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Abstract

In this paper we introduce the Incremental Temporally Weighted
Principal Component Analysis ITWPCA) algorithm, based on SVD
update, and the Incremental Temporally Weighted Visual Tracking
with Spatial Penalty (ITWVTSP) algorithm for robust visual track-
ing. ITWVTSP uses ITWPCA for computing incrementally a robust
low dimensional subspace representation (model) of the tracked ob-
ject. The robustness is based on the capacity of weighting the con-
tribution of each single sample to the subspace generation, in order
to reduce the impact of bad quality samples, reducing the risk of
model drift. Furthermore, ITWVTSP can exploit the a priori knowl-
edge about important regions of a tracked object. This is done by pe-
nalising the tracking error on some predefined regions of the tracked
object, which increases the accuracy of tracking. Several tests are per-
formed on several challenging video sequences, showing the robust-
ness and accuracy of the proposed algorithm, as well as its superior-
ity with respect to state-of-the-art techniques.



1 Introduction

Visual Tracking (VT) is a core problem in many Computer Vision (CV)
applications, such as Human-Computer Interaction (HCI) (Polat et al.,
2003; Santis and lacoviello, 2009; An and Hong, 2011), traffic monitoring
(Reinartz et al., 2006; Semertzidis et al., 2010), video-surveillance (Huang
et al., 2008; Baseggio et al., 2010) or Augmented Reality (AR) (Marimon
and Ebrahimi, 2007). The main task of a tracking algorithm is to assign
consistent labels to tracked objects along all the frames of a video sequence.
Given a video sequence S composed of image frames I, i.e.

S ={llk € K C N}, (1)

where k is a temporal index, a tracking algorithm estimates for every
tracked object j, a time series

2V = {2V |k e K CN}, (2)
J € J, where J denotes the set of objects being tracked. Each element x,ij )
of the time series 2/) denotes the state of object j at time k and defines its
trajectory over time.

From a bottom-up point of view, a VT algorithm can be roughly de-
fined by describing three main blocks (Yilmaz et al., 2006; Maggio and
Cavallaro, 2010): the feature extraction block, the object representation
block and the object localisation block. A generic VT algorithm can be seen
as the application of these three blocks according to the schematic repre-
sentation in Figure 1. Given a frame of a video sequence, the first block
performs a feature extraction on its captured visual information. Feature
extraction defines the space where the object of interest will be defined,
i.e. the space where the characteristics of the tracked object will be de-
tined, such as colour, motion, edges or interest points. The object locali-
sation block takes information from the object representation model and
the features to estimate the new state of the object of interest. In general,
localisation is performed under the hypothesis of a smooth change of po-
sition, shape and appearance. Object localisation algorithms can compute
the target state analytically, as the solution of an optimisation problem
where a cost function is minimised (Lucas and Kanade, 1981; Tomasi and
Kanade, 1991; Comaniciu et al., 2003; Haj et al., 2010; Kalal et al., 2010),
or by evaluating simultaneously multiple candidate tracks (hypothesis)
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Figure 1: Schematic view of a general VT algorithm.

per object of interest per time step using Particle Filters (PF) (Isard and
Blake, 1998; Zhou et al., 2004; Ross et al., 2008). PF validate these hy-
pothesis against visual information and motion models and their main
advantage is their capacity to deal with multi-modality and therefore with
clutter.

All these object localisation methods use the information supplied by
the object representation model. This model contains information about
the shape and/or the appearance of the object of interest. A wide va-
riety of techniques are employed in the literature for computing them,
such as Principal Component Analysis (PCA) (Cootes et al., 2001; Lee
et al., 2005; Ross et al., 2008), mixtures of Gaussians (Stauffer and Grim-
son, 1999; Papadourakis and Argyros, 2010), histograms (Birchfield and
Rangarajan, 2005; Peng et al., 2005), bayesian networks (Park and Ag-
garwal, 2004) or boosting techniques (Grabner et al., 2006; Iwahori et al.,
2008). The critical point is that the appearance of the tracked object is
continuously changing, and the model needs to be either built for dealing
with these changes or to have the capacity of being adapted to them. In
the first option, the changes have to be predicted and taken into account
in the model estimation process, which is performed a priori or during an
initialisation period. In the second one, the model is constantly adapted to
the tracked object with new data coming from the tracking, which keeps it
permanently adapted to the object of interest and their current conditions.
This makes this strategy more effective in terms of adaptability, since the
type of changes that the model has to handle does not need to be known
beforehand. However, the adaptation procedure is very sensitive due to
the possibility of corrupting the model with bad samples of the object of



interest, causing a model drift and the consequent loss of track.

