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Abstra
tA SIFT algorithm in spheri
al 
oordinates for omnidire
tional im-ages is proposed. This algorithm 
an generate two types of lo
al de-s
riptors, Lo
al Spheri
al Des
riptors and Lo
al Planar Des
riptors.With the �rst ones, point mat
hing between omnidire
tional images
an be performed, and with the se
ond ones, the same mat
hing pro-
ess 
an be done but between omnidire
tional and planar images. Fur-thermore, a planar to spheri
al transformation is introdu
ed and analgorithm for its estimation is given. This transformation allows toextra
t obje
ts from an omnidire
tional image given their SIFT de-s
riptors in a planar image. Several experiments, 
on�rming the goodperforman
e of the system, are 
ondu
ted.
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1 Introdu
tionOmnidire
tional vision has be
ome a popular topi
 in 
omputer vision. Oneof its main bene�ts is that one omnidire
tional 
amera 
an 
over 360o aroundit. As with 
onventional (planar) images, image mat
hing is a main aspe
t ofmany 
omputer vision problems involving omnidire
tional images, althoughit has not been widely studied yet for this kind of 
ameras. Usually, te
h-niques designed for planar images are applied on omnidire
tional images, asfor example on panorami
 images, i.e. omnidire
tional images mapped on a
ylinder (Yuen and Ma
Donald, 2005; Bur et al., 2006). This is not mathe-mati
ally 
orre
t. Even if lo
ally those algorithms are still valid, as soon asbigger regions of the image are 
onsidered, it is not the 
ase anymore due tothe deformation that the omnidire
tional sensor introdu
es. Moreover, notonly do omnidire
tional and planar images 
oexist, but they are often usedjointly, for instan
e in 
amera networks. This is a sour
e of new problems,sin
e not only mat
hing between omnidire
tional images is needed, but alsobetween omnidire
tional and planar ones.A 
ommon way of ta
kling the mat
hing problem between two given im-ages is by using interest points. These are points in an image that ful�l some�interest� 
riterion. This 
riterion is usually de�ned in su
h a way that theobtained points have a well-de�ned position, 
ontain as mu
h lo
al informa-tion on the surroundings as possible and are robust against 
hanges in theimage, su
h as noise, perspe
tive transformations, illumination 
hanges, et
.The lo
ation of these points is often used for the extra
tion of lo
al image de-s
riptors. These are a transformation of the lo
al image data into an elementof the transformed spa
e, usually a ve
tor, where some 
hara
teristi
s are
oded, as for example the shape, the orientation, the 
olour, the texture, et
.They 
an be used afterwards for instan
e in mat
hing or image registration.1.1 State-of-the-artInterest points are widely used nowadays by 
omputer vision algorithms.As 
ommented before, two main aspe
ts make these points useful: robust-ness against image 
hanges and ri
hness of lo
al information in terms of1



lo
al image stru
ture. A wide variety of interest points has been de�nedto best 
ombine these two aspe
ts, like for example Harris-Stephens 
or-ners (Harris and Stephens, 1988), SUSAN 
orners (Smith and Brady, 1997),salient regions (Kadir and Brady, 2001), Maximally Stable Extremal Re-gions (MSER) (Matas et al., 2002) or extrema of the Di�eren
e of Gaussians(DoG) (Lowe, 2004). An ex
ellent survey on this kind of points 
an be foundin (Tuytelaars and Mikolaj
zyk, 2007). Due to their stability, these key-points are often used for the 
omputation of lo
al des
riptors, whi
h 
an beused afterwards for several tasks, su
h as tra
king, obje
t dete
tion or re-gion mat
hing. A wide variety of lo
al des
riptors has also been proposedin the literature (Zabih and Wood�ll, 1994; Van Gool et al., 1996; Baum-berg, 2000; Lowe, 2004; Mikolaj
zyk and S
hmid, 2005). For an exhaustive
omparison of lo
al des
riptors see (Mikolaj
zyk and S
hmid, 2005).S
ale Invariant Feature Transform (SIFT), introdu
ed in (Lowe, 2004), isa well-known algorithm that su

essfully 
ombines both notions. For interestpoints, it 
onsiders extrema of the Di�eren
e of Gaussians, and for lo
aldes
riptors, a histogram of orientations. The SIFT algorithm dete
ts pointsin a s
ale-invariant way, as extrema in the response of the 
onvolution of theimage with a DoG fun
tion
ψ(x, y, σ) = g(x, y, kσ) − g(x, y, σ), (1)where g(x, y, σ) denotes a 2-dimensional Gaussian kernel with standard de-viation σ. This is based on the work of T. Lindeberg in (Lindeberg, 1998),and the 
onvolution of an image with ψ(x, y, σ) 
an be 
omputed as the dif-feren
e of 
onse
utive images in the s
ale-spa
e representation of the image,
hoosing properly the value of k. The s
ale-spa
e representation L(x, y, t) :

R2×R+→ R of an image I(x, y) 
an be equivalently de�ned in two di�erentways. The �rst one is the evolution over time of the heat distribution I(x, y)in an in�nite homogeneous medium:
∂tL(x, y, t) =

1

2
∇2L(x, y, t), (2)where the initial 
ondition is L(x, y, 0) = I(x, y). The se
ond one is thesu

essive 
onvolution of the image with a Gaussian kernel, g(x, y, σ), of2



standard deviation σ =
√
t:

L(x, y, σ) = g(x, y, σ) ∗ I(x, y). (3)This s
ale-spa
e representation of an image 
an be 
omputed e�
iently usingthe de�nition of the 
onvolution, thanks to the separability of the Gaussian�lter. The lo
al data around ea
h interest point is then used to 
omputeSIFT des
riptors. These lo
al des
riptors are invariant to rotation and s
ale
hanges. They 
onsist of a 3D histogram: two spatial dimensions and onedimension for orientations. The size of this region depends on the s
ale atwhi
h the point has been dete
ted. Thanks to its simpli
ity, good results interms of repeatability and a

ura
y on mat
hing, it has been used to treatappli
ations requiring tra
king or mat
hing of regions (Sirma
ek and Un-salan, 2009; Brox et al., A

epted for future publi
ation).Several variants of the SIFT algorithm have appeared, trying to improvethe interest point extra
tion or the lo
al des
riptor. Among those trying toimprove the interest point extra
tion, the most remarkable representative isprobably the Speed-Up Robust Features (SURF) algorithm (Bay et al., 2008).For those trying to improve the lo
al des
riptor, a good representative isthe Gradient Lo
ation and Orientation Histogram (GLOH) introdu
ed in(Mikolaj
zyk and S
hmid, 2005).All these algorithms and te
hniques have been developed to work withregular (planar) images or videos. Over the last years, though, omnidire
-tional imaging has be
ome a popular topi
, due to both, the availability ofsimple sensors (e.g. paraboli
 mirrors mounted on regular 
ameras) and thegreat advantages it provides (e.g. a 360 degrees view in one single image).This kind of sensors has a lot of appli
ations, su
h as video surveillan
e(Boult et al., 2001) or obje
t tra
king (Chen et al., 2008), and its use hasbe
ome very 
ommon in robot navigation (Menegatti et al., 2006) and inautonomous vehi
les (Ehlgen et al., 2008; S
aramuzza and Siegwart, 2008).Interest points and lo
al des
riptors-based te
hniques, su
h as SIFT, havebeen applied to omnidire
tional images due to their good performan
e inplanar images (Goedeme et al., 2005; Tamimi et al., 2006; Valgren and Lilien-3



