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Abstract

A SIFT algorithm in spherical coordinates for omnidirectional im-
ages is proposed. This algorithm can generate two types of local de-
scriptors, Local Spherical Descriptors and Local Planar Descriptors.
With the first ones, point matching between omnidirectional images
can be performed, and with the second ones, the same matching pro-
cess can be done but between omnidirectional and planar images. Fur-
thermore, a planar to spherical transformation is introduced and an
algorithm for its estimation is given. This transformation allows to
extract objects from an omnidirectional image given their SIFT de-
scriptors in a planar image. Several experiments, confirming the good
performance of the system, are conducted.



1 Introduction

Omnidirectional vision has become a popular topic in computer vision. One
of its main benefits is that one omnidirectional camera can cover 360° around
it. As with conventional (planar) images, image matching is a main aspect of
many computer vision problems involving omnidirectional images, although
it has not been widely studied yet for this kind of cameras. Usually, tech-
niques designed for planar images are applied on omnidirectional images, as
for example on panoramic images, i.e. omnidirectional images mapped on a
cylinder (Yuen and MacDonald, 2005; Bur et al., 2006). This is not mathe-
matically correct. Even if locally those algorithms are still valid, as soon as
bigger regions of the image are considered, it is not the case anymore due to
the deformation that the omnidirectional sensor introduces. Moreover, not
only do omnidirectional and planar images coexist, but they are often used
jointly, for instance in camera networks. This is a source of new problems,
since not only matching between omnidirectional images is needed, but also
between omnidirectional and planar ones.

A common way of tackling the matching problem between two given im-
ages is by using interest points. These are points in an image that fulfil some
“interest” criterion. This criterion is usually defined in such a way that the
obtained points have a well-defined position, contain as much local informa-
tion on the surroundings as possible and are robust against changes in the
image, such as noise, perspective transformations, illumination changes, etc.
The location of these points is often used for the extraction of local image de-
scriptors. These are a transformation of the local image data into an element
of the transformed space, usually a vector, where some characteristics are
coded, as for example the shape, the orientation, the colour, the texture, etc.
They can be used afterwards for instance in matching or image registration.

1.1 State-of-the-art

Interest points are widely used nowadays by computer vision algorithms.
As commented before, two main aspects make these points useful: robust-
ness against image changes and richness of local information in terms of



local image structure. A wide variety of interest points has been defined
to best combine these two aspects, like for example Harris-Stephens cor-
ners (Harris and Stephens, 1988), SUSAN corners (Smith and Brady, 1997),
salient regions (Kadir and Brady, 2001), Maximally Stable Extremal Re-
gions (MSER) (Matas et al., 2002) or extrema of the Difference of Gaussians
(DoG) (Lowe, 2004). An excellent survey on this kind of points can be found
in (Tuytelaars and Mikolajczyk, 2007). Due to their stability, these key-
points are often used for the computation of local descriptors, which can be
used afterwards for several tasks, such as tracking, object detection or re-
gion matching. A wide variety of local descriptors has also been proposed
in the literature (Zabih and Woodfill, 1994; Van Gool et al., 1996; Baum-
berg, 2000; Lowe, 2004; Mikolajczyk and Schmid, 2005). For an exhaustive
comparison of local descriptors see (Mikolajczyk and Schmid, 2005).

Scale Invariant Feature Transform (SIFT), introduced in (Lowe, 2004), is
a well-known algorithm that successfully combines both notions. For interest
points, it considers extrema of the Difference of Gaussians, and for local
descriptors, a histogram of orientations. The SIFT algorithm detects points
in a scale-invariant way, as extrema in the response of the convolution of the
image with a DoG function

ll)(X,y,G):g(X,y,kG)—g(X,y,G), (1)

where g(x,y, o) denotes a 2-dimensional Gaussian kernel with standard de-
viation 0. This is based on the work of T. Lindeberg in (Lindeberg, 1998),
and the convolution of an image with \(x,y, o) can be computed as the dif-
ference of consecutive images in the scale-space representation of the image,
choosing properly the value of k. The scale-space representation L(x,y,t) :
R? x RT — R of an image I(x,y) can be equivalently defined in two different
ways. The first one is the evolution over time of the heat distribution I(x,y)
in an infinite homogeneous medium:

1
3 L(x,y,t) = EVZL(x,y,t), (2)

where the initial condition is L(x,y,0) = I(x,y). The second one is the
successive convolution of the image with a Gaussian kernel, g(x,y, o), of
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standard deviation o = V/t:

L(x,y,0) = g(x,y,0) * I(x,y). (3)

This scale-space representation of an image can be computed efficiently using
the definition of the convolution, thanks to the separability of the Gaussian
filter. The local data around each interest point is then used to compute
SIF'T descriptors. These local descriptors are invariant to rotation and scale
changes. They consist of a 3D histogram: two spatial dimensions and one
dimension for orientations. The size of this region depends on the scale at
which the point has been detected. Thanks to its simplicity, good results in
terms of repeatability and accuracy on matching, it has been used to treat
applications requiring tracking or matching of regions (Sirmacek and Un-
salan, 2009; Brox et al., Accepted for future publication).

Several variants of the SITFT algorithm have appeared, trying to improve
the interest point extraction or the local descriptor. Among those trying to
improve the interest point extraction, the most remarkable representative is
probably the Speed-Up Robust Features (SURF) algorithm (Bay et al., 2008).
For those trying to improve the local descriptor, a good representative is
the Gradient Location and Orientation Histogram (GLOH) introduced in
(Mikolajczyk and Schmid, 2005).

