generate the population, but various

other sampling procedures and their combinations can be used.

In terms of the implementation, IPF severely su�ers from the curse of dimensionality.

In the �tting processes IPF has to maintain and iterate through the entire contingency

table. That limits the number of attributes that can be synthesized. While, Markov

chain Monte Carlo Simulation based procedures on the other hand only needs to keep

the last synthesized agent to synthesize the next agent.

In terms of application, we were able to generate a decent synthetic population for

Greater Brussels Area with a very limited information (microsample of only 0.1% of the

population and very partial marginals) as outlined in section 5. It would not have been

possible to generate a synthetic population using IPF in this case, as we have already

shown in subsection 4.3.2 that even with 1% sample the synthesized population is not

representative of the true population. Section 5 also illustrates the high exibility in

which the conditionals can be constructed for the attributes in the data preparation

stage.
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Appendix A. Correlation Analysis

In this section we report the correlation analysis of the real and simulated population

from the Swiss Census. Pair-wise uncontrolled and higher order partial correlations are

computed in Tables A.6, A.7, and A.8. As the joint distribution is not known to be

multivariate Gaussian and the pair-wise relationship may not be linear, we used the
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procedure outlined in Kendall (1938) to compute the correlations. The reported partial

correlations are signi�cant with more than 99% statistical con�dence. The comparison

between the values for real and the simulation populations shows a close match. The

simulation based approach was able to avoid generating any unnecessary higher-order

correlation, while having a close �t for the highly correlated attributes.

Table A.6: Correlation between attributes
Attribute pair Census Full Cond Partial 1 Partial 2 Partial 3

Age-Sex 0.083 0.087 0.059 0.060 0.050
Age-Hhld Size -0.314 -0.317 -0.312 -0.313 -0.312
Age-Edu Lvl -0.432 -0.434 -0.435 -0.434 -0.430
Sex-Hhld Size -0.046 -0.049 -0.052 -0.027 -0.035
Sex-Edu Lvl -0.042 -0.033 -0.045 -0.036 -0.029

Hhld Size-Edu Lvl 0.214 0.216 0.220 0.212 0.221

Table A.7: 1st order partial correlation between attributes

Attribute pair Control Census Full Cond Partial 1 Partial 2 Partial 3

Age-Sex Hhld Size 0.072 0.075 0.045 0.054 0.041
Age-Sex Edu Lvl 0.072 0.081 0.044 0.049 0.042

Age-Hhld Size Sex -0.312 -0.314 -0.310 -0.312 -0.311
Age-Hhld Size Edu Lvl -0.251 -0.254 -0.246 -0.251 -0.246
Age-Edu Lvl Sex -0.430 -0.433 -0.434 -0.433 -0.429
Age-Edu Lvl Hhld Size -0.393 -0.395 -0.395 -0.396 -0.390
Sex-Hhld Size Age -0.021 -0.023 -0.035 0 -0.02
Sex-Hhld Size Edu Lvl -0.038 -0.043 -0.043 -0.020 -0.029
Sex-Edu Lvl Age 0 0 -0.022 0 0
Sex-Edu Lvl Hhld Size -0.033 -0.023 -0.034 -0.031 -0.022

Hhld Size-Edu Lvl Age 0.092 0.092 0.99 0.89 0.11
Hhld Size-Edu Lvl Sex 0.212 0.215 0.218 0.211 0.22

Table A.8: 2st order partial correlation between attributes

Attribute pair Control Census Full Cond Partial 1 Partial 2 Partial 3

Age-Sex Hhld Size-Edu Lvl 0.064 0.072 0.034 0.045 0.035
Age-Hhld Size Sex-Edu Lvl -0.250 -0.251 -0.245 -0.250 -0.246
Age-Edu Lvl Sex-Hhld Size -0.392 -0.394 -0.395 -0.395 -0.389
Sex-Hhld Size Age-Edu Lvl 0 0 -0.033 0 0
Sex-Edu Lvl Age-Hhld Size 0 0 0 0 0

Hhld Size-Edu Lvl Age-Sex 0.092 0.092 0.098 0.089 0.101
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Appendix B. Higher Moments Analysis

Table B.9,B.10, B.11, B.12, and B.13 reports the �rst seven raw standardized mo-

ments of the real and simulation based synthesized population. The Kruskal-Wallis test

(95% con�dence level) on these set of moments revealed that they represent the same

population (Kruskal and Wallis, 1952).