thal, 2007; S
aramuzza and Siegwart, 2008). Re
ently, several e�orts havebeen made to develop algorithms spe
i�
ally designed to treat these omnidi-re
tional images (Bogdanova et al., 2007; Hadj-Abdelkader et al., 2008). Animportant aid in this sense were the results of Geyer and Daniilidis in (Geyerand Daniilidis, 2001), where they show that the most 
ommon 
atadioptri
omnidire
tional images 
an be bije
tively mapped on the surfa
e of a sphere.In Figure 1, the equivalen
e between a paraboli
 proje
tion and a 
entral pro-je
tion followed by a stereographi
 proje
tion is s
hemati
ally shown; and inFigure 2, a parti
ular example of mapping a real paraboli
 omnidire
tionalimage on the sphere through inverse stereographi
 proje
tion 
an be seen.Consequently, a whole family of omnidire
tional images 
an be pro
essedby algorithms treating spheri
al images. The mapping from the 
apturedimage to the sphere is the only adaptation needed for ea
h element of thefamily. Based on this result, Hansen et al. (Hansen et al., 2007b; Hansenet al., 2007a) developed a SIFT-like algorithm on the sphere to mat
h pointsbetween wide-angle images. In this algorithm, the point extra
tion is 
om-puted on the ba
k-proje
tion of the spheri
al s
ale-spa
e to the wide-angleimage plane, and the des
riptor is 
omputed using a �xed size pat
h of 41×41pixels around ea
h extra
ted point at the 
orresponding s
ale.1.2 ContributionsThis paper is two fold, it proposes both a SIFT algorithm in spheri
al 
oor-dinates and a new approa
h to mat
h points between two spheri
al imagesor between spheri
al and planar images.First of all, we propose an interest point extra
tor on the sphere basedon the spheri
al s
ale-spa
e representation and the SIFT algorithm. This al-gorithm pro
esses omnidire
tional images mapped on the sphere (see Figure2b) in order to take into a

ount the deformation introdu
ed by the omni-dire
tional sensor (see Figure 2a). The 
reation pro
edure of the spheri
als
ale-spa
e is speeded up by su

essive downsampling of the input image forea
h o
tave. However, 
onsidering that spheri
al Fourier transforms are 
om-4
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Unit normalization
+

projection

Stereographic

Op Os

PFigure 1: Equivalen
e between the image of a point P through a paraboli
proje
tion of 
entre OP and through a normalisation to the unit sphere with
entre OS followed by stereographi
 proje
tion.

(a) Original paraboli
 omnidi-re
tional image (b) Omnidire
tional imagemapped on the unit sphere (
) Unwrapped omnidire
-tional imageFigure 2: Example of mapping a paraboli
 omnidire
tional image on thesphere. The unwrapped spheri
al image (Figure 2
) is often used for visual-isation purposes. 5



puted, this division is subje
t to aliasing. For this reason, an anti-aliasing
riterion is de�ned to de
ide whether an image is downsampled or not.Our se
ond main 
ontribution 
on
erns the mat
hing part. We here pro-pose two types of des
riptors. The �rst one is meant to 
arry out mat
hingbetween two spheri
al images. And the se
ond one allows to perform mat
h-ing between spheri
al and planar images. Both des
riptors 
an be very usefulwhen working, for example, with 
amera networks 
ontaining at the sametime omnidire
tional and regular 
ameras, what is known as hybrid 
ameranetworks. In su
h 
ase, the des
riptors proposed here 
an easily help regis-tering data from all the 
omponents of the network.Finally, we also introdu
e a transformation between planar and spheri
alimages. This transformation 
an be used to send the 
ontour or regions ofa planar obje
t in a planar image to a spheri
al one and vi
e versa. Theparameters of this transformation are estimated by means of the obtainedmat
hed points, 
leaning false dete
tions with the Random Sample Consen-sus (RANSAC) algorithm (Fis
hler and Bolles, 1981). The inputs of theestimation pro
ess are respe
tively the mat
hed points from the omnidire
-tional and the planar images.Several experiments are performed on real omnidire
tional images to testthe proposed algorithms. The 
ode developed for these tests has been imple-mented in Matlab® and sour
e 
ode and images are freely available1 underthe GPL li
ense. The sour
e 
ode requires the installation of the �Yet An-other Wavelet Toolbox� (YAWTb)2 for MatLab. This library provides ane�
ient way of 
omputing the spheri
al harmoni
 transformations as well asa ni
e visualisation interfa
e. Finally, for the RANSAC routines, we used theRANSAC Toolbox3.This paper is organised as follows. In Se
tion 2, the mathemati
al as-1http://transp-or2.epfl.ch/pagesPerso/javierFiles/software.php2http://rhea.tele.ucl.ac.be/yawtb3http://www.mathworks.com/matlabcentral/fileexchange/185556



pe
ts of the interest point extra
tion on the sphere are exposed. In Se
tion3, the proposed algorithm is des
ribed in detail, as well as the two pro-posed des
riptors. Then, in Se
tion 4, a �plane to sphere� transformation(similar to a homography between planar images) is de�ned and a methodfor its estimation is given. In Se
tion 5, several experiments are presented,between omnidire
tional images in Se
tion 5.1 and between omnidire
tionaland planar images in Se
tion 5.2. Finally, in Se
tion 6, some 
on
lusions andpotential lines for future resear
h are given.Now, we 
an start with the basi
 notions of harmoni
 analysis on thesphere.2 Spheri
al s
ale-spa
eLet us 
onsider two fun
tions f, h ∈ L2(S2) de�ned on the two-sphere S2 ∈ R3.Then, the 
onvolution on the sphere reads
(f ∗ h)(ω) =

∫

r∈SO(3)

f(rη)h(r−1ω)dr, (4)where ω ≡ (θ,ϕ) ∈ S2, θ ∈ [0, π], ϕ ∈ [0, 2π) (see Figure 3) and η is thenorth pole. Equation 4 is hard to 
ompute, but as it was demonstrated byDris
oll and Healy in (Dris
oll and Dennis M. Healy, 1994), the 
onvolutionof two spheri
al fun
tions f, h ∈ L2(S2) 
an be 
al
ulated more e�
iently asthe pointwise produ
t of their spheri
al Fourier transforms:
(̂f ∗ h)(l,m) = 2π

√
4π

2l + 1
f̂(l,m)ĥ(l, 0), (5)where (̂·) is the spheri
al Fourier transform of the fun
tion.The spheri
al Fourier transform of a fun
tion f ∈ L2(S2) is the set of
oe�
ients of the expansion of this fun
tion in terms of spheri
al harmoni
s

Ym
l , i.e. the 
oe�
ients f̂(l,m) of the expression

f(θ,ϕ) =
∑

l≥0

∑

|m|≤l

f̂(l,m)Ym
l (θ,ϕ), (6)7
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Figure 3: Spheri
al 
oordinates of a point on S2 (ρ = 1)where the fun
tion f(θ,ϕ) and the spheri
al harmoni
s Ym
l (θ,ϕ) are ex-pressed in spheri
al 
oordinates for the unit sphere (0 ≤ θ ≤ π, 0 < ϕ ≤ 2π,

ρ = 1, see Figure 3). The spheri
al harmoni
s 
an be fa
torized as
Ym

l (θ,ϕ) = kl,mP
m
l (
os θ)eimϕ, (7)where Pm

l is an asso
iated Legendre polynomial and kl,m is a normalisation
onstant that is
kl,m =

√
2l+ 1

4π

(l −m)!