All these algorithms and techniques have been developed to work with
regular (planar) images or videos. Over the last years, though, omnidirec-
tional imaging has become a popular topic, due to both, the availability of
simple sensors (e.g. parabolic mirrors mounted on regular cameras) and the
great advantages it provides (e.g. a 360 degrees view in one single image).
This kind of sensors has a lot of applications, such as video surveillance
(Boult et al., 2001) or object tracking (Chen et al., 2008), and its use has
become very common in robot navigation (Menegatti et al., 2006) and in
autonomous vehicles (Ehlgen et al., 2008; Scaramuzza and Siegwart, 2008).
Interest points and local descriptors-based techniques, such as SIFT, have
been applied to omnidirectional images due to their good performance in
planar images (Goedeme et al., 2005; Tamimi et al., 2006; Valgren and Lilien-



thal, 2007; Scaramuzza and Siegwart, 2008). Recently, several efforts have
been made to develop algorithms specifically designed to treat these omnidi-
rectional images (Bogdanova et al., 2007; Hadj-Abdelkader et al., 2008). An
important aid in this sense were the results of Geyer and Daniilidis in (Geyer
and Daniilidis, 2001), where they show that the most common catadioptric
omnidirectional images can be bijectively mapped on the surface of a sphere.
In Figure 1, the equivalence between a parabolic projection and a central pro-
jection followed by a stereographic projection is schematically shown; and in
Figure 2, a particular example of mapping a real parabolic omnidirectional
image on the sphere through inverse stereographic projection can be seen.
Consequently, a whole family of omnidirectional images can be processed
by algorithms treating spherical images. The mapping from the captured
image to the sphere is the only adaptation needed for each element of the
family. Based on this result, Hansen et al. (Hansen et al., 2007b; Hansen
et al., 2007a) developed a SIFT-like algorithm on the sphere to match points
between wide-angle images. In this algorithm, the point extraction is com-
puted on the back-projection of the spherical scale-space to the wide-angle
image plane, and the descriptor is computed using a fixed size patch of 41 x41
pixels around each extracted point at the corresponding scale.

1.2 Contributions

This paper is two fold, it proposes both a SIFT algorithm in spherical coor-
dinates and a new approach to match points between two spherical images
or between spherical and planar images.

First of all, we propose an interest point extractor on the sphere based
on the spherical scale-space representation and the STFT algorithm. This al-
gorithm processes omnidirectional images mapped on the sphere (see Figure
2b) in order to take into account the deformation introduced by the omni-
directional sensor (see Figure 2a). The creation procedure of the spherical
scale-space is speeded up by successive downsampling of the input image for
each octave. However, considering that spherical Fourier transforms are com-
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Figure 1: Equivalence between the image of a point P through a parabolic
projection of centre Op and through a normalisation to the unit sphere with
centre Og followed by stereographic projection.

(a) Original parabolic omnidi- (b) Omnidirectional image (c) Unwrapped omnidirec-
rectional image mapped on the unit sphere tional image

Figure 2: Example of mapping a parabolic omnidirectional image on the
sphere. The unwrapped spherical image (Figure 2c¢) is often used for visual-

isation purposes.



puted, this division is subject to aliasing. For this reason, an anti-aliasing
criterion is defined to decide whether an image is downsampled or not.

Our second main contribution concerns the matching part. We here pro-
pose two types of descriptors. The first one is meant to carry out matching
between two spherical images. And the second one allows to perform match-
ing between spherical and planar images. Both descriptors can be very useful
when working, for example, with camera networks containing at the same
time omnidirectional and regular cameras, what is known as hybrid camera
networks. In such case, the descriptors proposed here can easily help regis-
tering data from all the components of the network.

Finally, we also introduce a transformation between planar and spherical
images. This transformation can be used to send the contour or regions of
a planar object in a planar image to a spherical one and vice versa. The
parameters of this transformation are estimated by means of the obtained
matched points, cleaning false detections with the Random Sample Consen-
sus (RANSAC) algorithm (Fischler and Bolles, 1981). The inputs of the
estimation process are respectively the matched points from the omnidirec-
tional and the planar images.

Several experiments are performed on real omnidirectional images to test
the proposed algorithms. The code developed for these tests has been imple-
mented in Matlab® and source code and images are freely available! under
the GPL license. The source code requires the installation of the “Yet An-
other Wavelet Toolbox” (YAWTb)? for MatLab. This library provides an
efficient way of computing the spherical harmonic transformations as well as
a nice visualisation interface. Finally, for the RANSAC routines, we used the
RANSAC Toolbox?.

This paper is organised as follows. In Section 2, the mathematical as-

"http://transp-or2.epfl.ch/pagesPerso/javierFil es/software. php
2http://rhea.tele.ucl.ac. be/yawb
3ht t p: / / www. mat hwor ks. con? mat | abcentral / fi | eexchange/ 18555



pects of the interest point extraction on the sphere are exposed. In Section
3, the proposed algorithm is described in detail, as well as the two pro-
posed descriptors. Then, in Section 4, a “plane to sphere” transformation
(similar to a homography between planar images) is defined and a method
for its estimation is given. In Section 5, several experiments are presented,
between omnidirectional images in Section 5.1 and between omnidirectional
and planar images in Section 5.2. Finally, in Section 6, some conclusions and
potential lines for future research are given.

Now, we can start with the basic notions of harmonic analysis on the
sphere.

2 Spherical scale-space

Let us consider two functions f, h € L?(S?) defined on the two-sphere S? € R3.
Then, the convolution on the sphere reads

(f*h)(w) = J o0 f(rn)h(r'w)dr, (4)

where w = (0, @) € S2, 0 € [0,7], @ € [0,27) (see Figure 3) and 1 is the
north pole. Equation 4 is hard to compute, but as it was demonstrated by
Driscoll and Healy in (Driscoll and Dennis M. Healy, 1994), the convolution
of two spherical functions f, h € L%(S?) can be calculated more efficiently as
the pointwise product of their spherical Fourier transforms:

_— 4T ~

(f+h)(l, m) =27 T (1, m)h(L,0), (5)

o~

where (-) is the spherical Fourier transform of the function.

The spherical Fourier transform of a function f € L?(S?) is the set of
coefficients of the expansion of this function in terms of spherical harmonics

~

Y™, i.e. the coefficients f(1, m) of the expression

f(0,9)=> > (1, m)Y"0,e), (6)

1>0 jm|<1
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Figure 3: Spherical coordinates of a point on S? (p = 1)

where the function f(0, @) and the spherical harmonics Y{™(0, ¢) are ex-
pressed in spherical coordinates for the unit sphere (0 <0 <7, 0 < ¢ < 2,
p =1, see Figure 3). The spherical harmonics can be factorized as

Y18, @) = kymP{"(cos 8)e™™?, (7)

where P{™" is an associated Legendre polynomial and ki, is a normalisation

kl,mZ\/ZIH (1—m)! n

constant that is

4t (14+m)!
in case of orthonormal spherical harmonics (see (Barut and Raczka, 1986)

for further details).

