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AbstratA SIFT algorithm in spherial oordinates for omnidiretional im-ages is proposed. This algorithm an generate two types of loal de-sriptors, Loal Spherial Desriptors and Loal Planar Desriptors.With the �rst ones, point mathing between omnidiretional imagesan be performed, and with the seond ones, the same mathing pro-ess an be done but between omnidiretional and planar images. Fur-thermore, a planar to spherial transformation is introdued and analgorithm for its estimation is given. This transformation allows toextrat objets from an omnidiretional image given their SIFT de-sriptors in a planar image. Several experiments, on�rming the goodperformane of the system, are onduted.
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1 IntrodutionOmnidiretional vision has beome a popular topi in omputer vision. Oneof its main bene�ts is that one omnidiretional amera an over 360o aroundit. As with onventional (planar) images, image mathing is a main aspet ofmany omputer vision problems involving omnidiretional images, althoughit has not been widely studied yet for this kind of ameras. Usually, teh-niques designed for planar images are applied on omnidiretional images, asfor example on panorami images, i.e. omnidiretional images mapped on aylinder (Yuen and MaDonald, 2005; Bur et al., 2006). This is not mathe-matially orret. Even if loally those algorithms are still valid, as soon asbigger regions of the image are onsidered, it is not the ase anymore due tothe deformation that the omnidiretional sensor introdues. Moreover, notonly do omnidiretional and planar images oexist, but they are often usedjointly, for instane in amera networks. This is a soure of new problems,sine not only mathing between omnidiretional images is needed, but alsobetween omnidiretional and planar ones.A ommon way of takling the mathing problem between two given im-ages is by using interest points. These are points in an image that ful�l some�interest� riterion. This riterion is usually de�ned in suh a way that theobtained points have a well-de�ned position, ontain as muh loal informa-tion on the surroundings as possible and are robust against hanges in theimage, suh as noise, perspetive transformations, illumination hanges, et.The loation of these points is often used for the extration of loal image de-sriptors. These are a transformation of the loal image data into an elementof the transformed spae, usually a vetor, where some harateristis areoded, as for example the shape, the orientation, the olour, the texture, et.They an be used afterwards for instane in mathing or image registration.1.1 State-of-the-artInterest points are widely used nowadays by omputer vision algorithms.As ommented before, two main aspets make these points useful: robust-ness against image hanges and rihness of loal information in terms of1



loal image struture. A wide variety of interest points has been de�nedto best ombine these two aspets, like for example Harris-Stephens or-ners (Harris and Stephens, 1988), SUSAN orners (Smith and Brady, 1997),salient regions (Kadir and Brady, 2001), Maximally Stable Extremal Re-gions (MSER) (Matas et al., 2002) or extrema of the Di�erene of Gaussians(DoG) (Lowe, 2004). An exellent survey on this kind of points an be foundin (Tuytelaars and Mikolajzyk, 2007). Due to their stability, these key-points are often used for the omputation of loal desriptors, whih an beused afterwards for several tasks, suh as traking, objet detetion or re-gion mathing. A wide variety of loal desriptors has also been proposedin the literature (Zabih and Wood�ll, 1994; Van Gool et al., 1996; Baum-berg, 2000; Lowe, 2004; Mikolajzyk and Shmid, 2005). For an exhaustiveomparison of loal desriptors see (Mikolajzyk and Shmid, 2005).Sale Invariant Feature Transform (SIFT), introdued in (Lowe, 2004), isa well-known algorithm that suessfully ombines both notions. For interestpoints, it onsiders extrema of the Di�erene of Gaussians, and for loaldesriptors, a histogram of orientations. The SIFT algorithm detets pointsin a sale-invariant way, as extrema in the response of the onvolution of theimage with a DoG funtion
ψ(x, y, σ) = g(x, y, kσ) − g(x, y, σ), (1)where g(x, y, σ) denotes a 2-dimensional Gaussian kernel with standard de-viation σ. This is based on the work of T. Lindeberg in (Lindeberg, 1998),and the onvolution of an image with ψ(x, y, σ) an be omputed as the dif-ferene of onseutive images in the sale-spae representation of the image,hoosing properly the value of k. The sale-spae representation L(x, y, t) :

R2×R+→ R of an image I(x, y) an be equivalently de�ned in two di�erentways. The �rst one is the evolution over time of the heat distribution I(x, y)in an in�nite homogeneous medium:
∂tL(x, y, t) =

1

2
∇2L(x, y, t), (2)where the initial ondition is L(x, y, 0) = I(x, y). The seond one is thesuessive onvolution of the image with a Gaussian kernel, g(x, y, σ), of2



standard deviation σ =
√
t:

L(x, y, σ) = g(x, y, σ) ∗ I(x, y). (3)This sale-spae representation of an image an be omputed e�iently usingthe de�nition of the onvolution, thanks to the separability of the Gaussian�lter. The loal data around eah interest point is then used to omputeSIFT desriptors. These loal desriptors are invariant to rotation and salehanges. They onsist of a 3D histogram: two spatial dimensions and onedimension for orientations. The size of this region depends on the sale atwhih the point has been deteted. Thanks to its simpliity, good results interms of repeatability and auray on mathing, it has been used to treatappliations requiring traking or mathing of regions (Sirmaek and Un-salan, 2009; Brox et al., Aepted for future publiation).Several variants of the SIFT algorithm have appeared, trying to improvethe interest point extration or the loal desriptor. Among those trying toimprove the interest point extration, the most remarkable representative isprobably the Speed-Up Robust Features (SURF) algorithm (Bay et al., 2008).For those trying to improve the loal desriptor, a good representative isthe Gradient Loation and Orientation Histogram (GLOH) introdued in(Mikolajzyk and Shmid, 2005).All these algorithms and tehniques have been developed to work withregular (planar) images or videos. Over the last years, though, omnidire-tional imaging has beome a popular topi, due to both, the availability ofsimple sensors (e.g. paraboli mirrors mounted on regular ameras) and thegreat advantages it provides (e.g. a 360 degrees view in one single image).This kind of sensors has a lot of appliations, suh as video surveillane(Boult et al., 2001) or objet traking (Chen et al., 2008), and its use hasbeome very ommon in robot navigation (Menegatti et al., 2006) and inautonomous vehiles (Ehlgen et al., 2008; Saramuzza and Siegwart, 2008).Interest points and loal desriptors-based tehniques, suh as SIFT, havebeen applied to omnidiretional images due to their good performane inplanar images (Goedeme et al., 2005; Tamimi et al., 2006; Valgren and Lilien-3