Table B.9: Raw standardized moments in real population

Moment Age Sex Hhld Size Edu Lvl

1 1 1 1 1
2 3.11 0.53 1.61 0.36
3 14.38 0.53 4.66 0.86
4 77.11 0.53 16.18 2.30
5 449.42 0.53 63.00 6.48
6 2754.99 0.53 263.73 18.80
7 17450.03 0.53 1159.58 55.25

Table B.10: Raw standardized moments in Full Cond
Moment Age Sex Hhld Size Edu Lvl

1 1 1 1 1
2 3.13 0.53 1.61 0.36
3 14.44 0.53 4.66 0.86
4 77.31 0.53 16.18 2.29
5 449.82 0.53 62.96 6.45
6 2753.26 0.53 263.57 18.68
7 17417.60 0.53 1159.42 54.87

Table B.11: Raw standardized moments in Partial 1
Moment Age Sex Hhld Size Edu Lvl

1 1 1 1 1
2 3.10 0.53 1.62 0.37
3 14.27 0.53 4.67 0.86
4 76.27 0.53 16.22 2.29
5 443.18 0.53 63.20 6.45
6 2709.57 0.53 264.86 18.68
7 17122.80 0.53 1165.98 54.89

Table B.12: Raw standardized moments in Partial 2
Moment Age Sex Hhld Size Edu Lvl

1 1 1 1 1
2 3.11 0.53 1.63 0.36
3 14.38 0.53 4.71 0.86
4 76.99 0.53 16.38 2.28
5 447.99 0.53 63.74 6.44
6 2741.66 0.53 266.50 18.69
7 17338.72 0.53 1169.96 54.96
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Table B.13: Raw standardized moments in Partial 3
Moment Age Sex Hhld Size Edu Lvl

1 1 1 1 1
2 3.13 0.53 1.61 0.35
3 14.45 0.53 4.63 0.81
4 77.27 0.53 16.08 2.16
5 449.20 0.53 62.52 6.07
6 2746.81 0.53 261.56 17.56
7 17358.86 0.53 1149.58 51.56

Appendix C. Estimated Models

In this section we describe the parameters for the models that were estimated for the

Brussels case study.
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Table C.14: Dwelling type model∗a

Parameter Variable Value Std err t-test

ASC2 constant for dwelling type 2 0.423 0.297 1.42

ASC3 constant for dwelling type 3 0.87 0.305 2.86

ASC4 constant for dwelling type 4 1.2 0.327 3.68

βsurf×h2 dummy for hh size=2 x zonal avg surface of dwellingb 0.0146 0.00533 2.74

βsurf×h3 dummy for hh size=3 x zonal avg surface of dwellingb 0.0194 0.00597 3.25

βsurf×h4+ dummy for hh size>3 x zonal avg surface of dwellingb 0.0249 0.00299 8.31

β2
cars number of cars in the household -0.279 0.182 -1.53

β3
cars number of cars in the household -0.593 0.207 -2.86

β4
cars number of cars in the household -0.948 0.233 -4.07

A1 ln of number of dwellings of type 1 in zonebc 1 - -

A2 ln of number of dwellings of type 2 in zonebc 1 - -

A3 ln of number of dwellings of type 3 in zonebc 1 - -

A4 ln of number of dwellings of type 4 in zonebc 1 - -

*: dwelling types are: isolated house (1), semi-attached house (2), attached house(3) and apartment(4)

a: the superindex in the parameter indicates to which household education level (0,1,2) it is speci�c.

The alternative of isolated house is used as a reference (β1∗ = 0)

b: spatial variable

c: expansion factor used to account for the (un)availability of di�erent types of dwelling in di�erent

zones. Not an estimated parameter
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Table C.15: Income level modela