Then, the spherical Fourier transform of a function f € L?(S?) can be
calculated as the projection of this function on the orthonormal basis of the
spherical harmonics

flum) = (v = ®)
— kl’mJ dp(w)Y™w)f(w),
S2

where du = sin 0d0dw is SO(3) invariant measure on S?. Using Equation
7 and Equation 9, it is easy to see that the spherical Fourier transform is



a regular Fourier transform in ¢ followed by a projection on the associated
Legendre polynomial.

At this point, the only missing element to build the spherical scale-space
representation of a spherical image is the function that plays the role of the
Gaussian kernel in the planar case. In (Bulow, 2004), the author derives
this function as a Green function of the heat equation (Equation 2) over S2,

21+ 1 —1(1+1)0?

SZ

= E A/ Y, 2 1
g (e»(P»O-) 47 10(6)@)6 ) ( 0)

leN

- 21+ 1 —wsno?
(1 m o) — —He 11
g ( ) )0-) 4 e 2 ) ( )

obtaining

where gSz denotes the spherical Gaussian function. Therefore, using Equa-
tion 5, the spherical Fourier transform of the scale-space representation of an
omnidirectional image mapped on the sphere, 1(0, @), is

—1(1+1)02

(1, m, o) =1(1,me 2 (12)

for the set of considered scales (different values of 0), and its inverse spherical
Fourier transform,

L5(0, @,0) = 1(6, ) x g% (6, @, 0), (13)

is the spherical scale-space representation of this image. Finally, the spherical
difference of Gaussians can be computed as

¥ (0, ¢,0) =L%(0, 9, ko) — L6, ¢, 0). (14)

Using these expressions, the algorithm for the extraction of interest points
will be presented in the next section.

3 SIFT on the sphere

Let us define the SIFT algorithm in spherical coordinates. In this algorithm,
the extraction of interest points and the local descriptor calculations are
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performed on the surface of the unit sphere. Here, we propose two types of
descriptors: Local Spherical Descriptors (LSD) and Local Planar Descriptors
(LPD). The first one is computed directly on the sphere and is intended to be
matched with other LLSD of points extracted from other omnidirectional im-
ages. The second one is generated using a local planar approximation of the
region around the extracted interest point, and can be matched with regular
SIF'T descriptors of points extracted from planar images. For the matching
procedure we follow the method proposed by (Lowe, 2004). Tt consists of
pairing the nearest points in terms of the distance between their descriptors,
if and only if the ratio between this distance and the second smallest distance
is lower than a fixed threshold d. Along all the paper, a matching between
two points, p; and p», in two different images is considered as correct if the
distance between py and p; in the first image is lower than oy, where o7 is the
scale at which the point p; was detected. This can be equivalently defined in
the second image using 05, 0> being the scale of detection of p, in this image.

The workflow of the spherical SIFT algorithm is summarised in Algo-
rithm 1. Each one of the steps is described in details in the following sec-
tions. Throughout the paper, a spherical image will be considered defined
in a (0, @)-grid where columns are points of constant longitude, ¢ € [0, 271),
and rows are points of constant latitude, 0 € [0, 7.

Algorithm 1 Spherical SIFT algorithm
1: 1(0, @) «— omnidirectional input image mapped on S?

Compute spherical scale-space representation of 1(0, @)
Compute difference of Gaussians
E «— Local extrema of difference of Gaussians
for each E; € E do
Compute LSD and/or LPD of E;
end for

10



3.1 Spherical scale-space and difference of Gaussians

The spherical scale-space representation of a spherical image 1(0, @) (p is
fixed to 1) is computed using iteratively Equation 12, i.e.

LSZ (e) ®, o-i) - LSZ (e) ®, 0-1—1) * 952 (e) Q, ]210—0), (15)

where 0y is the initial scale and k; is chosen in such a way that two neigh-
bouring scales in the spherical scale-space representation are separated by a
constant multiplicative factor k = 2'/5 (in order to have a constant num-
ber S of images per octave). Therefore, 0; = ko;_ 1 = klop and using the
semi-group property of the spherical scale-space representation, we have that
(kiog)? + (kioo)? = (k'*10)2, and so k; = kivkZ — 1. These expressions are
also valid in the planar case.

The generation process of the spherical scale-space representation is speeded
up by downsampling the image by two, instead of increasing the o, each time
a complete octave ofll)Sz (0, @, o) can be obtained. This is the common prac-
tice in the planar case too, but in the spherical case there is a peculiarity. In
order to obtain L% (0, ¢, 0), a spherical Fourier transform is computed and,
therefore, aliasing has to be taking into account. This process of downsam-
pling by 2 the images is especially sensitive to aliasing, since the bandwith
of the spherical Fourier transform is also divided by 2. For this reason, after
the computation of each octave, the next condition is tested:

“nH(nH+1) (0p/k)?

e 3 <e, (16)

where nH is the new height of the image after reducing its size. If it is not ful-
filled, instead of reducing the image size for the next octave, o are increased
and the image size is reduced after the convolution. Aliasing effects can still
appear if they are already present in the first computed spherical Fourier
transform, or if o increases considerably (Equation 16 not fulfilled even for
the current H before downsampling). An example of the effect of applying
this anti-aliasing criterion before downsampling an intermediate image in the
computation of P>, is shown in Figure 4.
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The input images are supposed to have a nominal standard deviation oy
of half pixel, which in our case means on = 0.57t/H, where H is the height
of the spherical image. To obtain the first image of the spherical scale space,
LS (0, @, 09/k), the input image is convolved with a spherical Gaussian filter
with standard deviation ¢ = \/(00/k)2— 02,. The computation of {5 is
shown in Algorithm 2. Note that the size of the input image can be doubled
before starting the process. Then, on = 7t/H and the first loop starts at
o=—1.