thal, 2007; Saramuzza and Siegwart, 2008). Reently, several e�orts havebeen made to develop algorithms spei�ally designed to treat these omnidi-retional images (Bogdanova et al., 2007; Hadj-Abdelkader et al., 2008). Animportant aid in this sense were the results of Geyer and Daniilidis in (Geyerand Daniilidis, 2001), where they show that the most ommon atadioptriomnidiretional images an be bijetively mapped on the surfae of a sphere.In Figure 1, the equivalene between a paraboli projetion and a entral pro-jetion followed by a stereographi projetion is shematially shown; and inFigure 2, a partiular example of mapping a real paraboli omnidiretionalimage on the sphere through inverse stereographi projetion an be seen.Consequently, a whole family of omnidiretional images an be proessedby algorithms treating spherial images. The mapping from the apturedimage to the sphere is the only adaptation needed for eah element of thefamily. Based on this result, Hansen et al. (Hansen et al., 2007b; Hansenet al., 2007a) developed a SIFT-like algorithm on the sphere to math pointsbetween wide-angle images. In this algorithm, the point extration is om-puted on the bak-projetion of the spherial sale-spae to the wide-angleimage plane, and the desriptor is omputed using a �xed size path of 41×41pixels around eah extrated point at the orresponding sale.1.2 ContributionsThis paper is two fold, it proposes both a SIFT algorithm in spherial oor-dinates and a new approah to math points between two spherial imagesor between spherial and planar images.First of all, we propose an interest point extrator on the sphere basedon the spherial sale-spae representation and the SIFT algorithm. This al-gorithm proesses omnidiretional images mapped on the sphere (see Figure2b) in order to take into aount the deformation introdued by the omni-diretional sensor (see Figure 2a). The reation proedure of the spherialsale-spae is speeded up by suessive downsampling of the input image foreah otave. However, onsidering that spherial Fourier transforms are om-4
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(a) Original paraboli omnidi-retional image (b) Omnidiretional imagemapped on the unit sphere () Unwrapped omnidire-tional imageFigure 2: Example of mapping a paraboli omnidiretional image on thesphere. The unwrapped spherial image (Figure 2) is often used for visual-isation purposes. 5



puted, this division is subjet to aliasing. For this reason, an anti-aliasingriterion is de�ned to deide whether an image is downsampled or not.Our seond main ontribution onerns the mathing part. We here pro-pose two types of desriptors. The �rst one is meant to arry out mathingbetween two spherial images. And the seond one allows to perform math-ing between spherial and planar images. Both desriptors an be very usefulwhen working, for example, with amera networks ontaining at the sametime omnidiretional and regular ameras, what is known as hybrid ameranetworks. In suh ase, the desriptors proposed here an easily help regis-tering data from all the omponents of the network.Finally, we also introdue a transformation between planar and spherialimages. This transformation an be used to send the ontour or regions ofa planar objet in a planar image to a spherial one and vie versa. Theparameters of this transformation are estimated by means of the obtainedmathed points, leaning false detetions with the Random Sample Consen-sus (RANSAC) algorithm (Fishler and Bolles, 1981). The inputs of theestimation proess are respetively the mathed points from the omnidire-tional and the planar images.Several experiments are performed on real omnidiretional images to testthe proposed algorithms. The ode developed for these tests has been imple-mented in Matlab® and soure ode and images are freely available1 underthe GPL liense. The soure ode requires the installation of the �Yet An-other Wavelet Toolbox� (YAWTb)2 for MatLab. This library provides ane�ient way of omputing the spherial harmoni transformations as well asa nie visualisation interfae. Finally, for the RANSAC routines, we used theRANSAC Toolbox3.This paper is organised as follows. In Setion 2, the mathematial as-1http://transp-or2.epfl.ch/pagesPerso/javierFiles/software.php2http://rhea.tele.ucl.ac.be/yawtb3http://www.mathworks.com/matlabcentral/fileexchange/185556



pets of the interest point extration on the sphere are exposed. In Setion3, the proposed algorithm is desribed in detail, as well as the two pro-posed desriptors. Then, in Setion 4, a �plane to sphere� transformation(similar to a homography between planar images) is de�ned and a methodfor its estimation is given. In Setion 5, several experiments are presented,between omnidiretional images in Setion 5.1 and between omnidiretionaland planar images in Setion 5.2. Finally, in Setion 6, some onlusions andpotential lines for future researh are given.Now, we an start with the basi notions of harmoni analysis on thesphere.2 Spherial sale-spaeLet us onsider two funtions f, h ∈ L2(S2) de�ned on the two-sphere S2 ∈ R3.Then, the onvolution on the sphere reads
(f ∗ h)(ω) =

∫

r∈SO(3)

f(rη)h(r−1ω)dr, (4)where ω ≡ (θ,ϕ) ∈ S2, θ ∈ [0, π], ϕ ∈ [0, 2π) (see Figure 3) and η is thenorth pole. Equation 4 is hard to ompute, but as it was demonstrated byDrisoll and Healy in (Drisoll and Dennis M. Healy, 1994), the onvolutionof two spherial funtions f, h ∈ L2(S2) an be alulated more e�iently asthe pointwise produt of their spherial Fourier transforms:
(̂f ∗ h)(l,m) = 2π

√
4π

2l + 1
f̂(l,m)ĥ(l, 0), (5)where (̂·) is the spherial Fourier transform of the funtion.The spherial Fourier transform of a funtion f ∈ L2(S2) is the set ofoe�ients of the expansion of this funtion in terms of spherial harmonis

Ym
l , i.e. the oe�ients f̂(l,m) of the expression

f(θ,ϕ) =
∑

l≥0

∑

|m|≤l

f̂(l,m)Ym
l (θ,ϕ), (6)7
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Figure 3: Spherial oordinates of a point on S2 (ρ = 1)where the funtion f(θ,ϕ) and the spherial harmonis Ym
l (θ,ϕ) are ex-pressed in spherial oordinates for the unit sphere (0 ≤ θ ≤ π, 0 < ϕ ≤ 2π,

ρ = 1, see Figure 3). The spherial harmonis an be fatorized as
Ym

l (θ,ϕ) = kl,mP
m
l (os θ)eimϕ, (7)where Pm

l is an assoiated Legendre polynomial and kl,m is a normalisationonstant that is
kl,m =

√
2l+ 1

4π

(l −m)!