(l +m)!
(8)in 
ase of orthonormal spheri
al harmoni
s (see (Barut and R�a
zka, 1986)for further details).Then, the spheri
al Fourier transform of a fun
tion f ∈ L2(S2) 
an be
al
ulated as the proje
tion of this fun
tion on the orthonormal basis of thespheri
al harmoni
ŝ

f(l,m) = 〈f, Ym
l 〉 = (9)

= kl,m

∫

S2

dµ(ω)Ym
l (ω)f(ω),where dµ = sin θdθdω is SO(3) invariant measure on S2. Using Equation7 and Equation 9, it is easy to see that the spheri
al Fourier transform is8



a regular Fourier transform in ϕ followed by a proje
tion on the asso
iatedLegendre polynomial.At this point, the only missing element to build the spheri
al s
ale-spa
erepresentation of a spheri
al image is the fun
tion that plays the role of theGaussian kernel in the planar 
ase. In (Bulow, 2004), the author derivesthis fun
tion as a Green fun
tion of the heat equation (Equation 2) over S2,obtaining
gS2

(θ,ϕ, σ) =
∑

l∈N

√
2l+ 1

4π
Yl0(θ,ϕ)e

−l(l+1)σ2

2 , (10)
ĝS2

(l,m, σ) =

√
2l+ 1

4π
e

−l(l+1)σ2

2 , (11)where gS2 denotes the spheri
al Gaussian fun
tion. Therefore, using Equa-tion 5, the spheri
al Fourier transform of the s
ale-spa
e representation of anomnidire
tional image mapped on the sphere, I(θ,ϕ), is
L̂S2

(l,m, σ) = Î(l,m)e
−l(l+1)σ2

2 (12)for the set of 
onsidered s
ales (di�erent values of σ), and its inverse spheri
alFourier transform,
LS2

(θ,ϕ, σ) = I(θ,ϕ) ∗ gS2

(θ,ϕ, σ), (13)is the spheri
al s
ale-spa
e representation of this image. Finally, the spheri
aldi�eren
e of Gaussians 
an be 
omputed as
ψS2

(θ,ϕ, σ) = LS2

(θ,ϕ, kσ) − LS2

(θ,ϕ, σ). (14)Using these expressions, the algorithm for the extra
tion of interest pointswill be presented in the next se
tion.3 SIFT on the sphereLet us de�ne the SIFT algorithm in spheri
al 
oordinates. In this algorithm,the extra
tion of interest points and the lo
al des
riptor 
al
ulations are9



performed on the surfa
e of the unit sphere. Here, we propose two types ofdes
riptors: Lo
al Spheri
al Des
riptors (LSD) and Lo
al Planar Des
riptors(LPD). The �rst one is 
omputed dire
tly on the sphere and is intended to bemat
hed with other LSD of points extra
ted from other omnidire
tional im-ages. The se
ond one is generated using a lo
al planar approximation of theregion around the extra
ted interest point, and 
an be mat
hed with regularSIFT des
riptors of points extra
ted from planar images. For the mat
hingpro
edure we follow the method proposed by (Lowe, 2004). It 
onsists ofpairing the nearest points in terms of the distan
e between their des
riptors,if and only if the ratio between this distan
e and the se
ond smallest distan
eis lower than a �xed threshold d. Along all the paper, a mat
hing betweentwo points, p1 and p2, in two di�erent images is 
onsidered as 
orre
t if thedistan
e between p1 and p2 in the �rst image is lower than σ1, where σ1 is thes
ale at whi
h the point p1 was dete
ted. This 
an be equivalently de�ned inthe se
ond image using σ2, σ2 being the s
ale of dete
tion of p2 in this image.The work�ow of the spheri
al SIFT algorithm is summarised in Algo-rithm 1. Ea
h one of the steps is des
ribed in details in the following se
-tions. Throughout the paper, a spheri
al image will be 
onsidered de�nedin a (θ,ϕ)-grid where 
olumns are points of 
onstant longitude, ϕ ∈ [0, 2π),and rows are points of 
onstant latitude, θ ∈ [0, π].Algorithm 1 Spheri
al SIFT algorithm1: I(θ,ϕ)←− omnidire
tional input image mapped on S22: Compute spheri
al s
ale-spa
e representation of I(θ,ϕ)3: Compute di�eren
e of Gaussians4: E←− Lo
al extrema of di�eren
e of Gaussians5: for ea
h Ei ∈ E do6: Compute LSD and/or LPD of Ei7: end for
10



3.1 Spheri
al s
ale-spa
e and di�eren
e of GaussiansThe spheri
al s
ale-spa
e representation of a spheri
al image I(θ,ϕ) (ρ is�xed to 1) is 
omputed using iteratively Equation 12, i.e.
LS2

(θ,ϕ, σi) = LS2

(θ,ϕ, σi−1) ∗ gS2

(θ,ϕ, �kiσ0), (15)where σ0 is the initial s
ale and �ki is 
hosen in su
h a way that two neigh-bouring s
ales in the spheri
al s
ale-spa
e representation are separated by a
onstant multipli
ative fa
tor k = 21/S (in order to have a 
onstant num-ber S of images per o
tave). Therefore, σi = kσi−1 = kiσ0 and using thesemi-group property of the spheri
al s
ale-spa
e representation, we have that
(kiσ0)

2 + (�kiσ0)
2 = (ki+1σ)2, and so �ki = ki

√
k2 − 1. These expressions arealso valid in the planar 
ase.The generation pro
ess of the spheri
al s
ale-spa
e representation is speededup by downsampling the image by two, instead of in
reasing the σ, ea
h timea 
omplete o
tave of ψS2

(θ,ϕ, σ) 
an be obtained. This is the 
ommon pra
-ti
e in the planar 
ase too, but in the spheri
al 
ase there is a pe
uliarity. Inorder to obtain LS2

(θ,ϕ, σ), a spheri
al Fourier transform is 
omputed and,therefore, aliasing has to be taking into a

ount. This pro
ess of downsam-pling by 2 the images is espe
ially sensitive to aliasing, sin
e the bandwithof the spheri
al Fourier transform is also divided by 2. For this reason, afterthe 
omputation of ea
h o
tave, the next 
ondition is tested:
e

−nH(nH+1)(σ0/k)2

8 ≤ e−1, (16)where nH is the new height of the image after redu
ing its size. If it is not ful-�lled, instead of redu
ing the image size for the next o
tave, σ are in
reasedand the image size is redu
ed after the 
onvolution. Aliasing e�e
ts 
an stillappear if they are already present in the �rst 
omputed spheri
al Fouriertransform, or if σ in
reases 
onsiderably (Equation 16 not ful�lled even forthe 
urrent H before downsampling). An example of the e�e
t of applyingthis anti-aliasing 
riterion before downsampling an intermediate image in the
omputation of ψS2 , is shown in Figure 4.11