PCA is a well-known and commonly used technique for dimension-
ality reduction (Pearson, 1901), usually employed for computing object
representation models. It consists of projecting the data onto the eigenvec-
tors with biggest eigenvalues of the data covariance (or autocorrelation)
matrix. In spite of its popularity and good performance, PCA presents
two main problems: computational cost and sensitivity to outliers. The
computational cost can be split by considering data incrementally (Hall
et al., 1998; Levy and Lindenbaum, 2000; Brand, 2006; Ross et al., 2008).
This way, instead of computing a big PCA on a big data matrix, a PCA is
performed on a small sub-matrix. This PCA is afterwards updated with
new elements of the remaining dataset. Incremental procedures are also
interesting when the whole dataset is not available at the beginning. In
(Levy and Lindenbaum, 2000), the sequential computation of PCA is tack-
led by updating an existing PCA with the components of the new data
that are orthogonal to the previously generated subspace. Indeed, the
process starts by computing, for the first block of data, its Singular Value
Decomposition (S§VD), which is an efficient way of computing the princi-
pal components of a matrix. Then, for each new block of data, the update
process is based on a QR factorisation and a SVD of a small matrix. Their
results, correctly combined, provide the principal components of the con-
catenation of the old and the new data matrices. Computation by blocks
is considerably more computationally efficient than updating the PCA for
every new data sample, which makes methods based on (Levy and Lin-
denbaum, 2000) more efficient than those based on (Hall et al., 1998) (see
(Huang et al., 2009) for comparison details).

With respect to outliers, two strategies arise in a PCA computation pro-
cedure for minimising their effect on principal components. The first op-
tion is to discard samples that are supposed to be outliers. This forces to
have a good outlier detection approach, in order to do not discard good
samples. For instance, in (Jackson and Chen, 2004) a minimum volume
ellipsoid is fitted to data in order to discard, in the PCA computation,
the samples that are outside; and in (Hubert et al., 2005) and (Hubert
et al., 2009), samples are discarded according to their projection in a sub-
space computed using a robust covariance estimation. The second option
is to weight the contribution of each value of the data matrix according
to a measure of confidence. In this kind of approaches, the PCA compu-
tation is still dependent on the outlier detection method, but its depen-
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dency is considerably weakened since all received data is considered. In
(Kriegel et al., 2008), the authors use a weighted covariance matrix for
computing the principal components. The weight values are computed
using a distance function to clusters of points of the dataset. In (Skocaj
et al., 2007), two kinds of weights are considered, temporal weights and
spatial weights. Temporal weights adjust the contribution of each observa-
tion (a column in a data matrix), while spatial weights adjust the contribu-
tion of each variable (individual elements of each column). In (Skocaj and
Leonardis, 2008), an incremental weighted PCA algorithm is introduced.
The drawback of this algorithm is that it is based on the incremental PCA
algorithm introduced in (Hall et al., 1998) and therefore updates the exist-
ing PCA for every single new sample. As commented before, this strategy
is less efficient than updating the PCA with blocks of data.

In this paper we introduce an incremental PCA algorithm with tem-
poral weights, the Incremental Temporally Weighted Principal Compo-
nent Analysis ITWPCA) algorithm. It is based on SVD update (Levy and
Lindenbaum, 2000) and therefore can compute the incremental step using
blocks of new data instead of individual samples, which makes the algo-
rithm more computationally efficient. Then, a robust VT algorithm based
on a particle filter approach and the ITWPCA algorithm for object repre-
sentation computation is also introduced. This VT algorithm computes
an object representation model of the tracked object using a PCA on rect-
angular templates. The use of the ITWPCA algorithm for computing the
PCA allows, on the one hand, to maintain the object representation model
constantly adapted to the tracked object, and on the other hand to reduce
the impact on the PCA of bad quality samples of the target. The last is
achieved by computing a measure of the quality of every tracked sample,
which modulates their contribution to the computed PCA. Furthermore,
a strategy for spatial weighting of samples, directly on the particle weight
computation, is also introduced. This spatial weighting allows to assign
more importance to some predefined regions of the tracked object, pro-
ducing a higher accuracy on the tracking.

Let us note that a common preliminary operation to tracking is object
detection, although some algorithms perform a simultaneous detection
and tracking (Czyz et al., 2007; Breitenstein et al., 2009). Indeed, when
a tracking algorithm is intended to follow some precise objects, these ob-
jects need to be previously detected. In this paper we do not deal with
this problem and will always consider that the starting bounding box for
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every tracked object is given. The interested reader in object detection
algorithms is referred to (Yang et al., 2002; Mundy, 2006; Enzweiler and
Gavrila, 2009; Galleguillos and Belongie, 2010; Gerénimo et al., 2010) and
references inside them.