(l +m)!
(8)in ase of orthonormal spherial harmonis (see (Barut and R�azka, 1986)for further details).Then, the spherial Fourier transform of a funtion f ∈ L2(S2) an bealulated as the projetion of this funtion on the orthonormal basis of thespherial harmoniŝ

f(l,m) = 〈f, Ym
l 〉 = (9)

= kl,m

∫

S2

dµ(ω)Ym
l (ω)f(ω),where dµ = sin θdθdω is SO(3) invariant measure on S2. Using Equation7 and Equation 9, it is easy to see that the spherial Fourier transform is8



a regular Fourier transform in ϕ followed by a projetion on the assoiatedLegendre polynomial.At this point, the only missing element to build the spherial sale-spaerepresentation of a spherial image is the funtion that plays the role of theGaussian kernel in the planar ase. In (Bulow, 2004), the author derivesthis funtion as a Green funtion of the heat equation (Equation 2) over S2,obtaining
gS2

(θ,ϕ, σ) =
∑

l∈N

√
2l+ 1

4π
Yl0(θ,ϕ)e

−l(l+1)σ2

2 , (10)
ĝS2

(l,m, σ) =

√
2l+ 1

4π
e

−l(l+1)σ2

2 , (11)where gS2 denotes the spherial Gaussian funtion. Therefore, using Equa-tion 5, the spherial Fourier transform of the sale-spae representation of anomnidiretional image mapped on the sphere, I(θ,ϕ), is
L̂S2

(l,m, σ) = Î(l,m)e
−l(l+1)σ2

2 (12)for the set of onsidered sales (di�erent values of σ), and its inverse spherialFourier transform,
LS2

(θ,ϕ, σ) = I(θ,ϕ) ∗ gS2

(θ,ϕ, σ), (13)is the spherial sale-spae representation of this image. Finally, the spherialdi�erene of Gaussians an be omputed as
ψS2

(θ,ϕ, σ) = LS2

(θ,ϕ, kσ) − LS2

(θ,ϕ, σ). (14)Using these expressions, the algorithm for the extration of interest pointswill be presented in the next setion.3 SIFT on the sphereLet us de�ne the SIFT algorithm in spherial oordinates. In this algorithm,the extration of interest points and the loal desriptor alulations are9



performed on the surfae of the unit sphere. Here, we propose two types ofdesriptors: Loal Spherial Desriptors (LSD) and Loal Planar Desriptors(LPD). The �rst one is omputed diretly on the sphere and is intended to bemathed with other LSD of points extrated from other omnidiretional im-ages. The seond one is generated using a loal planar approximation of theregion around the extrated interest point, and an be mathed with regularSIFT desriptors of points extrated from planar images. For the mathingproedure we follow the method proposed by (Lowe, 2004). It onsists ofpairing the nearest points in terms of the distane between their desriptors,if and only if the ratio between this distane and the seond smallest distaneis lower than a �xed threshold d. Along all the paper, a mathing betweentwo points, p1 and p2, in two di�erent images is onsidered as orret if thedistane between p1 and p2 in the �rst image is lower than σ1, where σ1 is thesale at whih the point p1 was deteted. This an be equivalently de�ned inthe seond image using σ2, σ2 being the sale of detetion of p2 in this image.The work�ow of the spherial SIFT algorithm is summarised in Algo-rithm 1. Eah one of the steps is desribed in details in the following se-tions. Throughout the paper, a spherial image will be onsidered de�nedin a (θ,ϕ)-grid where olumns are points of onstant longitude, ϕ ∈ [0, 2π),and rows are points of onstant latitude, θ ∈ [0, π].Algorithm 1 Spherial SIFT algorithm1: I(θ,ϕ)←− omnidiretional input image mapped on S22: Compute spherial sale-spae representation of I(θ,ϕ)3: Compute di�erene of Gaussians4: E←− Loal extrema of di�erene of Gaussians5: for eah Ei ∈ E do6: Compute LSD and/or LPD of Ei7: end for
10



3.1 Spherial sale-spae and di�erene of GaussiansThe spherial sale-spae representation of a spherial image I(θ,ϕ) (ρ is�xed to 1) is omputed using iteratively Equation 12, i.e.
LS2

(θ,ϕ, σi) = LS2

(θ,ϕ, σi−1) ∗ gS2

(θ,ϕ, �kiσ0), (15)where σ0 is the initial sale and �ki is hosen in suh a way that two neigh-bouring sales in the spherial sale-spae representation are separated by aonstant multipliative fator k = 21/S (in order to have a onstant num-ber S of images per otave). Therefore, σi = kσi−1 = kiσ0 and using thesemi-group property of the spherial sale-spae representation, we have that
(kiσ0)

2 + (�kiσ0)
2 = (ki+1σ)2, and so �ki = ki

√
k2 − 1. These expressions arealso valid in the planar ase.The generation proess of the spherial sale-spae representation is speededup by downsampling the image by two, instead of inreasing the σ, eah timea omplete otave of ψS2

(θ,ϕ, σ) an be obtained. This is the ommon pra-tie in the planar ase too, but in the spherial ase there is a peuliarity. Inorder to obtain LS2

(θ,ϕ, σ), a spherial Fourier transform is omputed and,therefore, aliasing has to be taking into aount. This proess of downsam-pling by 2 the images is espeially sensitive to aliasing, sine the bandwithof the spherial Fourier transform is also divided by 2. For this reason, afterthe omputation of eah otave, the next ondition is tested:
e

−nH(nH+1)(σ0/k)2

8 ≤ e−1, (16)where nH is the new height of the image after reduing its size. If it is not ful-�lled, instead of reduing the image size for the next otave, σ are inreasedand the image size is redued after the onvolution. Aliasing e�ets an stillappear if they are already present in the �rst omputed spherial Fouriertransform, or if σ inreases onsiderably (Equation 16 not ful�lled even forthe urrent H before downsampling). An example of the e�et of applyingthis anti-aliasing riterion before downsampling an intermediate image in theomputation of ψS2 , is shown in Figure 4.11



The input images are supposed to have a nominal standard deviation σNof half pixel, whih in our ase means σN = 0.5π/H, where H is the heightof the spherial image. To obtain the �rst image of the spherial sale spae,
LS2

(θ,ϕ, σ0/k), the input image is onvolved with a spherial Gaussian �lterwith standard deviation σ =
√