The input images are supposed to have a nominal standard deviation σNof half pixel, whi
h in our 
ase means σN = 0.5π/H, where H is the heightof the spheri
al image. To obtain the �rst image of the spheri
al s
ale spa
e,
LS2

(θ,ϕ, σ0/k), the input image is 
onvolved with a spheri
al Gaussian �lterwith standard deviation σ =
√

(σ0/k)2 − σ2
N. The 
omputation of ψS2 isshown in Algorithm 2. Note that the size of the input image 
an be doubledbefore starting the pro
ess. Then, σN = π/H and the �rst loop starts at

o = −1.Algorithm 2 Spheri
al s
ale-spa
e and di�eren
e of Gaussians 
omputation1: S←− number of stages per o
tave2: O←− number of o
taves3: n←− 04: for o = 0 to O do5: Compute LS2

(θ,ϕ, 2oσ0/k)6: for s = 0 to S+ 1 do7: Compute LS2

(θ,ϕ, 2oksσ0)8: Compute ψS2

(θ,ϕ, 2oks−1σ0)9: end for10: if Equation 16 is satis�ed then11: Downsample by 2 the starting image of the 
urrent loop and use itfor the next one12: else13: n←− n+ 114: Double the σ's of the 
urrent loop and use them in the next loop15: Ea
h LS2

(θ,ϕ, σ) in the next loop has to be downsampled by 2n16: end if17: end for3.2 Extrema extra
tionInterest points are lo
al extrema of ψS2

(θ,ϕ, σ) (Equation 14). A lo
al ex-treme is a point on the spheri
al grid whose value is bigger (smaller) than12



(a) ψS2

(θ,ϕ, 23kσ0) (thirdstage of the fourth o
tave)downsampling the image with-out applying the anti-aliasing
riterion (b) ψS2

(θ,ϕ, 23kσ0) (thirdstage of the fourth o
tave)downsampling the image if theanti-aliasing 
riterion is ful�lledFigure 4: Example of the e�e
t of the anti-aliasing strategy for the ψS2
omputation of the image in Figure 2b. The image size is 1024×1024 and thespheri
al s
ale-spa
e was generated using σ0 = 1.6π/1024, σN = 0.5π/1024and S = 3.

13



its 8 neighbours, bigger (smaller) than its 9 neighbours in the s
ale aboveand bigger (smaller) than its 9 neighbours in the s
ale below. Note that,
ontrary to a planar image, an image on the sphere has no borders and then,points lo
ated at the last 
olumn (highest values of ϕ) are neighbours withpoints lo
ated at the �rst 
olumn (lowest values of ϕ) and vi
e versa. Thesesimple 
omparisons give the extrema 
andidates, but prin
ipal 
urvature and
ontrast 
onditions are imposed on these points afterwards in order to keeponly the most stable ones.For ea
h dete
ted lo
al extreme of ψS2

(θ,ϕ, σ), ωi ≡ (θi, ϕi, σi), aquadrati
 fun
tion is �tted by using a Taylor expansion of Equation 14:
ψS2

(θ,ϕ, σ) ≃ ψS2

(θi, ϕi, σi) + (17)
+
∂ψS2

∂Θ

∣∣∣∣∣

⊤

ωi

δωi
+
1

2
δ⊤ωi

∂2ψS2

∂Θ2

∣∣∣∣∣
ωi

δωi
,where Θ ≡ (θ,ϕ, σ) and δωi

= (θ−θi, ϕ−ϕi, σ−σi)
⊤. The derivatives are
al
ulated as the 
entral �nite di�eren
es approximation of the derivativesof the image in that point, i.e. for a fun
tion f : Rn −→ Rm the 
entral �nitedi�eren
e approximation of the derivative with respe
t to the jth variable,

xj is
∂f

∂xj
= fxj(x1, x2, . . . , xj, . . . , xn) = (18)
=

f(. . . , xj + ∆xj , . . . ) − f(. . . , xj − ∆xj , . . . )

2∆xj

.From now on, the notation fx will be used to express the derivative (or the�nite di�eren
es approximation) of f with respe
t to x.Taking the derivative of Equation 17 with respe
t to δωi
, the o�set �δωito the extreme of the �tted fun
tion is obtained�δωi

= −

(
∂2ψS2

∂Θ2

)−1

∂ψS2

∂Θ
. (19)14



If any of the 
omponents of ve
tor �δωi
is bigger than half the separationbetween two points in this dimension, the point ωi is moved to its neighbourin this dimension and the pro
ess repeated. To avoid loops, the maximumnumber of iterations in the implemented version has been �xed to 5. Forthe tests presented in this paper, the movement in the σ dimension has notbeen taken into a

ount. At the end of this iterative pro
ess, a point �ωi isobtained.On
e �ωi has been obtained, the 
ontrast at this point is 
omputed, andif the 
ondition

|ψS2

(�δ �ωi
)| >

0.02

ks2o
(20)is not satis�ed, �ωi is dis
arded. The threshold value in Equation 20 has beende�ned empiri
ally.Finally, the ratio r of prin
ipal 
urvatures is obtained at �ωi and thepoint is kept if and only if r < 10 (same value than in (Lowe, 2004)). Thiseliminates points situated along edges, where one prin
ipal 
urvature is highbut the other is low, whi
h produ
es unstable points. In other words, if apoint does not satisfy the following 
onditiontra
e(HS2

)2det (HS2
)
<

(r+ 1)2

r
, (21)where

HS2

=

(
ψS2

θθ ψS2

θϕ

ψS2

θϕ ψS2

ϕϕ

)
, (22)it is dis
arded. The full extrema extra
tion pro
edure 
an be found in Algo-rithm 3.3.3 Lo
al Spheri
al Des
riptor (LSD)In order to mat
h points extra
ted from di�erent omnidire
tional images andobtained with the proposed algorithm, a Lo
al Spheri
al Des
riptor (LSD)is 
omputed at ea
h point. This des
riptor is obtained using the spheri
al15



Algorithm 3 Algorithm for the extra
tion of �good� lo
al extrema1: E←− ∅ the set of lo
al extrema2: for o = 0 (or o = −1) to O do3: for s = 0 to S− 1 do4: for ea
h point ωi ≡ (θi, ϕi, σi) of ψS2

(θ,ϕ, 2oksσ0) do5: if ωi is a lo
al extreme then6: Compute �ωi7: if Equations 20 and 21 are satis�ed at �ωi then8: E←− {E, �ωi}9: end if10: end if11: end for12: end for13: end fors
ale-spa
e representation of the image (see Se
tions 2 and 3.1) and 
onsistsof a set of histograms of orientations in a region around the given point. Thesize of this region depends on the s
ale (σ) at whi
h the point has been de-te
ted. Orientations are 
omputed with respe
t to a prin
ipal orientation ofthe point, whi
h makes the des
riptor invariant to rotations around the axisthat links the point with the 
entre of the sphere. The 
omplete pro
edureis detailed below.First, the orientation of a point in the spheri
al s
ale spa
e representationhas to be de�ned. Let us have a point (θ,ϕ) ∈ S2 at s
ale σ. Its orientationis de�ned as the angle of the gradient of LS2 in that point, with the 0 degreespointing to the south pole and the 90 degrees to bigger values of ϕ. Thesegradients are obtained using the 
entral �nite di�eren
es approximation ofthe derivatives (Equation 18) as
α(θ,ϕ, σ) = ar
tan(LS2