Algorithm 2 Spherical scale-space and difference of Gaussians computation
1: S «— number of stages per octave

2: O «— number of octaves

33 n«——0

4: foro =0 to O do

5. Compute LS (0, @, 2°00/k)

6: fors=0toS+1do

7: Compute LS (0, ¢, 2°k*0,)

8: Compute P (8, ¢, 2°ks o)

9:  end for

10:  if Equation 16 is satisfied then

11: Downsample by 2 the starting image of the current loop and use it

for the next one

12:  else
13: n—n+1
14: Double the o’s of the current loop and use them in the next loop
15: Each LS (0, @, 0) in the next loop has to be downsampled by 2™
16: end if
17: end for

3.2 Extrema extraction

Interest points are local extrema of 5 (0, ¢, 0) (Equation 14). A local ex-
treme is a point on the spherical grid whose value is bigger (smaller) than

12



(a)  VS'(0,9,23kao)  (third (b)  WS* (0, ¢,2%ko0)  (third

stage of the fourth octave) stage of the fourth octave)
downsampling the image with- downsampling the image if the
out applying the anti-aliasing anti-aliasing criterion is fulfilled
criterion

Figure 4: Example of the effect of the anti-aliasing strategy for the P’
computation of the image in Figure 2b. The image size is 1024 x 1024 and the
spherical scale-space was generated using oo = 1.671/1024, on = 0.571/1024

and S = 3.
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its 8 neighbours, bigger (smaller) than its 9 neighbours in the scale above
and bigger (smaller) than its 9 neighbours in the scale below. Note that,
contrary to a planar image, an image on the sphere has no borders and then,
points located at the last column (highest values of @) are neighbours with
points located at the first column (lowest values of @) and vice versa. These
simple comparisons give the extrema candidates, but principal curvature and
contrast conditions are imposed on these points afterwards in order to keep
only the most stable ones.

For each detected local extreme of PS' (0, @,0), w; = (04, @i, 01), a
quadratic function is fitted by using a Taylor expansion of Equation 14:

VS (0,9,0) ~ V(0 i, 00) + (17)
T
611)52 1 - az.q)SZ
T e | Setiluger| Oe

where © = (0, @, 0) and 8, = (0 —0i, @ — @i, 0—01)". The derivatives are
calculated as the central finite differences approximation of the derivatives
of the image in that point, i.e. for a function f : R™ — R™ the central finite
difference approximation of the derivative with respect to the jth variable,
X is
of
0

= fa(x" %% ..., %,...,x") = (18)

f(...,Xj—i-ij,...)—f(...,Xj—ij,...)
2A; '

From now on, the notation f, will be used to express the derivative (or the
finite differences approximation) of f with respect to x.

Taking the derivative of Equation 17 with respect to d,, the offset Swi
to the extreme of the fitted function is obtained

-1
B az.q)Sz 611)52
S __< 00?2 ) 00 (19)
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If any of the components of vector 2:>wi is bigger than half the separation
between two points in this dimension, the point w; is moved to its neighbour
in this dimension and the process repeated. To avoid loops, the maximum
number of iterations in the implemented version has been fixed to 5. For
the tests presented in this paper, the movement in the o dimension has not
been taken into account. At the end of this iterative process, a point j; is
obtained.

Once ;i has been obtained, the contrast at this point is computed, and

if the condition 0.02
SZ ~ _ .
95 Ba )l > o

is not satisfied, ; is discarded. The threshold value in Equation 20 has been

(20)

defined empirically.

Finally, the ratio r of principal curvatures is obtained at @; and the
point is kept if and only if v < 10 (same value than in (Lowe, 2004)). This
eliminates points situated along edges, where one principal curvature is high
but the other is low, which produces unstable points. In other words, if a
point does not satisfy the following condition

trace(HS")2 _ (r41)?
det (HS?) r

s2 s2
II)G@ 11’(0(9
it is discarded. The full extrema extraction procedure can be found in Algo-
rithm 3.

(21)

where

3.3 Local Spherical Descriptor (LSD)

In order to match points extracted from different omnidirectional images and
obtained with the proposed algorithm, a Local Spherical Descriptor (LSD)
is computed at each point. This descriptor is obtained using the spherical

15



Algorithm 3 Algorithm for the extraction of “good” local extrema
1: E +— 0 the set of local extrema
2: foro =0 (or o =—1) to O do
33 fors=0toS—14do

4: for each point w; = (0, @1, 01) of Y5 (0, @, 2°ksa,) do
5: if w; is a local extreme then

6: Compute ;

7: if Equations 20 and 21 are satisfied at w; then

8: E«— {E, ®i}

9: end if

10: end if

11: end for

12:  end for

13: end for

scale-space representation of the image (see Sections 2 and 3.1) and consists
of a set of histograms of orientations in a region around the given point. The
size of this region depends on the scale (o) at which the point has been de-
tected. Orientations are computed with respect to a principal orientation of
the point, which makes the descriptor invariant to rotations around the axis
that links the point with the centre of the sphere. The complete procedure
is detailed below.

First, the orientation of a point in the spherical scale space representation
has to be defined. Let us have a point (8, ¢) € S? at scale o. Its orientation
is defined as the angle of the gradient of L% in that point, with the O degrees
pointing to the south pole and the 90 degrees to bigger values of ¢. These
gradients are obtained using the central finite differences approximation of
the derivatives (Equation 18) as

LS (0
(0, @, 0) = arctan M ) (23)
L5 (0,9,0)

Then, for each considered extreme of the 1])52, Equation 23 is used to
compute the orientations of surrounding points on the spherical grid in a

16



30 x 30 squared window centred at the extreme (where o is the scale at which
each extreme was located). To define this window, the distance between two
points on the unit sphere, p; = (07, 1) and p; = (02, @2), needs to be
calculated. It can be obtained using the Vincenty’s formula (Vincenty, 1975):

7vA2+BZ> , (24)

d(p1,p2) = arctan ( c

where

25
26
27
28

A = sin0;sinAg,
B = sin0,cos0; —cos0;sin 0 cos Ag,
C = cos0;co0s07 + sin 0, sin 87 cos A,

(
(
(
Ap = @1— @2 (

)
)
)
)

For each window, a histogram of orientations is computed using the ori-
entations of points of the spherical grid that are inside. The orientation value
at each point defines the bin, and the value added to this corresponding bin
is the norm of the gradient at that point,

m(0,¢,0) = \/LE(6, 0,002 + L§'(0, ¢, 0)2 (29)

weighted by a Gaussian centred on the extreme and of standard deviation
1.50. For this histogram, 36 orientations are considered. Finally, once the
histogram is computed, the principal orientation is calculated as the axis of a
parabola fitted around its maximum. If there are bins greater than 0.8 times
the biggest one, they are also considered, which results in multiple principal
orientations for the same point.