(σ0/k)2 − σ2
N. The omputation of ψS2 isshown in Algorithm 2. Note that the size of the input image an be doubledbefore starting the proess. Then, σN = π/H and the �rst loop starts at

o = −1.Algorithm 2 Spherial sale-spae and di�erene of Gaussians omputation1: S←− number of stages per otave2: O←− number of otaves3: n←− 04: for o = 0 to O do5: Compute LS2

(θ,ϕ, 2oσ0/k)6: for s = 0 to S+ 1 do7: Compute LS2

(θ,ϕ, 2oksσ0)8: Compute ψS2

(θ,ϕ, 2oks−1σ0)9: end for10: if Equation 16 is satis�ed then11: Downsample by 2 the starting image of the urrent loop and use itfor the next one12: else13: n←− n+ 114: Double the σ's of the urrent loop and use them in the next loop15: Eah LS2

(θ,ϕ, σ) in the next loop has to be downsampled by 2n16: end if17: end for3.2 Extrema extrationInterest points are loal extrema of ψS2

(θ,ϕ, σ) (Equation 14). A loal ex-treme is a point on the spherial grid whose value is bigger (smaller) than12



(a) ψS2

(θ,ϕ, 23kσ0) (thirdstage of the fourth otave)downsampling the image with-out applying the anti-aliasingriterion (b) ψS2

(θ,ϕ, 23kσ0) (thirdstage of the fourth otave)downsampling the image if theanti-aliasing riterion is ful�lledFigure 4: Example of the e�et of the anti-aliasing strategy for the ψS2omputation of the image in Figure 2b. The image size is 1024×1024 and thespherial sale-spae was generated using σ0 = 1.6π/1024, σN = 0.5π/1024and S = 3.
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its 8 neighbours, bigger (smaller) than its 9 neighbours in the sale aboveand bigger (smaller) than its 9 neighbours in the sale below. Note that,ontrary to a planar image, an image on the sphere has no borders and then,points loated at the last olumn (highest values of ϕ) are neighbours withpoints loated at the �rst olumn (lowest values of ϕ) and vie versa. Thesesimple omparisons give the extrema andidates, but prinipal urvature andontrast onditions are imposed on these points afterwards in order to keeponly the most stable ones.For eah deteted loal extreme of ψS2

(θ,ϕ, σ), ωi ≡ (θi, ϕi, σi), aquadrati funtion is �tted by using a Taylor expansion of Equation 14:
ψS2

(θ,ϕ, σ) ≃ ψS2

(θi, ϕi, σi) + (17)
+
∂ψS2

∂Θ

∣∣∣∣∣

⊤

ωi

δωi
+
1

2
δ⊤ωi

∂2ψS2

∂Θ2

∣∣∣∣∣
ωi

δωi
,where Θ ≡ (θ,ϕ, σ) and δωi

= (θ−θi, ϕ−ϕi, σ−σi)
⊤. The derivatives arealulated as the entral �nite di�erenes approximation of the derivativesof the image in that point, i.e. for a funtion f : Rn −→ Rm the entral �nitedi�erene approximation of the derivative with respet to the jth variable,

xj is
∂f

∂xj
= fxj(x1, x2, . . . , xj, . . . , xn) = (18)
=

f(. . . , xj + ∆xj , . . . ) − f(. . . , xj − ∆xj , . . . )

2∆xj

.From now on, the notation fx will be used to express the derivative (or the�nite di�erenes approximation) of f with respet to x.Taking the derivative of Equation 17 with respet to δωi
, the o�set �δωito the extreme of the �tted funtion is obtained�δωi

= −

(
∂2ψS2

∂Θ2

)−1

∂ψS2

∂Θ
. (19)14



If any of the omponents of vetor �δωi
is bigger than half the separationbetween two points in this dimension, the point ωi is moved to its neighbourin this dimension and the proess repeated. To avoid loops, the maximumnumber of iterations in the implemented version has been �xed to 5. Forthe tests presented in this paper, the movement in the σ dimension has notbeen taken into aount. At the end of this iterative proess, a point �ωi isobtained.One �ωi has been obtained, the ontrast at this point is omputed, andif the ondition

|ψS2

(�δ �ωi
)| >

0.02

ks2o
(20)is not satis�ed, �ωi is disarded. The threshold value in Equation 20 has beende�ned empirially.Finally, the ratio r of prinipal urvatures is obtained at �ωi and thepoint is kept if and only if r < 10 (same value than in (Lowe, 2004)). Thiseliminates points situated along edges, where one prinipal urvature is highbut the other is low, whih produes unstable points. In other words, if apoint does not satisfy the following onditiontrae(HS2

)2det (HS2
)
<

(r+ 1)2

r
, (21)where

HS2

=

(
ψS2

θθ ψS2

θϕ

ψS2

θϕ ψS2

ϕϕ

)
, (22)it is disarded. The full extrema extration proedure an be found in Algo-rithm 3.3.3 Loal Spherial Desriptor (LSD)In order to math points extrated from di�erent omnidiretional images andobtained with the proposed algorithm, a Loal Spherial Desriptor (LSD)is omputed at eah point. This desriptor is obtained using the spherial15



Algorithm 3 Algorithm for the extration of �good� loal extrema1: E←− ∅ the set of loal extrema2: for o = 0 (or o = −1) to O do3: for s = 0 to S− 1 do4: for eah point ωi ≡ (θi, ϕi, σi) of ψS2

(θ,ϕ, 2oksσ0) do5: if ωi is a loal extreme then6: Compute �ωi7: if Equations 20 and 21 are satis�ed at �ωi then8: E←− {E, �ωi}9: end if10: end if11: end for12: end for13: end forsale-spae representation of the image (see Setions 2 and 3.1) and onsistsof a set of histograms of orientations in a region around the given point. Thesize of this region depends on the sale (σ) at whih the point has been de-teted. Orientations are omputed with respet to a prinipal orientation ofthe point, whih makes the desriptor invariant to rotations around the axisthat links the point with the entre of the sphere. The omplete proedureis detailed below.First, the orientation of a point in the spherial sale spae representationhas to be de�ned. Let us have a point (θ,ϕ) ∈ S2 at sale σ. Its orientationis de�ned as the angle of the gradient of LS2 in that point, with the 0 degreespointing to the south pole and the 90 degrees to bigger values of ϕ. Thesegradients are obtained using the entral �nite di�erenes approximation ofthe derivatives (Equation 18) as
α(θ,ϕ, σ) = artan(LS2