ϕ (θ,ϕ, σ)

LS2

θ (θ,ϕ, σ)

)
. (23)Then, for ea
h 
onsidered extreme of the ψS2 , Equation 23 is used to
ompute the orientations of surrounding points on the spheri
al grid in a16



3σ×3σ squared window 
entred at the extreme (where σ is the s
ale at whi
hea
h extreme was lo
ated). To de�ne this window, the distan
e between twopoints on the unit sphere, p1 ≡ (θ1, ϕ1) and p2 ≡ (θ2, ϕ2), needs to be
al
ulated. It 
an be obtained using the Vin
enty's formula (Vin
enty, 1975):
d(p1, p2) = ar
tan(√

A2 + B2

C

)
, (24)where

A = sinθ1 sin∆ϕ, (25)
B = sinθ2 
os θ1 − 
os θ2 sin θ1 
os∆ϕ, (26)
C = 
os θ2 
os θ1 + sinθ2 sin θ1 
os∆ϕ, (27)
∆ϕ = ϕ1 −ϕ2. (28)For ea
h window, a histogram of orientations is 
omputed using the ori-entations of points of the spheri
al grid that are inside. The orientation valueat ea
h point de�nes the bin, and the value added to this 
orresponding binis the norm of the gradient at that point,
m(θ,ϕ, σ) =

√
LS2

ϕ (θ,ϕ, σ)2 + LS2

θ (θ,ϕ, σ)2, (29)weighted by a Gaussian 
entred on the extreme and of standard deviation
1.5σ. For this histogram, 36 orientations are 
onsidered. Finally, on
e thehistogram is 
omputed, the prin
ipal orientation is 
al
ulated as the axis of aparabola �tted around its maximum. If there are bins greater than 0.8 timesthe biggest one, they are also 
onsidered, whi
h results in multiple prin
ipalorientations for the same point.For ea
h prin
ipal orientation of ea
h extreme point, the orientations ofthe points around 
an be re
omputed with respe
t to this orientation, andthe LSD 
an be 
omputed. This des
riptor is a 3-dimensional histogramof orientations (two spatial dimensions and one dimension for orientations)where all the orientations are 
onsidered with respe
t to the prin
ipal one.The produ
ed histogram has 42 × 8 bins (42 bins for the spatial dimension17



(a) Portion of the un-wrapped image (b) Portion of thesphereFigure 5: Example of two points dete
ted using the proposed algorithm.The yellow lines show the prin
ipal orientation. As it 
an be seen, one of thepoints have two prin
ipal orientations.and 8 bins for the orientations) and is 
omputed 
onsidering the points of thespheri
al grid 
ontained in a 6σ×6σ squared window 
entred at the extremeand rotated a

ording to the prin
ipal orientation. Ea
h entry for ea
h bin
orresponds to the sum of the gradient magnitudes of points 
orrespondingto this spatial and orientation bin, weighted by a Gaussian 
entred on theextreme and of standard deviation 1.5σ. The rotation of the window on thesurfa
e of the sphere 
an be 
omputed using the Rodrigues' rotation formula(Rodrigues, 1840) for the rotation of ve
tors, given by
vRot = v 
osα+ u× v sinα+ u · v(1− 
osα)u, (30)where the ve
tors are 
onsidered in Cartesian 
oordinates, and the ve
tor

vRot is the rotated version of v around u, α degrees.In order to avoid boundary e�e
ts, the values of ea
h gradient sample aredistributed by trilinear interpolation into adja
ent histogram bins. The re-sulting histogram is normalised, ea
h bin thresholded to 0.2 and normalisedagain, in order to make it robust to 
ontrast 
hanges. The algorithm for the
omputation of Lo
al Spheri
al Des
riptors is summarised in Algorithm 4.
18



Algorithm 4 Algorithm for the 
omputation of LSD1: LSD←− ∅ the set of lo
al spheri
al des
riptors2: for ea
h 
onsidered extreme of ψS2 , (θi, ϕi, σi) do3: Sele
t a squared region of size 3σi × 3σi 
entred at (θi, ϕi)4: Compute orientations and gradient norms inside this region5: Compute histogram of orientations6: MAX ←− maximum histogram value7: for ea
h bin value ≥ 0.8MAX do8: Fit a parabola around this bin9: b←− axis of the parabola10: Sele
t a squared region of size 6σi × 6σi 
entred at (θi, ϕi) androtated b degrees11: Compute orientations and gradient norms inside this region withrespe
t to b12: LSDi←− Compute 3-dimensional histogram13: LSD←− {LSD,LSDi}14: end for15: end for

19



3.4 Lo
al Planar Des
riptor (LPD)Lo
al Planar Des
riptors (LPD) allow to 
arry out mat
hing between pointsextra
ted from an spheri
al image, with the algorithm des
ribed above, andSIFT des
riptors of points extra
ted from planar images. This is of greatimportan
e sin
e, for instan
e, a preexisting database of SIFT des
riptors
omputed on planar images 
ould be used to dete
t obje
ts on the omnidi-re
tional image.The LPD is a regular SIFT des
riptor 
omputed on a planar approxi-mation of the region around ea
h interest point ωi ≡ (θi, ϕi, σi). We 
on-sider pi ≡ (θi, ϕi) to be the 
entre of this planar approximation, whi
h isthe stereographi
 proje
tion from the antipodal point of pi on the tangentplane on the sphere at pi. This stereographi
 proje
tion of LS2

(θ,ϕ, σi)around pi 
an be seen as a lo
al approximation of L(x, y, σ). In otherwords, for a point pi ≡ (θi, ϕi), extra
ted from the spheri
al image at thes
ale σi, a squared window 
entred on ωi on LS2

(θ,ϕ, σi) and of size equalto the minimum between 12σi and π, is stereographi
ally proje
ted from
(θi + π/2,ϕ + π) to the plane tangent at pi. The proje
ted points are lin-early interpolated in order to obtain a planar image whose 
artesian rangeis [−2 tan 6σi

2
, 2 tan 6σi

2
] × [−2 tan 6σi

2
, 2 tan 6σi

2
] and with a pixel spa
ing of

2 tan π
2H
, where H is the height of LS2

(θ,ϕ, σi). The equivalent σi in theobtained planar image is
σ
pl
i =

tan σi

2tan π
2H

. (31)The outline of the 
omputation of Lo
al Planar Des
riptors is given inAlgorithm 5.4 Planar to spheri
al transformationAs said before, LPD 
an be mat
hed with regular planar SIFT des
riptorsextra
ted from planar images. In addition to this new kind of mat
hing, wepropose a method to estimate the fun
tion that transfers points in a planar20



Algorithm 5 Algorithm for the 
omputation of LPD1: LPD←− ∅ the set of lo
al planar des
riptors2: for ea
h 
onsidered extreme of ψS2 , (θi, ϕi, σi) do3: L(x, y, σ
pl
i ) ←− stereographi
 proje
tion of L(θ,ϕ, σi) from (θi +