For each principal orientation of each extreme point, the orientations of
the points around can be recomputed with respect to this orientation, and
the LSD can be computed. This descriptor is a 3-dimensional histogram
of orientations (two spatial dimensions and one dimension for orientations)
where all the orientations are considered with respect to the principal one.
The produced histogram has 4% x 8 bins (42 bins for the spatial dimension
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(a) Portion of the un-(b) Portion of the
wrapped image sphere

Figure 5: Example of two points detected using the proposed algorithm.
The yellow lines show the principal orientation. As it can be seen, one of the
points have two principal orientations.

and 8 bins for the orientations) and is computed considering the points of the
spherical grid contained in a 60 x 60 squared window centred at the extreme
and rotated according to the principal orientation. Each entry for each bin
corresponds to the sum of the gradient magnitudes of points corresponding
to this spatial and orientation bin, weighted by a Gaussian centred on the
extreme and of standard deviation 1.5¢. The rotation of the window on the
surface of the sphere can be computed using the Rodrigues’ rotation formula
(Rodrigues, 1840) for the rotation of vectors, given by

VROt:vcosoc+uXVSinO(+u'V(1_COS“)U" (30)

where the vectors are considered in Cartesian coordinates, and the vector

vRol i5 the rotated version of v around u, o« degrees.

In order to avoid boundary effects, the values of each gradient sample are
distributed by trilinear interpolation into adjacent histogram bins. The re-
sulting histogram is normalised, each bin thresholded to 0.2 and normalised
again, in order to make it robust to contrast changes. The algorithm for the
computation of Local Spherical Descriptors is summarised in Algorithm 4.
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Algorithm 4 Algorithm for the computation of LSD

1: LSD «— () the set of local spherical descriptors
2: for each considered extreme of VS, (0, @i, 01) do

3:  Select a squared region of size 30; X 30; centred at (0;, @)

4. Compute orientations and gradient norms inside this region

5:  Compute histogram of orientations

6: MAX «— maximum histogram value

7. for each bin value > 0.8MAX do

8: Fit a parabola around this bin

9: b +— axis of the parabola

10: Select a squared region of size 60; X 60; centred at (05, @;) and
rotated b degrees

11: Compute orientations and gradient norms inside this region with
respect to b

12: LSD; «— Compute 3-dimensional histogram

13: LSD «— {L.SD, LSD;}

14:  end for

15: end for
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3.4 Local Planar Descriptor (LPD)

Local Planar Descriptors (LPD) allow to carry out matching between points
extracted from an spherical image, with the algorithm described above, and
SIFT descriptors of points extracted from planar images. This is of great
importance since, for instance, a preexisting database of SIFT descriptors
computed on planar images could be used to detect objects on the omnidi-
rectional image.

The LPD is a regular SIFT descriptor computed on a planar approxi-
mation of the region around each interest point w; = (0;, @i, 01). We con-
sider p; = (01, @1) to be the centre of this planar approximation, which is
the stereographic projection from the antipodal point of p; on the tangent
plane on the sphere at p;. This stereographic projection of LSZ(G, @, 0y)
around p; can be seen as a local approximation of L(x,y, o). In other
words, for a point p; = (04, @i), extracted from the spherical image at the
scale 0y, a squared window centred on wj on LSZ(G, @, 0;) and of size equal
to the minimum between 120; and 7, is stereographically projected from
(0; + 7t/2, @ + 7) to the plane tangent at p;. The projected points are lin-
early interpolated in order to obtain a planar image whose cartesian range
is [—2tan &% 2tan &%) x [—2tan &% 2tan &%) and with a pixel spacing of

2 2 2 2
2tan 53, where H is the height of L5 (0, @, 0i). The equivalent o; in the
obtained planar image is
tan 2
o = 2 (31)
tan JH

The outline of the computation of Local Planar Descriptors is given in
Algorithm 5.

4 Planar to spherical transformation

As said before, LPD can be matched with regular planar SIFT descriptors
extracted from planar images. In addition to this new kind of matching, we
propose a method to estimate the function that transfers points in a planar
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Algorithm 5 Algorithm for the computation of LPD

1: LPD «— 0 the set of local planar descriptors

2: for each considered extreme of VS°, (05, @i, 01) do

3 L(x,vy, 0'?1) «— stereographic projection of L(0, @, 0;) from (0; +
2, @i+ m) to the tangent plane at (83, ;)

4:  LSD; «— SIFT descriptor of L(x,y, cr?l) at (x,y) = (0,0)

5. LSD «— {LSD, LSD;}

6: end for

image to their corresponding points in a spherical image, like an homogra-
phy does between two planar images. Furthermore, given a segmentation of
a planar image, this transformation could be used for instance to extract the
segmented objects or regions from an omnidirectional image.

. . 1 1 1y . .