ϕ (θ,ϕ, σ)

LS2

θ (θ,ϕ, σ)

)
. (23)Then, for eah onsidered extreme of the ψS2 , Equation 23 is used toompute the orientations of surrounding points on the spherial grid in a16



3σ×3σ squared window entred at the extreme (where σ is the sale at whiheah extreme was loated). To de�ne this window, the distane between twopoints on the unit sphere, p1 ≡ (θ1, ϕ1) and p2 ≡ (θ2, ϕ2), needs to bealulated. It an be obtained using the Vinenty's formula (Vinenty, 1975):
d(p1, p2) = artan(√

A2 + B2

C

)
, (24)where

A = sinθ1 sin∆ϕ, (25)
B = sinθ2 os θ1 − os θ2 sin θ1 os∆ϕ, (26)
C = os θ2 os θ1 + sinθ2 sin θ1 os∆ϕ, (27)
∆ϕ = ϕ1 −ϕ2. (28)For eah window, a histogram of orientations is omputed using the ori-entations of points of the spherial grid that are inside. The orientation valueat eah point de�nes the bin, and the value added to this orresponding binis the norm of the gradient at that point,
m(θ,ϕ, σ) =

√
LS2

ϕ (θ,ϕ, σ)2 + LS2

θ (θ,ϕ, σ)2, (29)weighted by a Gaussian entred on the extreme and of standard deviation
1.5σ. For this histogram, 36 orientations are onsidered. Finally, one thehistogram is omputed, the prinipal orientation is alulated as the axis of aparabola �tted around its maximum. If there are bins greater than 0.8 timesthe biggest one, they are also onsidered, whih results in multiple prinipalorientations for the same point.For eah prinipal orientation of eah extreme point, the orientations ofthe points around an be reomputed with respet to this orientation, andthe LSD an be omputed. This desriptor is a 3-dimensional histogramof orientations (two spatial dimensions and one dimension for orientations)where all the orientations are onsidered with respet to the prinipal one.The produed histogram has 42 × 8 bins (42 bins for the spatial dimension17



(a) Portion of the un-wrapped image (b) Portion of thesphereFigure 5: Example of two points deteted using the proposed algorithm.The yellow lines show the prinipal orientation. As it an be seen, one of thepoints have two prinipal orientations.and 8 bins for the orientations) and is omputed onsidering the points of thespherial grid ontained in a 6σ×6σ squared window entred at the extremeand rotated aording to the prinipal orientation. Eah entry for eah binorresponds to the sum of the gradient magnitudes of points orrespondingto this spatial and orientation bin, weighted by a Gaussian entred on theextreme and of standard deviation 1.5σ. The rotation of the window on thesurfae of the sphere an be omputed using the Rodrigues' rotation formula(Rodrigues, 1840) for the rotation of vetors, given by
vRot = v osα+ u× v sinα+ u · v(1− osα)u, (30)where the vetors are onsidered in Cartesian oordinates, and the vetor

vRot is the rotated version of v around u, α degrees.In order to avoid boundary e�ets, the values of eah gradient sample aredistributed by trilinear interpolation into adjaent histogram bins. The re-sulting histogram is normalised, eah bin thresholded to 0.2 and normalisedagain, in order to make it robust to ontrast hanges. The algorithm for theomputation of Loal Spherial Desriptors is summarised in Algorithm 4.
18



Algorithm 4 Algorithm for the omputation of LSD1: LSD←− ∅ the set of loal spherial desriptors2: for eah onsidered extreme of ψS2 , (θi, ϕi, σi) do3: Selet a squared region of size 3σi × 3σi entred at (θi, ϕi)4: Compute orientations and gradient norms inside this region5: Compute histogram of orientations6: MAX ←− maximum histogram value7: for eah bin value ≥ 0.8MAX do8: Fit a parabola around this bin9: b←− axis of the parabola10: Selet a squared region of size 6σi × 6σi entred at (θi, ϕi) androtated b degrees11: Compute orientations and gradient norms inside this region withrespet to b12: LSDi←− Compute 3-dimensional histogram13: LSD←− {LSD,LSDi}14: end for15: end for

19



3.4 Loal Planar Desriptor (LPD)Loal Planar Desriptors (LPD) allow to arry out mathing between pointsextrated from an spherial image, with the algorithm desribed above, andSIFT desriptors of points extrated from planar images. This is of greatimportane sine, for instane, a preexisting database of SIFT desriptorsomputed on planar images ould be used to detet objets on the omnidi-retional image.The LPD is a regular SIFT desriptor omputed on a planar approxi-mation of the region around eah interest point ωi ≡ (θi, ϕi, σi). We on-sider pi ≡ (θi, ϕi) to be the entre of this planar approximation, whih isthe stereographi projetion from the antipodal point of pi on the tangentplane on the sphere at pi. This stereographi projetion of LS2

(θ,ϕ, σi)around pi an be seen as a loal approximation of L(x, y, σ). In otherwords, for a point pi ≡ (θi, ϕi), extrated from the spherial image at thesale σi, a squared window entred on ωi on LS2

(θ,ϕ, σi) and of size equalto the minimum between 12σi and π, is stereographially projeted from
(θi + π/2,ϕ + π) to the plane tangent at pi. The projeted points are lin-early interpolated in order to obtain a planar image whose artesian rangeis [−2 tan 6σi

2
, 2 tan 6σi

2
] × [−2 tan 6σi

2
, 2 tan 6σi

2
] and with a pixel spaing of

2 tan π
2H
, where H is the height of LS2

(θ,ϕ, σi). The equivalent σi in theobtained planar image is
σ
pl
i =

tan σi

2tan π
2H

. (31)The outline of the omputation of Loal Planar Desriptors is given inAlgorithm 5.4 Planar to spherial transformationAs said before, LPD an be mathed with regular planar SIFT desriptorsextrated from planar images. In addition to this new kind of mathing, wepropose a method to estimate the funtion that transfers points in a planar20



Algorithm 5 Algorithm for the omputation of LPD1: LPD←− ∅ the set of loal planar desriptors2: for eah onsidered extreme of ψS2 , (θi, ϕi, σi) do3: L(x, y, σ
pl
i ) ←− stereographi projetion of L(θ,ϕ, σi) from (θi +