π
2
, ϕi + π) to the tangent plane at (θi, ϕi)4: LSDi←− SIFT des
riptor of L(x, y, σpli ) at (x, y) = (0, 0)5: LSD←− {LSD,LSDi}6: end forimage to their 
orresponding points in a spheri
al image, like an homogra-phy does between two planar images. Furthermore, given a segmentation ofa planar image, this transformation 
ould be used for instan
e to extra
t thesegmented obje
ts or regions from an omnidire
tional image.Let us 
onsider a mat
h between a point ppli ≡ (x

pl
i , y

pl
i ) in a planar imageand a point pS2

j ≡ (xS2

j , y
S2

j , z
S2

j ) in a spheri
al image, both in 
artesian
oordinates. The idea is to �nd a linear transformation H whi
h sends pplito a point qij in the spa
e whose proje
tion on the unit sphere is pS2

j (seeFigure 6). In other words, we look for a 3× 3 matrix H that satis�es
pS2

j =
qij

||qij||
=

Hp
pl
i

||Hp
pl
i ||
, (32)where || · || denotes the 2-norm. To a
hieve that, the 
entral point of theplanar image is tangentially pla
ed at the north pole of the sphere that
ontains the omnidire
tional image. In this way, a point ppli ≡ (x

pl
i , y

pl
i )of the planar image has 
oordinates (x

pl
i , y

pl
i , 1) ∈ R3. Then, in order toestimate H, the fa
t that pS2

j and Hppli must be 
ollinear is exploited for
ingtheir ve
torial produ
t to be zero, i.e. pS2

j × Hp
pl
i = 0. As in a typi
alhomography estimation problem between two planar images, this 
ondition
an be expressed in terms of the elements of H, giving us 3 equations for

21



ea
h point
− zS2

j x
pl
i h21 − zS2

j y
pl
i h22 − zS2

j z
pl
i h23

+ yS2

j x
pl
i h31 + yS2

j y
pl
i h32 + yS2

j z
pl
i h33 = 0, (33)

zS2

j x
pl
i h11 + zS2

j y
pl
i h12 + zS2

j z
pl
i h13

− xS2

j x
pl
i h31 − xS2

j y
pl
i h32 − xS2

j z
pl
i h33 = 0, (34)

− yS2

j x
pl
i h11 + yS2

j y
pl
i h12 + yS2

j z
pl
i h13

+ xS2

j x
pl
i h21 + xS2

j y
pl
i h22 + xS2

j z
pl
i h23 = 0, (35)where the elements of the matrix H are distributed as

H =



h11 h12 h13

h21 h22 h23

h31 h32 h33


 (36)Consequently, if Equations (33, 34, 35) are expressed in terms of hlm andall the resulting equations for ea
h pair of mat
hed points are put together,we obtain a system of equations of the form Ah = 0, whereh = (h11, h12, h13, h21, h22, h23, h31, h32, h33)

⊤and A is a 3N × 9 matrix, N being the number of points mat
hed betweenthe planar and the spheri
al image. If the restri
tion ‖h‖ = 1 is 
onsidered,h 
an be 
omputed as the eigenve
tor of A 
orresponding to the smallesteigenvalue, whi
h is the least squares estimator of the solution.The estimation of this matrix, gives a transformation h : R2 −→ S2 whi
hsends points in the planar image to points in the spheri
al one
h(x, y) =

H



x

y

1




∥∥∥∥∥∥∥
H



x

y

1




∥∥∥∥∥∥∥

. (37)
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X
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Omnidirectional Image

PSfrag repla
ements
p
pl
i

pS2

j

qij = Hp
pl
iFigure 6: Graphi
al sket
h of the transformationTransforming points of the spheri
al image into points of the planar im-age, 
an also be done using H−1 and normalising the resulting point by itsthird 
omponent, to obtain a point of the form (x, y, 1).The estimation of H using all the mat
hed points 
an give bad resultsdue to false mat
hings. For this reason, in the tests presented in Se
tion 5.1the set of mat
hed points 
hosen for the estimation of H is sele
ted usingRANSAC. The outline of the pro
ess for 
omputing H 
an be found in Al-gorithm 6.Algorithm 6 Algorithm for the estimation of H1: LPD←− set of lo
al planar des
riptors of the spheri
al image2: SIFTDes
←− set of SIFT des
riptors of the planar image3: M←− mat
hing points between SIFTDes
 and LPD4: H←− eigenve
tor with minimum eigenvalue of the matrix de�ned usingEquations 33, 34 and 35 (use RANSAC to 
lean M of false mat
hings).
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5 Experimental resultsFor our experimental results we use two types of omnidire
tional images:paraboli
 and spheri
al. The paraboli
 omnidire
tional image is obtainedby a 
atadioptri
 omnidire
tional sensor. We use a paraboli
 mirror KaidanEyeSee 360 deg4 in 
ombination with a Nikon D40X 
amera. In order toapply our algorithm on this kind of images, we �rst need to map themon the sphere a

ording to the proje
tion shown on Figure 1. After thismapping, these images 
over a band of about 100 deg on the sphere. Thespheri
al images are obtained with a Ladybug2 devi
e5. These images 
overaround 75% of the sphere. It is important to note that the Ladybug2 out-puts the images dire
tly in spheri
al 
oordinates and thus no mapping on thesphere is needed for these images. The resolution of both types of images is
1024× 1024. It is important to note that for this image size, the 
onsideredvalues of σ and the use of the anti-aliasing 
riterion, the aliasing 
an be ne-gle
ted. For example, for σ = 4.6π/1024 and a bandwidth of 1024/2 = 512,
ĝS2

(512,m, σ) ≈ 3.95 · 10−11.5.1 �Omni vs Omni� mat
hingFirst of all, in order to test LSD mat
hing, some parameters of the algorithmneed to be �xed, essentially S and σ0. To 
hoose them, some test images havebeen randomly rotated around the x-axis and 
orrupted with zero mean ad-ditive Gaussian noise with standard deviation 0.05 (pixel values are supposedto be in the range [0, 1]). Sin
e the transformation between ea
h test imageand its rotated and 
orrupted version is known, for a given point in one im-age, its 
orresponding point in the other image 
an be 
omputed. Therefore,the repeatability of the extra
ted points 
an be measured as
rij =

nRmin (ni, nj)
, (38)4http://www.kaidan.com5http://www.ptgrey.com/products/ladybug2/24



where ni and nj are the number of extra
ted points from images i and j,respe
tively, and nR is the number of repeated points.On Figure 7 we show the results of the repeatability tests obtained with
20 paraboli
 omnidire
tional images. The same tests for 8 spheri
al omnidi-re
tional images are shown on Figure 8. These results are similar for bothtypes of omnidire
tional images. As expe
ted, the repeatability in
reases forhigher values of σ0. But a higher σ0 also means that the extrema of the DoGat lower s
ales are lost. Consequently, a 
ompromise has to be found be-tween the smallest s
ale of the extrema dete
ted and the tolerated amount of�noise� (not repeatable points) between all the extra
ted points. On the otherhand, higher values of S imply a greater number of stages per o
tave, whi
hrequires more 
omputation time. Looking at the graphi
s, σ0 = 4.6π/1024and S = 3 are reasonable values to 
hoose. In Table 1, mat
hing results usingthese values and varying the distan
e threshold are shown. We 
an see therehow by de
reasing the threshold, the number of total mat
hings is redu
edbut the per
entage of 
orre
t mat
hings is in
reased. In Figure 9, results ofrepeatability and 
orre
t mat
hings as a fun
tion of pixel noise are given.These graphi
s show the robustness of the algorithm against image noise.Looking at the repeatability results, it 
an also be observed that resultssimilar to these of the original SIFT are obtained with a higher σ0 value.This is probably due to the fa
t that the transformation from the originalomnidire
tional image to the image on S2, requires some interpolation. Thisinterpolation 
an add some artifa
ts to the image that 
an produ
e unstablepoints that are therefore not good to 
onsider. A higher value of σ0 solvesthis problem, as these artifa
ts disappear with the �rst 
onvolution with theGaussian.In Figures 10, 11 and 12, some mat
hing results are illustrated. The val-ues of the working parameters are S = 3 and σ0 = 4.6π/1024. First, themat
hing between two versions of the same paraboli
 omnidire
tional imagemapped on the sphere is performed and shown on Figure 10. On the leftis the original image and on the right the same image but rotated and 
or-25