Let us consuﬂler a matzch bzetvv(gen a point p” = (x",y}") in a planar image
and a point pf = (x;5 ,yf ,zf ) in a spherical image, both in cartesian
coordinates. The idea is to find a linear transformation H which sends p‘fl
to a point ¢y in the space whose projection on the unit sphere is pfz (see

Figure 6). In other words, we look for a 3 x 3 matrix H that satisfies

|
Py = T (82)

HqIJH HHpi H
where || - || denotes the 2-norm. To achieve that, the central point of the

planar image is tangentially placed at the north pole of the sphere that
contains the omnidirectional image. In this way, a point p?” = (x?',y?")
of the planar image has coordinates (xﬁ’l,y?l,ﬂ € R3. Then, in order to
estimate H, the fact that pjs2 and prl must be collinear is exploited forcing
their vectorial product to be zero, i.e. pfz X prl = 0. As in a typical
homography estimation problem between two planar images, this condition
can be expressed in terms of the elements of H, giving us 3 equations for
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each point

i

2 5l 2 bl 2 bl
zf X hyy — 2§ yphzz—zf zVhys

+ Ufzx?lhm +U;$2U$lh32 + Ufzzglhﬁ =0, (33)
zfzxﬁ’lhn + Zfzy?lhu + Z;Szzliolhﬁ

— e — x5y ha — x5 2 e =0, (34)

e+

by e 0, )

where the elements of the matrix H are distributed as

hir hi2 his
H = hz] hys h,zg (36)
h31 hs; hss

Consequently, if Equations (33, 34, 35) are expressed in terms of hy,,, and
all the resulting equations for each pair of matched points are put together,
we obtain a system of equations of the form Ah = 0, where

h = (hy1, iz, bz, har, hoo, hos, han hag, hss) |

and A is a 3N x 9 matrix, N being the number of points matched between
the planar and the spherical image. If the restriction ||h|| = 1 is considered,
h can be computed as the eigenvector of A corresponding to the smallest
eigenvalue, which is the least squares estimator of the solution.

The estimation of this matrix, gives a transformation h : R? — S? which
sends points in the planar image to points in the spherical one

X
Hvy

1
h(x,y) = —%—. (37)

22



Planarlmageﬁ Z

Figure 6: Graphical sketch of the transformation

Transforming points of the spherical image into points of the planar im-
age, can also be done using H™' and normalising the resulting point by its
third component, to obtain a point of the form (x,y,1).

The estimation of H using all the matched points can give bad results
due to false matchings. For this reason, in the tests presented in Section 5.1
the set of matched points chosen for the estimation of H is selected using
RANSAC. The outline of the process for computing H can be found in Al-
gorithm 6.

Algorithm 6 Algorithm for the estimation of H
1: LPD «— set of local planar descriptors of the spherical image
2: SIFTDesc «— set of SIFT descriptors of the planar image
3: M «— matching points between SIFTDesc and LPD
4: H «— eigenvector with minimum eigenvalue of the matrix defined using
Equations 33, 34 and 35 (use RANSAC to clean M of false matchings).
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5 Experimental results

For our experimental results we use two types of omnidirectional images:
parabolic and spherical. The parabolic omnidirectional image is obtained
by a catadioptric omnidirectional sensor. We use a parabolic mirror Kaidan
EyeSee 360 deg® in combination with a Nikon D40X camera. In order to
apply our algorithm on this kind of images, we first need to map them
on the sphere according to the projection shown on Figure 1. After this
mapping, these images cover a band of about 100deg on the sphere. The
spherical images are obtained with a Ladybug2 device®. These images cover
around 75% of the sphere. It is important to note that the Ladybug2 out-
puts the images directly in spherical coordinates and thus no mapping on the
sphere is needed for these images. The resolution of both types of images is
1024 x 1024. 1t is important to note that for this image size, the considered
values of o and the use of the anti-aliasing criterion, the aliasing can be ne-
g/lgcted. For example, for 0 = 4.671/1024 and a bandwidth of 1024/2 = 512,

g% (512, m,0) ~ 3.95- 107",

5.1 “Omni vs Omni” matching

First of all, in order to test LSD matching, some parameters of the algorithm
need to be fixed, essentially S and 0y. To choose them, some test images have
been randomly rotated around the x-axis and corrupted with zero mean ad-
ditive Gaussian noise with standard deviation 0.05 (pixel values are supposed
to be in the range [0, 1]). Since the transformation between each test image
and its rotated and corrupted version is known, for a given point in one im-
age, its corresponding point in the other image can be computed. Therefore,
the repeatability of the extracted points can be measured as

(38)

“htt p: // www. kai dan. com
Shttp://wwm pt grey. com products/| adybug2/
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where n; and n; are the number of extracted points from images i and j,
respectively, and nR is the number of repeated points.

On Figure 7 we show the results of the repeatability tests obtained with
20 parabolic omnidirectional images. The same tests for 8 spherical omnidi-
rectional images are shown on Figure 8. These results are similar for both
types of omnidirectional images. As expected, the repeatability increases for
higher values of 0p. But a higher oy also means that the extrema of the DoG
at lower scales are lost. Consequently, a compromise has to be found be-
tween the smallest scale of the extrema detected and the tolerated amount of
“noise” (not repeatable points) between all the extracted points. On the other
hand, higher values of S imply a greater number of stages per octave, which
requires more computation time. Looking at the graphics, oy = 4.671/1024
and S = 3 are reasonable values to choose. In Table 1, matching results using
these values and varying the distance threshold are shown. We can see there
how by decreasing the threshold, the number of total matchings is reduced
but the percentage of correct matchings is increased. In Figure 9, results of
repeatability and correct matchings as a function of pixel noise are given.
These graphics show the robustness of the algorithm against image noise.

Looking at the repeatability results, it can also be observed that results
similar to these of the original SIF'T are obtained with a higher oy value.
This is probably due to the fact that the transformation from the original
omnidirectional image to the image on S?, requires some interpolation. This
interpolation can add some artifacts to the image that can produce unstable
points that are therefore not good to consider. A higher value of oy solves
this problem, as these artifacts disappear with the first convolution with the
(GGaussian.

In Figures 10, 11 and 12, some matching results are illustrated. The val-
ues of the working parameters are S = 3 and oy = 4.671/1024. First, the
matching between two versions of the same parabolic omnidirectional image
mapped on the sphere is performed and shown on Figure 10. On the left
is the original image and on the right the same image but rotated and cor-
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rupted by additive zero mean Gaussian noise with standard deviation 0.05.
In total, 136 points were extracted from the original image and 170 from its
rotated and corrupted version. From these points, 126 matchings have been
obtained. Among them, 115 are correct and 11 incorrect. All the correct
matchings are shown in green, but for a purpose of visualisation, only 5 of
them are linked. The incorrect matches are shown in red.