π
2
, ϕi + π) to the tangent plane at (θi, ϕi)4: LSDi←− SIFT desriptor of L(x, y, σpli ) at (x, y) = (0, 0)5: LSD←− {LSD,LSDi}6: end forimage to their orresponding points in a spherial image, like an homogra-phy does between two planar images. Furthermore, given a segmentation ofa planar image, this transformation ould be used for instane to extrat thesegmented objets or regions from an omnidiretional image.Let us onsider a math between a point ppli ≡ (x

pl
i , y

pl
i ) in a planar imageand a point pS2

j ≡ (xS2

j , y
S2

j , z
S2

j ) in a spherial image, both in artesianoordinates. The idea is to �nd a linear transformation H whih sends pplito a point qij in the spae whose projetion on the unit sphere is pS2

j (seeFigure 6). In other words, we look for a 3× 3 matrix H that satis�es
pS2

j =
qij

||qij||
=

Hp
pl
i

||Hp
pl
i ||
, (32)where || · || denotes the 2-norm. To ahieve that, the entral point of theplanar image is tangentially plaed at the north pole of the sphere thatontains the omnidiretional image. In this way, a point ppli ≡ (x

pl
i , y

pl
i )of the planar image has oordinates (x

pl
i , y

pl
i , 1) ∈ R3. Then, in order toestimate H, the fat that pS2

j and Hppli must be ollinear is exploited foringtheir vetorial produt to be zero, i.e. pS2

j × Hp
pl
i = 0. As in a typialhomography estimation problem between two planar images, this onditionan be expressed in terms of the elements of H, giving us 3 equations for

21



eah point
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j x
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j z
pl
i h13

+ xS2

j x
pl
i h21 + xS2

j y
pl
i h22 + xS2

j z
pl
i h23 = 0, (35)where the elements of the matrix H are distributed as

H =



h11 h12 h13

h21 h22 h23

h31 h32 h33


 (36)Consequently, if Equations (33, 34, 35) are expressed in terms of hlm andall the resulting equations for eah pair of mathed points are put together,we obtain a system of equations of the form Ah = 0, whereh = (h11, h12, h13, h21, h22, h23, h31, h32, h33)

⊤and A is a 3N × 9 matrix, N being the number of points mathed betweenthe planar and the spherial image. If the restrition ‖h‖ = 1 is onsidered,h an be omputed as the eigenvetor of A orresponding to the smallesteigenvalue, whih is the least squares estimator of the solution.The estimation of this matrix, gives a transformation h : R2 −→ S2 whihsends points in the planar image to points in the spherial one
h(x, y) =

H



x

y

1




∥∥∥∥∥∥∥
H



x

y

1




∥∥∥∥∥∥∥

. (37)
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iFigure 6: Graphial sketh of the transformationTransforming points of the spherial image into points of the planar im-age, an also be done using H−1 and normalising the resulting point by itsthird omponent, to obtain a point of the form (x, y, 1).The estimation of H using all the mathed points an give bad resultsdue to false mathings. For this reason, in the tests presented in Setion 5.1the set of mathed points hosen for the estimation of H is seleted usingRANSAC. The outline of the proess for omputing H an be found in Al-gorithm 6.Algorithm 6 Algorithm for the estimation of H1: LPD←− set of loal planar desriptors of the spherial image2: SIFTDes←− set of SIFT desriptors of the planar image3: M←− mathing points between SIFTDes and LPD4: H←− eigenvetor with minimum eigenvalue of the matrix de�ned usingEquations 33, 34 and 35 (use RANSAC to lean M of false mathings).
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5 Experimental resultsFor our experimental results we use two types of omnidiretional images:paraboli and spherial. The paraboli omnidiretional image is obtainedby a atadioptri omnidiretional sensor. We use a paraboli mirror KaidanEyeSee 360 deg4 in ombination with a Nikon D40X amera. In order toapply our algorithm on this kind of images, we �rst need to map themon the sphere aording to the projetion shown on Figure 1. After thismapping, these images over a band of about 100 deg on the sphere. Thespherial images are obtained with a Ladybug2 devie5. These images overaround 75% of the sphere. It is important to note that the Ladybug2 out-puts the images diretly in spherial oordinates and thus no mapping on thesphere is needed for these images. The resolution of both types of images is
1024× 1024. It is important to note that for this image size, the onsideredvalues of σ and the use of the anti-aliasing riterion, the aliasing an be ne-gleted. For example, for σ = 4.6π/1024 and a bandwidth of 1024/2 = 512,
ĝS2

(512,m, σ) ≈ 3.95 · 10−11.5.1 �Omni vs Omni� mathingFirst of all, in order to test LSD mathing, some parameters of the algorithmneed to be �xed, essentially S and σ0. To hoose them, some test images havebeen randomly rotated around the x-axis and orrupted with zero mean ad-ditive Gaussian noise with standard deviation 0.05 (pixel values are supposedto be in the range [0, 1]). Sine the transformation between eah test imageand its rotated and orrupted version is known, for a given point in one im-age, its orresponding point in the other image an be omputed. Therefore,the repeatability of the extrated points an be measured as
rij =

nRmin (ni, nj)
, (38)4http://www.kaidan.com5http://www.ptgrey.com/products/ladybug2/24



where ni and nj are the number of extrated points from images i and j,respetively, and nR is the number of repeated points.On Figure 7 we show the results of the repeatability tests obtained with
20 paraboli omnidiretional images. The same tests for 8 spherial omnidi-retional images are shown on Figure 8. These results are similar for bothtypes of omnidiretional images. As expeted, the repeatability inreases forhigher values of σ0. But a higher σ0 also means that the extrema of the DoGat lower sales are lost. Consequently, a ompromise has to be found be-tween the smallest sale of the extrema deteted and the tolerated amount of�noise� (not repeatable points) between all the extrated points. On the otherhand, higher values of S imply a greater number of stages per otave, whihrequires more omputation time. Looking at the graphis, σ0 = 4.6π/1024and S = 3 are reasonable values to hoose. In Table 1, mathing results usingthese values and varying the distane threshold are shown. We an see therehow by dereasing the threshold, the number of total mathings is reduedbut the perentage of orret mathings is inreased. In Figure 9, results ofrepeatability and orret mathings as a funtion of pixel noise are given.These graphis show the robustness of the algorithm against image noise.Looking at the repeatability results, it an also be observed that resultssimilar to these of the original SIFT are obtained with a higher σ0 value.This is probably due to the fat that the transformation from the originalomnidiretional image to the image on S2, requires some interpolation. Thisinterpolation an add some artifats to the image that an produe unstablepoints that are therefore not good to onsider. A higher value of σ0 solvesthis problem, as these artifats disappear with the �rst onvolution with theGaussian.In Figures 10, 11 and 12, some mathing results are illustrated. The val-ues of the working parameters are S = 3 and σ0 = 4.6π/1024. First, themathing between two versions of the same paraboli omnidiretional imagemapped on the sphere is performed and shown on Figure 10. On the leftis the original image and on the right the same image but rotated and or-25