rupted by additive zero mean Gaussian noise with standard deviation 0.05.In total, 136 points were extra
ted from the original image and 170 from itsrotated and 
orrupted version. From these points, 126 mat
hings have beenobtained. Among them, 115 are 
orre
t and 11 in
orre
t. All the 
orre
tmat
hings are shown in green, but for a purpose of visualisation, only 5 ofthem are linked. The in
orre
t mat
hes are shown in red.In Figure 11, a plot of the mat
hings between two paraboli
 omnidire
-tional images is illustrated. Both images are of the same s
ene and weretaken from two slightly di�erent pla
es and on two di�erent days. Lighting
onditions are very di�erent and there are also some small 
hanges of obje
tsin the s
ene. The maximum distan
e ratio was �xed to d = 0.58 in order tohave a redu
ed number of mat
hings. Indeed, as we are mat
hing two di�er-ent images without any information about the 
hange in the point of view,
orre
t mat
hings 
an only be 
ontrolled visually. Finally, in Figure 12 isillustrated a plot of the obtained mat
hings between paraboli
 and spheri
alimages. As in the other 
ase, the images were taken on two di�erent daysand from slightly di�erent pla
es. The maximum distan
e ratio in this 
asewas �xed to d = 0.64.5.2 �Planar vs Omni� mat
hingIn this se
tion, LPD are tested for mat
hing between points extra
ted fromomnidire
tional images (using Algorithm 1) and points extra
ted from a pla-nar image (using the original SIFT algorithm). For these tests, the SIFTparameters proposed in (Lowe, 2004) (S = 3 and σ0 = 1.6) are used inboth the SIFT algorithm and the spheri
al SIFT algorithm. Note that onthe sphere, the equivalent σ parameter is σ0 = 1.6π/1024. The omnidire
-tional image is not doubled to 
ompute o
tave −1 be
ause the pro
essing ofa 2048×2048 image, with all the spheri
al Fourier transforms involved, takestoo mu
h time. In addition, some tests have been done 
omputing o
tave −1and it did not in
rease the number of 
orre
t mat
hings signi�
antly. This
ould be another e�e
t of the interpolation while mapping the omnidire
-26
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(d) Mat
hing performan
e with d = 0.6varying the amount of noise (paraboli
omnidire
tional images)Figure 9: Plots of repeatability and 
orre
t mat
hing between omnidire
-tional images and their 
orrupted version, varying the standard deviation ofGaussian noise added. The 
entral line represents the mean value and theother two 
orrespond to the mean± σ. The per
entage of 
orre
t mat
hingshas been 
omputed as the number of 
orre
t mat
hings divided by the num-ber of repeated points. The statisti
s have been 
al
ulated on 23 paraboli
omnidire
tional images and 8 spheri
al images.
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Figure 10: ϕ− θ-plot of mat
hings between a paraboli
 omnidire
tional im-age (left) and the same omnidire
tional image rotated π/8 radians aroundthe x-axis and 
orrupted by additive zero mean Gaussian noise with standarddeviation 0.05 (right). The values S = 3, σ0 = 4.6π/1024 and a maximumdistan
e ratio of 0.8 have been used in the 
omputations. Green dots repre-sent 
orre
t mat
hings, red dots are in
orre
t mat
hings and for a purposeof visualisation, 5 
orre
t mat
hings have been linked. In total, 229 pointswere extra
ted from the image on the left and 225 from the image on theright, produ
ing 208 mat
hings (182 
orre
t and 26 in
orre
t).
30



Figure 11: ϕ − θ plot of mat
hings between two paraboli
 omnidire
tionalimages. The values S = 3, σ0 = 4.6π/1024 and a maximum distan
e ratio of
0.58 have been used in the 
omputations, obtaining 15 mat
hings (9 
orre
tand 6 in
orre
t, 
ounted visually). The distan
e ratio has been 
hosen tohave few point mat
hings, for visualisation purposes.tional image on the sphere, whi
h 
an 
ause that doubling the size of theimage afterwards adds too mu
h noise, and then, too many unstable points.On Figure 13, two examples of mat
hing between omnidire
tional andplanar images are shown. An example with a paraboli
 omnidire
tional im-age is shown on Figure 13a, while on Figure 13b a spheri
al image is used.For both omnidire
tional images, LPDs are extra
ted as explained in Se
-tion 3.4. The planar images represent an obje
t from the omnidire
tionals
ene. For instan
e, in Figure 13a the obje
t in the planar image is the É
olePolyte
hnique Fédérale de Lausanne (EPFL) logo, while in Figure 13b it is aposter. On ea
h of the planar images, the usual SIFT algorithm (Lowe, 2004)has been applied. Comparing Figures 13a and 13b, we note that more pointsare mat
hed with the spheri
al image than with the paraboli
 one (181 and
105 respe
tively). This higher number of mat
hings with spheri
al images isthe 
ommon situation among all the performed tests. Although, if 
omparedwith respe
t to the total number of extra
ted points, the results are very31



Figure 12: ϕ − θ plot of mat
hings between a paraboli
 omnidire
tionalimage (left) and a spheri
al image (right). The values S = 3, σ0 = 4.6π/1024and a maximum distan
e ratio of 0.62 have been used in the 
omputations,obtaining 10 mat
hings (6 
orre
t and 4 in
orre
t, 
ounted visually). Thedistan
e ratio has been 
hosen to have few point mat
hings, for visualisationpurposes.
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similar in both 
ases. Due to the higher level of detail of the spheri
al image,more points at the lower s
ales are extra
ted. This results in a bigger numberof mat
hings between spheri
al and planar images, while this is not the 
asebetween paraboli
 and planar ones. In fa
t, the paraboli
 image somehowloses information be
ause of the interpolation needed for mapping it on thesphere.The estimation of the planar to spheri
al transformation, as introdu
edin Se
tion 4, has been tested using Algorithm 6. First, Algorithm 1 was ap-plied to the 
orresponding omnidire
tional image in order to obtain the setof LPDs. These then serve as inputs of Algorithm 6. Then, the regular SIFTdes
riptors are 
omputed for the planar images. On Figure 14 the resultobtained with images 
ontaining the EPFL logo is shown. It is interesting tonote that the obtained results are satisfa
tory even with a highly symmetri
obje
t as is the 
ase of the 
hosen one. In fa
t, in this 
ase a mat
hing 
ouldbe lo
ally 
orre
t while being in
orre
t 
onsidering the whole obje
t.The same test for a spheri
al omnidire
tional image is illustrated in Fig-ure 15. The spheri
al image is 
aptured in a 
orridor and the planar image
ontains a poster as an obje
t of the omnidire
tional s
ene. As expe
ted, theposter was 
orre
tly extra
ted after applying Algorithm 6.6 Con
lusionsIn this paper, we have proposed a SIFT algorithm in spheri
al 
oordinates.It is not limited to pure spheri
al images, sin
e it 
an also be applied to awide variety of omnidire
tional images that 
an be bije
tively mapped on thesurfa
e of the unit sphere. Two types of des
riptors have been proposed tobe 
omputed on the points given by the algorithm, Lo
al Spheri
al Des
rip-tors (LSD) and Lo
al Planar Des
riptors (LPD). Using these des
riptors, wehave su