In Figure 11, a plot of the matchings between two parabolic omnidirec-
tional images is illustrated. Both images are of the same scene and were
taken from two slightly different places and on two different days. Lighting
conditions are very different and there are also some small changes of objects
in the scene. The maximum distance ratio was fixed to d = 0.58 in order to
have a reduced number of matchings. Indeed, as we are matching two differ-
ent images without any information about the change in the point of view,
correct matchings can only be controlled visually. Finally, in Figure 12 is
illustrated a plot of the obtained matchings between parabolic and spherical
images. As in the other case, the images were taken on two different days
and from slightly different places. The maximum distance ratio in this case
was fixed to d = 0.64.

5.2 “Planar vs Omni” matching

In this section, LPD are tested for matching between points extracted from
omnidirectional images (using Algorithm 1) and points extracted from a pla-
nar image (using the original SIFT algorithm). For these tests, the SIFT
parameters proposed in (Lowe, 2004) (S = 3 and oy = 1.6) are used in
both the SIFT algorithm and the spherical SIFT algorithm. Note that on
the sphere, the equivalent o parameter is 0o = 1.67t/1024. The omnidirec-
tional image is not doubled to compute octave —1 because the processing of
a 2048 x 2048 image, with all the spherical Fourier transforms involved, takes
too much time. In addition, some tests have been done computing octave —1
and it did not increase the number of correct matchings significantly. This
could be another effect of the interpolation while mapping the omnidirec-
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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(a) Repeatability varying the amount of (b) Repeatability varying the amount of
noise (spherical images) noise (parabolic omnidirectional images)

Correct matchings
Correct matchings

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Gaussian additive noise standard deviation Gaussian additive noise standard deviation

(c¢) Matching performance with d = 0.6 (d) Matching performance with d = 0.6
varying the amount of noise (spherical varying the amount of noise (parabolic
images) omnidirectional images)

Figure 9: Plots of repeatability and correct matching between omnidirec-
tional images and their corrupted version, varying the standard deviation of
Gaussian noise added. The central line represents the mean value and the
other two correspond to the mean + 0. The percentage of correct matchings
has been computed as the number of correct matchings divided by the num-
ber of repeated points. The statistics have been calculated on 23 parabolic
omnidirectional images and 8 spherical images.
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Figure 10: ¢ — 0-plot of matchings between a parabolic omnidirectional im-
age (left) and the same omnidirectional image rotated 71/8 radians around
the x-axis and corrupted by additive zero mean Gaussian noise with standard
deviation 0.05 (right). The values S = 3, 0o = 4.671/1024 and a maximum
distance ratio of 0.8 have been used in the computations. Green dots repre-
sent correct matchings, red dots are incorrect matchings and for a purpose
of visualisation, 5 correct matchings have been linked. In total, 229 points
were extracted from the image on the left and 225 from the image on the
right, producing 208 matchings (182 correct and 26 incorrect).
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Figure 11: @ — 0 plot of matchings between two parabolic omnidirectional
images. The values S = 3, 09 = 4.611/1024 and a maximum distance ratio of
0.58 have been used in the computations, obtaining 15 matchings (9 correct
and 6 incorrect, counted visually). The distance ratio has been chosen to
have few point matchings, for visualisation purposes.

tional image on the sphere, which can cause that doubling the size of the
image afterwards adds too much noise, and then, too many unstable points.

On Figure 13, two examples of matching between omnidirectional and
planar images are shown. An example with a parabolic omnidirectional im-
age is shown on Figure 13a, while on Figure 13b a spherical image is used.
For both omnidirectional images, LPDs are extracted as explained in Sec-
tion 3.4. The planar images represent an object from the omnidirectional
scene. For instance, in Figure 13a the object in the planar image is the Ecole
Polytechnique Fédérale de Lausanne (EPFL) logo, while in Figure 13b it is a
poster. On each of the planar images, the usual SIFT algorithm (Lowe, 2004)
has been applied. Comparing Figures 13a and 13b, we note that more points
are matched with the spherical image than with the parabolic one (181 and
105 respectively). This higher number of matchings with spherical images is
the common situation among all the performed tests. Although, if compared
with respect to the total number of extracted points, the results are very
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Figure 12: @ — 0 plot of matchings between a parabolic omnidirectional
image (left) and a spherical image (right). The values S = 3, 0o = 4.671/1024
and a maximum distance ratio of 0.62 have been used in the computations,
obtaining 10 matchings (6 correct and 4 incorrect, counted visually). The
distance ratio has been chosen to have few point matchings, for visualisation
purposes.
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similar in both cases. Due to the higher level of detail of the spherical image,
more points at the lower scales are extracted. This results in a bigger number
of matchings between spherical and planar images, while this is not the case
between parabolic and planar ones. In fact, the parabolic image somehow
loses information because of the interpolation needed for mapping it on the
sphere.

The estimation of the planar to spherical transformation, as introduced
in Section 4, has been tested using Algorithm 6. First, Algorithm 1 was ap-
plied to the corresponding omnidirectional image in order to obtain the set
of LPDs. These then serve as inputs of Algorithm 6. Then, the regular STFT
descriptors are computed for the planar images. On Figure 14 the result
obtained with images containing the EPFL logo is shown. It is interesting to
note that the obtained results are satisfactory even with a highly symmetric
object as is the case of the chosen one. In fact, in this case a matching could
be locally correct while being incorrect considering the whole object.

The same test for a spherical omnidirectional image is illustrated in Fig-
ure 15. The spherical image is captured in a corridor and the planar image
contains a poster as an object of the omnidirectional scene. As expected, the
poster was correctly extracted after applying Algorithm 6.