rupted by additive zero mean Gaussian noise with standard deviation 0.05.In total, 136 points were extrated from the original image and 170 from itsrotated and orrupted version. From these points, 126 mathings have beenobtained. Among them, 115 are orret and 11 inorret. All the orretmathings are shown in green, but for a purpose of visualisation, only 5 ofthem are linked. The inorret mathes are shown in red.In Figure 11, a plot of the mathings between two paraboli omnidire-tional images is illustrated. Both images are of the same sene and weretaken from two slightly di�erent plaes and on two di�erent days. Lightingonditions are very di�erent and there are also some small hanges of objetsin the sene. The maximum distane ratio was �xed to d = 0.58 in order tohave a redued number of mathings. Indeed, as we are mathing two di�er-ent images without any information about the hange in the point of view,orret mathings an only be ontrolled visually. Finally, in Figure 12 isillustrated a plot of the obtained mathings between paraboli and spherialimages. As in the other ase, the images were taken on two di�erent daysand from slightly di�erent plaes. The maximum distane ratio in this asewas �xed to d = 0.64.5.2 �Planar vs Omni� mathingIn this setion, LPD are tested for mathing between points extrated fromomnidiretional images (using Algorithm 1) and points extrated from a pla-nar image (using the original SIFT algorithm). For these tests, the SIFTparameters proposed in (Lowe, 2004) (S = 3 and σ0 = 1.6) are used inboth the SIFT algorithm and the spherial SIFT algorithm. Note that onthe sphere, the equivalent σ parameter is σ0 = 1.6π/1024. The omnidire-tional image is not doubled to ompute otave −1 beause the proessing ofa 2048×2048 image, with all the spherial Fourier transforms involved, takestoo muh time. In addition, some tests have been done omputing otave −1and it did not inrease the number of orret mathings signi�antly. Thisould be another e�et of the interpolation while mapping the omnidire-26
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(a) Repeatability varying the amount ofnoise (spherial images) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gaussian additive noise standard deviation

R
ep

ea
ta

bi
lit

y

(b) Repeatability varying the amount ofnoise (paraboli omnidiretional images)
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() Mathing performane with d = 0.6varying the amount of noise (spherialimages) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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(d) Mathing performane with d = 0.6varying the amount of noise (paraboliomnidiretional images)Figure 9: Plots of repeatability and orret mathing between omnidire-tional images and their orrupted version, varying the standard deviation ofGaussian noise added. The entral line represents the mean value and theother two orrespond to the mean± σ. The perentage of orret mathingshas been omputed as the number of orret mathings divided by the num-ber of repeated points. The statistis have been alulated on 23 paraboliomnidiretional images and 8 spherial images.
29



Figure 10: ϕ− θ-plot of mathings between a paraboli omnidiretional im-age (left) and the same omnidiretional image rotated π/8 radians aroundthe x-axis and orrupted by additive zero mean Gaussian noise with standarddeviation 0.05 (right). The values S = 3, σ0 = 4.6π/1024 and a maximumdistane ratio of 0.8 have been used in the omputations. Green dots repre-sent orret mathings, red dots are inorret mathings and for a purposeof visualisation, 5 orret mathings have been linked. In total, 229 pointswere extrated from the image on the left and 225 from the image on theright, produing 208 mathings (182 orret and 26 inorret).
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Figure 11: ϕ − θ plot of mathings between two paraboli omnidiretionalimages. The values S = 3, σ0 = 4.6π/1024 and a maximum distane ratio of
0.58 have been used in the omputations, obtaining 15 mathings (9 orretand 6 inorret, ounted visually). The distane ratio has been hosen tohave few point mathings, for visualisation purposes.tional image on the sphere, whih an ause that doubling the size of theimage afterwards adds too muh noise, and then, too many unstable points.On Figure 13, two examples of mathing between omnidiretional andplanar images are shown. An example with a paraboli omnidiretional im-age is shown on Figure 13a, while on Figure 13b a spherial image is used.For both omnidiretional images, LPDs are extrated as explained in Se-tion 3.4. The planar images represent an objet from the omnidiretionalsene. For instane, in Figure 13a the objet in the planar image is the ÉolePolytehnique Fédérale de Lausanne (EPFL) logo, while in Figure 13b it is aposter. On eah of the planar images, the usual SIFT algorithm (Lowe, 2004)has been applied. Comparing Figures 13a and 13b, we note that more pointsare mathed with the spherial image than with the paraboli one (181 and
105 respetively). This higher number of mathings with spherial images isthe ommon situation among all the performed tests. Although, if omparedwith respet to the total number of extrated points, the results are very31



Figure 12: ϕ − θ plot of mathings between a paraboli omnidiretionalimage (left) and a spherial image (right). The values S = 3, σ0 = 4.6π/1024and a maximum distane ratio of 0.62 have been used in the omputations,obtaining 10 mathings (6 orret and 4 inorret, ounted visually). Thedistane ratio has been hosen to have few point mathings, for visualisationpurposes.
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similar in both ases. Due to the higher level of detail of the spherial image,more points at the lower sales are extrated. This results in a bigger numberof mathings between spherial and planar images, while this is not the asebetween paraboli and planar ones. In fat, the paraboli image somehowloses information beause of the interpolation needed for mapping it on thesphere.The estimation of the planar to spherial transformation, as introduedin Setion 4, has been tested using Algorithm 6. First, Algorithm 1 was ap-plied to the orresponding omnidiretional image in order to obtain the setof LPDs. These then serve as inputs of Algorithm 6. Then, the regular SIFTdesriptors are omputed for the planar images. On Figure 14 the resultobtained with images ontaining the EPFL logo is shown. It is interesting tonote that the obtained results are satisfatory even with a highly symmetriobjet as is the ase of the hosen one. In fat, in this ase a mathing ouldbe loally orret while being inorret onsidering the whole objet.The same test for a spherial omnidiretional image is illustrated in Fig-ure 15. The spherial image is aptured in a orridor and the planar imageontains a poster as an objet of the omnidiretional sene. As expeted, theposter was orretly extrated after applying Algorithm 6.6 ConlusionsIn this paper, we have proposed a SIFT algorithm in spherial oordinates.It is not limited to pure spherial images, sine it an also be applied to awide variety of omnidiretional images that an be bijetively mapped on thesurfae of the unit sphere. Two types of desriptors have been proposed tobe omputed on the points given by the algorithm, Loal Spherial Desrip-tors (LSD) and Loal Planar Desriptors (LPD). Using these desriptors, wehave suessfully performed point mathings between omnidiretional im-ages, with LSD, and between omnidiretional and planar images, with LPD.For the mathings between omnidiretional images, the parameters of the33