Parameter Variable Value Std err t-test

ASC2 constant for income level 2 -0.86 0.789 -1.09

ASC3 constant for income level 3 -4.64 0.901 -5.14

ASC4 constant for income level 4 -8.31 1.12 -7.39

ASC5 constant for income level 5 -10.6 1.55 -6.82

β3
educ

dummy for presence of people with higher educ in the hh 0.831 0.177 4.69

β4
educ

dummy for presence of people with higher educ in the hh 1.72 0.314 5.49

β5
educ

dummy for presence of people with higher educ in the hh 1.92 0.656 2.93

β2
zonal inc

average zonal incomeb 0.0008 0.0004 1.84

β3
zonal inc

average zonal incomeb 0.0012 0.0005 2.55

β4
zonal inc

average zonal incomeb 0.0016 0.0005 3.09

β5
zonal inc

average zonal incomeb 0.0016 0.0006 2.47

β2
cars number of cars in the household 1.16 0.265 4.39

β3
cars number of cars in the household 1.92 0.299 6.41

β4
cars number of cars in the household 2.33 0.341 6.83

β5
cars number of cars in the household 3.2 0.466 6.87

β3
house

dummy for dwelling being a house 0.45 0.193 2.34

β4
house

dummy for dwelling being a house 0.485 0.294 1.65

β5
house

dummy for dwelling being a house 0.485 0.294 1.65

β2
workers

number of workers in the household 1.14 0.277 4.11

β3
workers

number of workers in the household 2.22 0.295 7.53

β4
workers

number of workers in the household 2.46 0.345 7.13

β5
workers

number of workers in the household 1.74 0.428 4.07

a: the superindex in the parameter indicates to which income level (1,2,3,4,5) it is speci�c. Income

level 1 is used as a reference (β1∗ = 0)

b: spatial variable
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Table C.16: Car ownership modela

Parameter Variable Value Std err t-test

ASC1 constant for 1 car -2.75 0.611 -4.5

ASC2 constant for 2 cars -7.02 0.812 -8.65

ASC3 constant for 3+ cars -10.1 1.23 -8.2

β1
educ

dummy for presence of people with higher educ in the hh 0.504 0.196 2.57

β2
educ

dummy for presence of people with higher educ in the hh 0.933 0.267 3.49

β3
educ

dummy for presence of people with higher educ in the hh 1.07 0.552 1.94

β1
high inc

dummy for households with high income (>3) 0.977 0.499 1.96

β2
high inc

dummy for households with high income (>3) 2.43 0.569 4.28

β3
high inc

dummy for households with high income (>3) 3.24 0.801 4.05

β1
mid inc

dummy for households with mid income (=3) 0.858 0.267 3.22

β2
mid inc

dummy for households with mid income (=3) 1.87 0.342 5.46

β3
mid inc

dummy for households with mid income (=3) 1.42 0.676 2.11

β1
zonal inc

average zonal incomeb 0.001 0.0003 3.51

β2
zonal inc

average zonal incomeb 0.0013 0.0004 3.29

β3
zonal inc

average zonal incomeb 0.0013 0.0004 3.29

β1
car1 zone percentage of hh's with 1 car in the zoneb 0.498 0.172 2.89

β2
car2 zone percentage of hh's with 2 cars in the zoneb 2.13 0.842 2.53

β3
car3 zone percentage of hh's with 3+ cars in the zoneb 14.1 7.57 1.86

β1
children

dummy for presence of children in the household 0.457 0.24 1.9

β2
children

dummy for presence of children in the household 0.8 0.276 2.9

β1
house

dummy for dwelling being a house 0.841 0.191 4.4

β2
house

dummy for dwelling being a house 1.86 0.289 6.42

β3
house

dummy for dwelling being a house 2.66 0.776 3.43

β1
workers

number of workers in the household 0.437 0.139 3.15

β2
workers

number of workers in the household 1.24 0.193 6.42

β3
workers

number of workers in the household 1.6 0.358 4.46

a: the superindex in the parameter indicates to which car ownership level (0,1,2,3+) it is speci�c. The

alternative of 0 cars is used as a reference (β0∗ = 0)

b: spatial variable
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Table C.17: Houshold education level model∗a

Parameter Variable Value Std err t-test

ASC1 constant for 1 person with high educ in hh -2.96 0.34 -8.72

ASC2 constant for 2+ persons with high educ in hh -7.19 0.547 -13.14

β1
cars number of cars in the household 0.238 0.133 1.79

β2
cars number of cars in the household 0.701 0.156 4.51

β1
educ zone

percentage of hh's with educ level 1 in zoneb 3.34 0.566 5.91

β2
educ zone

percentage of hh's with educ level in zoneb 4.34 0.708 6.13

β1
income

income level of the household 0.24 0.129 1.87

β2
income

income level of the household 1.09 0.152 7.18

β1
workers

number of workers in the household 0.393 0.113 3.47

β2
workers

number of workers in the household 0.851 0.154 5.52

*: household education level refers to the number of people with a university diploma in the household
(0,1,2+)

a: the superindex in the parameter indicates to which household education level (0,1,2+) it is speci�c.

The alternative of 0 persons is used as a reference (β0∗ = 0)

b: spatial variable
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