6 Conclusions

In this paper, we have proposed a SIFT algorithm in spherical coordinates.
It is not limited to pure spherical images, since it can also be applied to a
wide variety of omnidirectional images that can be bijectively mapped on the
surface of the unit sphere. Two types of descriptors have been proposed to
be computed on the points given by the algorithm, Local Spherical Descrip-
tors (LSD) and Local Planar Descriptors (LPD). Using these descriptors, we
have successfully performed point matchings between omnidirectional im-
ages, with LSD, and between omnidirectional and planar images, with LPD.
For the matchings between omnidirectional images, the parameters of the
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(a) Unwrapped parabolic omnidirectional image mapped on the sphere (left)
vs planar image (right)

(b) Unwrapped spherical image (left) vs planar image (right)

Figure 13: Examples of matchings (green dots) between omnidirectional and
planar images for a distance threshold of 0.8. These points have been used
as input for Algorithm 6 to generate the images in Figures 14 and 15
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(a) Planar image. The small green (b) Original parabolic image
dots are the matched points between

the planar and the spherical image

that have been used to compute the

transformation. The border of the

logo (blue square) has been marked

by hand.

g 06 08 -

(c) Spherical image. The blue figure is the transfor-
mation of the blue square in Figure 14a by means
of Equation 37, with H computed using Algorithm
6.

Figure 14: Example of the transformation of the boundary of an object in
a planar image to this object in a parabolic omnidirectional image. The
transformation function has been othagned using Algorithm 6.



(a) Original Ladybug2 image

4 1

(b) Planar image. The small (c) Spherical image. The blue figure is the transfor-
green dots are the matched mation of the blue square in Figure 15b by means of
points between the planar and Equation 37, with H computed using Algorithm 6.
the spherical image that have

been used to compute the trans-

formation. The border of the

poster (blue square) has been

marked by hand.

Figure 15: Example of the transformation of the boundary of an object in
a planar image to this object in a spherical omnidirectional image. The
transformation function has been obt¥ined using the Algorithm 6.



algorithm have been chosen according to the results obtained on test images
varying S and op. For the planar vs omnidirectional case, the same parame-
ter values as those proposed in (Lowe, 2004) have been kept. Finally, point
matchings obtained in this last case have been succesfully used to estimate
a planar to spherical transformation. Potential applications of the proposed
algorithm are global tracking in hybrid camera networks (together with the
SIFT algorithm for planar images), motion estimation in omnidirectional
images, object detection and extraction from omnidirectional images and, in
general, any problem requiring a matching between points in omnidirectional
images or between points in omnidirectional and planar images.

The main drawback of the proposed algorithm is the computation time.
Indeed, for a 1024 x 1024 image, the complete point extraction and LSD
computation takes around 1 minute. Computation time depends, however,
on the number of stages per octave, the oy value and the number of points
extracted. This time could be reduced by optimising the code, but the bot-
tleneck of the spherical Fourier transforms will always be present. This bot-
tleneck, however, could be minimised by implementing the efficient algorithm
for the spherical Fourier transform presented recently in (Tygert, 2008).

Many directions for further research can be considered starting from this
work. For example, the use of other local descriptors could be tested, in
particular the Gradient Location and Orientation Histogram (GLOH) seems
to be very appropriate for spherical images. Experiments with real images
whose full 3D viewpoint change is known would also be very useful in or-
der to better estimate the optimum parameters of the algorithm and test
its performance. And last but not least, the study of approximations of the
spherical difference of Gaussians, as it is done in SURF (Bay et al., 2008) for
the planar case, would be very interesting, since it could lead to a real-time
approximation of this algorithm.
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Table 1: Statistics for correct matchings between 31 omnidirectional images
(23 parabolic and 8 spherical) and their rotated noisy version. The rotation
is done around the x axis and its value is randomly chosen between 0 and
27t. The added noise is zero mean Gaussian noise with standard deviation
0.05. For the original parabolic omnidirectional images, the mean number
of extracted points is 217 (std. deviation = 82), and for their noisy rotated
versions is 223 (std. deviation = 99), with a mean repeatability of 0.743
(std. deviation = 0.081). For the original spherical images, the mean number
of extracted points is 400 (std. deviation = 132), and for their noisy rotated
versions is 394 (std. deviation = 120), with a mean repeatability of 0.79
(std. deviation = 0.033). The values in the table without parenthesis are the
mean values, and the ones with parenthesis are the standard deviations.

Correct Matchings
Distance Threshold | Parabolic Omnidirectional Images Spherical Images
Percentage Absolute Value Percentage | Absolute Value
0.05 1.00 (0.01) 11 (10) 1.00 (0.00) 27 (44)
0.10 1.00 (0.01) 24 (16) 1.00 (0.01) 52 (62)
0.15 1.00 (0.01) 32 (19) 1.00 (0.01) 70 (74)
0.20 1.00 (0.01) 39 (23) 1.00 (0.01) 82 (77)
0.25 0.99 (0.03) 44 (25) 1.00 (0.01) 20 (81)
0.30 0.98 (0.04) 48 (27) 1.00 (0.00) 100 (84)
0.35 0.97 (0.05) 52 (29) 0.99 (0.01) 107 (87)
0.40 0.96 (0.06) 56 (31) 0.99 (0.02) 115 (89)
0.45 0.96 (0.05) 60 (32) 0.97 (0.02) 120 (92)
0.50 0.94 (0.06) 64 (34) 0.97 (0.03) 126 (92)
0.55 0.93 (0.06) 67 (35) 0.95 (0.03) 133 (93)
0.60 0.90 (0.07) 71 (37) 0.93 (0.03) 138 (95)
0.65 0.87 (0.08) 75 (38) 0.91 (0.04) 144 (98)
0.70 0.84 (0.08) 79 (39) 0.89 (0.04) 150 (100)
0.75 0.80 (0.09) 82 (40) 0.84 (0.06) 156 (101)
0.80 0.75 (0.11) 85 (41) 0.79 (0.07) 164 (105)
0.85 0.70 (0.13) 89 (42) 0.71 (0.10) 169 (107)
0.90 0.63 (0.13) 94 (44) 0.64 (0.11) 178 (109)
0.95 0.56 (0.14) 99 (45) 0.56 (0.12) 185 (111)
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