(a) Unwrapped paraboli omnidiretional image mapped on the sphere (left)vs planar image (right)

(b) Unwrapped spherial image (left) vs planar image (right)Figure 13: Examples of mathings (green dots) between omnidiretional andplanar images for a distane threshold of 0.8. These points have been usedas input for Algorithm 6 to generate the images in Figures 14 and 1534



(a) Planar image. The small greendots are the mathed points betweenthe planar and the spherial imagethat have been used to ompute thetransformation. The border of thelogo (blue square) has been markedby hand.
(b) Original paraboli image

() Spherial image. The blue �gure is the transfor-mation of the blue square in Figure 14a by meansof Equation 37, with H omputed using Algorithm6.Figure 14: Example of the transformation of the boundary of an objet ina planar image to this objet in a paraboli omnidiretional image. Thetransformation funtion has been obtained using Algorithm 6.35



(a) Original Ladybug2 image

(b) Planar image. The smallgreen dots are the mathedpoints between the planar andthe spherial image that havebeen used to ompute the trans-formation. The border of theposter (blue square) has beenmarked by hand.
() Spherial image. The blue �gure is the transfor-mation of the blue square in Figure 15b by means ofEquation 37, with H omputed using Algorithm 6.

Figure 15: Example of the transformation of the boundary of an objet ina planar image to this objet in a spherial omnidiretional image. Thetransformation funtion has been obtained using the Algorithm 6.36



algorithm have been hosen aording to the results obtained on test imagesvarying S and σ0. For the planar vs omnidiretional ase, the same parame-ter values as those proposed in (Lowe, 2004) have been kept. Finally, pointmathings obtained in this last ase have been suesfully used to estimatea planar to spherial transformation. Potential appliations of the proposedalgorithm are global traking in hybrid amera networks (together with theSIFT algorithm for planar images), motion estimation in omnidiretionalimages, objet detetion and extration from omnidiretional images and, ingeneral, any problem requiring a mathing between points in omnidiretionalimages or between points in omnidiretional and planar images.The main drawbak of the proposed algorithm is the omputation time.Indeed, for a 1024 × 1024 image, the omplete point extration and LSDomputation takes around 1 minute. Computation time depends, however,on the number of stages per otave, the σ0 value and the number of pointsextrated. This time ould be redued by optimising the ode, but the bot-tlenek of the spherial Fourier transforms will always be present. This bot-tlenek, however, ould be minimised by implementing the e�ient algorithmfor the spherial Fourier transform presented reently in (Tygert, 2008).Many diretions for further researh an be onsidered starting from thiswork. For example, the use of other loal desriptors ould be tested, inpartiular the Gradient Loation and Orientation Histogram (GLOH) seemsto be very appropriate for spherial images. Experiments with real imageswhose full 3D viewpoint hange is known would also be very useful in or-der to better estimate the optimum parameters of the algorithm and testits performane. And last but not least, the study of approximations of thespherial di�erene of Gaussians, as it is done in SURF (Bay et al., 2008) forthe planar ase, would be very interesting, sine it ould lead to a real-timeapproximation of this algorithm.
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Table 1: Statistis for orret mathings between 31 omnidiretional images(23 paraboli and 8 spherial) and their rotated noisy version. The rotationis done around the x axis and its value is randomly hosen between 0 and
2π. The added noise is zero mean Gaussian noise with standard deviation
0.05. For the original paraboli omnidiretional images, the mean numberof extrated points is 217 (std. deviation = 82), and for their noisy rotatedversions is 223 (std. deviation = 99), with a mean repeatability of 0.743(std. deviation = 0.081). For the original spherial images, the mean numberof extrated points is 400 (std. deviation = 132), and for their noisy rotatedversions is 394 (std. deviation = 120), with a mean repeatability of 0.79(std. deviation = 0.033). The values in the table without parenthesis are themean values, and the ones with parenthesis are the standard deviations.Distane Threshold Corret MathingsParaboli Omnidiretional Images Spherial ImagesPerentage Absolute Value Perentage Absolute Value

0.05 1.00 (0.01) 11 (10) 1.00 (0.00) 27 (44)

0.10 1.00 (0.01) 24 (16) 1.00 (0.01) 52 (62)

0.15 1.00 (0.01) 32 (19) 1.00 (0.01) 70 (74)

0.20 1.00 (0.01) 39 (23) 1.00 (0.01) 82 (77)

0.25 0.99 (0.03) 44 (25) 1.00 (0.01) 90 (81)

0.30 0.98 (0.04) 48 (27) 1.00 (0.00) 100 (84)

0.35 0.97 (0.05) 52 (29) 0.99 (0.01) 107 (87)

0.40 0.96 (0.06) 56 (31) 0.99 (0.02) 115 (89)

0.45 0.96 (0.05) 60 (32) 0.97 (0.02) 120 (92)

0.50 0.94 (0.06) 64 (34) 0.97 (0.03) 126 (92)

0.55 0.93 (0.06) 67 (35) 0.95 (0.03) 133 (93)

0.60 0.90 (0.07) 71 (37) 0.93 (0.03) 138 (95)

0.65 0.87 (0.08) 75 (38) 0.91 (0.04) 144 (98)

0.70 0.84 (0.08) 79 (39) 0.89 (0.04) 150 (100)

0.75 0.80 (0.09) 82 (40) 0.84 (0.06) 156 (101)

0.80 0.75 (0.11) 85 (41) 0.79 (0.07) 164 (105)

0.85 0.70 (0.13) 89 (42) 0.71 (0.10) 169 (107)

0.90 0.63 (0.13) 94 (44) 0.64 (0.11) 178 (109)

0.95 0.56 (0.14) 99 (45) 0.56 (0.12) 185 (111)42