essfully performed point mat
hings between omnidire
tional im-ages, with LSD, and between omnidire
tional and planar images, with LPD.For the mat
hings between omnidire
tional images, the parameters of the33



(a) Unwrapped paraboli
 omnidire
tional image mapped on the sphere (left)vs planar image (right)

(b) Unwrapped spheri
al image (left) vs planar image (right)Figure 13: Examples of mat
hings (green dots) between omnidire
tional andplanar images for a distan
e threshold of 0.8. These points have been usedas input for Algorithm 6 to generate the images in Figures 14 and 1534



(a) Planar image. The small greendots are the mat
hed points betweenthe planar and the spheri
al imagethat have been used to 
ompute thetransformation. The border of thelogo (blue square) has been markedby hand.
(b) Original paraboli
 image

(
) Spheri
al image. The blue �gure is the transfor-mation of the blue square in Figure 14a by meansof Equation 37, with H 
omputed using Algorithm6.Figure 14: Example of the transformation of the boundary of an obje
t ina planar image to this obje
t in a paraboli
 omnidire
tional image. Thetransformation fun
tion has been obtained using Algorithm 6.35



(a) Original Ladybug2 image

(b) Planar image. The smallgreen dots are the mat
hedpoints between the planar andthe spheri
al image that havebeen used to 
ompute the trans-formation. The border of theposter (blue square) has beenmarked by hand.
(
) Spheri
al image. The blue �gure is the transfor-mation of the blue square in Figure 15b by means ofEquation 37, with H 
omputed using Algorithm 6.

Figure 15: Example of the transformation of the boundary of an obje
t ina planar image to this obje
t in a spheri
al omnidire
tional image. Thetransformation fun
tion has been obtained using the Algorithm 6.36



algorithm have been 
hosen a

ording to the results obtained on test imagesvarying S and σ0. For the planar vs omnidire
tional 
ase, the same parame-ter values as those proposed in (Lowe, 2004) have been kept. Finally, pointmat
hings obtained in this last 
ase have been su

esfully used to estimatea planar to spheri
al transformation. Potential appli
ations of the proposedalgorithm are global tra
king in hybrid 
amera networks (together with theSIFT algorithm for planar images), motion estimation in omnidire
tionalimages, obje
t dete
tion and extra
tion from omnidire
tional images and, ingeneral, any problem requiring a mat
hing between points in omnidire
tionalimages or between points in omnidire
tional and planar images.The main drawba
k of the proposed algorithm is the 
omputation time.Indeed, for a 1024 × 1024 image, the 
omplete point extra
tion and LSD
omputation takes around 1 minute. Computation time depends, however,on the number of stages per o
tave, the σ0 value and the number of pointsextra
ted. This time 
ould be redu
ed by optimising the 
ode, but the bot-tlene
k of the spheri
al Fourier transforms will always be present. This bot-tlene
k, however, 
ould be minimised by implementing the e�
ient algorithmfor the spheri
al Fourier transform presented re
ently in (Tygert, 2008).Many dire
tions for further resear
h 
an be 
onsidered starting from thiswork. For example, the use of other lo
al des
riptors 
ould be tested, inparti
ular the Gradient Lo
ation and Orientation Histogram (GLOH) seemsto be very appropriate for spheri
al images. Experiments with real imageswhose full 3D viewpoint 
hange is known would also be very useful in or-der to better estimate the optimum parameters of the algorithm and testits performan
e. And last but not least, the study of approximations of thespheri
al di�eren
e of Gaussians, as it is done in SURF (Bay et al., 2008) forthe planar 
ase, would be very interesting, sin
e it 
ould lead to a real-timeapproximation of this algorithm.
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Table 1: Statisti
s for 
orre
t mat
hings between 31 omnidire
tional images(23 paraboli
 and 8 spheri
al) and their rotated noisy version. The rotationis done around the x axis and its value is randomly 
hosen between 0 and
2π. The added noise is zero mean Gaussian noise with standard deviation
0.05. For the original paraboli
 omnidire
tional images, the mean numberof extra
ted points is 217 (std. deviation = 82), and for their noisy rotatedversions is 223 (std. deviation = 99), with a mean repeatability of 0.743(std. deviation = 0.081). For the original spheri
al images, the mean numberof extra
ted points is 400 (std. deviation = 132), and for their noisy rotatedversions is 394 (std. deviation = 120), with a mean repeatability of 0.79(std. deviation = 0.033). The values in the table without parenthesis are themean values, and the ones with parenthesis are the standard deviations.Distan
e Threshold Corre
t Mat
hingsParaboli
 Omnidire
tional Images Spheri
al ImagesPer
entage Absolute Value Per
entage Absolute Value

0.05 1.00 (0.01) 11 (10) 1.00 (0.00) 27 (44)

0.10 1.00 (0.01) 24 (16) 1.00 (0.01) 52 (62)

0.15 1.00 (0.01) 32 (19) 1.00 (0.01) 70 (74)

0.20 1.00 (0.01) 39 (23) 1.00 (0.01) 82 (77)

0.25 0.99 (0.03) 44 (25) 1.00 (0.01) 90 (81)

0.30 0.98 (0.04) 48 (27) 1.00 (0.00) 100 (84)

0.35 0.97 (0.05) 52 (29) 0.99 (0.01) 107 (87)

0.40 0.96 (0.06) 56 (31) 0.99 (0.02) 115 (89)

0.45 0.96 (0.05) 60 (32) 0.97 (0.02) 120 (92)

0.50 0.94 (0.06) 64 (34) 0.97 (0.03) 126 (92)

0.55 0.93 (0.06) 67 (35) 0.95 (0.03) 133 (93)

0.60 0.90 (0.07) 71 (37) 0.93 (0.03) 138 (95)

0.65 0.87 (0.08) 75 (38) 0.91 (0.04) 144 (98)

0.70 0.84 (0.08) 79 (39) 0.89 (0.04) 150 (100)

0.75 0.80 (0.09) 82 (40) 0.84 (0.06) 156 (101)

0.80 0.75 (0.11) 85 (41) 0.79 (0.07) 164 (105)

0.85 0.70 (0.13) 89 (42) 0.71 (0.10) 169 (107)

0.90 0.63 (0.13) 94 (44) 0.64 (0.11) 178 (109)

0.95 0.56 (0.14) 99 (45) 0.56 (0.12) 185 (111)42