This paper is organised as follows. In Section 2, an incremental PCA
algorithm that considers temporal weights is introduced. Then, in Sec-
tion 3, a VT algorithm that employs this PCA algorithm for updating the
object representation model is described in detail. This algorithm also con-
siders spatial weights that can increase the importance of a region of the
target, increasing the tracking accuracy. In Section 4, numerous tests are
performed, showing the superiority, in terms of accuracy and stability, of
the proposed approach compared to state-of-the-art techniques. Finally, in
Section 5 conclusions and future lines of research are derived.

2 Incremental PCA with Weighted Samples: the
ITWPCA Algorithm

In (Levy and Lindenbaum, 2000), an incremental PCA algorithm based
on SVD update is introduced. At each iteration, the algorithm updates
the existing PCA with information from the orthogonal components, with
respect to the subspace generated by the PCA matrix, of the new data. In
(Ross et al., 2008), this algorithm was adapted to consider a changing mean
of the data. Here, we add to this last algorithm the capacity of considering
weights on data samples, i.e. temporal weights.

Given a set of N data samples Z = [zy,...,2y] € RM*N, where each
sample is represented as a vector z € R, and a weight matrix with posi-
tive elements 2 € RM*¥, the goal of weighted PCA is to compute the pro-
jection matrix U € RM*¥ K < N, that minimises the weighted squared
reconstruction error

M N K M 2
§ = E : E wij | %y — E Wip E UgpZgj | - 3)
i=1 j=1 p=1 q=1

where a;. represents the element at row b and column ¢ of matrix A4, and

Z is the matrix obtained by subtracting the temporally weighted mean to
each column of Z. The elements of the temporally weighted mean vector,



i, are computed as

Z Wi %, (4)
Z] 1 Wij 7=1
and so p = [y, ..., par] "
If only temporal weights are considered, i.e. w;; = wy; Vi, k € [1,...,M],j €
[1,..., N], then the weights can be expressed by a vector ‘w = [wy, ..., wn]| €

R and Eq. (3) can be rewritten as

oYY (—z z) | 5

i=1 j=1 p=1 g=1

where ?ij — /@;%;. Then, the matrix U that minimises ¢ is composed

by the K biggest eigenvalues of the covariance matrix of Z, and can be
computed by performing Singular Value Decomposition on this matrix,

i.e. SVD(Z) = USVT, as introduced in (Skocaj et al., 2007).
For introducing the incremental version, let us first note that a scatter
temporally weighted matrix Sz, defined as

N
Sz = sz’(zi —p)(z — )", (6)

differs from the weighted covariance matrix by only a scalar multiple,
equal to .~ w;. Therefore, eigenvectors of both matrices are the same
and eigenvalues are scaled by this scalar multiple. This makes equivalent
to work with the covariance matrix or the scatter matrix, in terms of PCA.
Let us now introduce the following lemma:

Lemma 1. Let Z() = [2\V . ](V(l)] and 70 =[P N(Q)] be two data
matrices; tw® = [V, W 21)] and tw® = [wEQ), . 7“’]\/(2)] the wezghts cor-
responding to each sample in ZW and Z respectively, ZWD = [ZMW 7] the

concatenation of matrices ZV) and Z and D, 1@ and ;112 the weighted
means according to 'w® and 'w® of Z (1), Z® and 712, respectively. Then, the



weighted scatter matrix of Z(1?, S .2, can be computed as

S,a2 = Sy + S50
[fw D] ']y

[tw®]ly + [[fw@ ||y

+ () — @) (Y = )T

(7)

where Sya) and Sy« are the weighted scatter matrices of ZV) and Z%), respec-
tively, and || - ||, denotes the 1-norm.

Its proof is simple and can be found in the Appendix. The results of
Lemma 1 tell us how to express the temporally weighted scatter matrix of a
big matrix by means of the weighted scatter matrices of two sub-matrices.
Basically, the new scatter matrix is the sum of the other two, plus a rank-1
perturbation that depends on the difference of means. This rank-1 per-
turbation can be taken into account by adding a new column to the data
matrix. Therefore, the IPCA algorithm (Ross et al., 2008) can be adapted
to consider temporal weights as expressed in the Incremental Temporally
Weighted PCA (ITWPCA) algorithm described in Algorithm 1.

3 Temporal and Spatial Weights in Visual Track-
ing: the ITWVTSP Algorithm

In VT, object representations computed a priori, or with some starting
snapshots of the object of interest, are not robust against changes along
time on the appearance of the tracked object. In (Ross et al., 2008), the
authors introduced the Incremental Visual Tracking (IVT) algorithm, a VT
algorithm where the object representation, built using PCA on grayscale
templates, is constantly updated with the samples of the object of inter-
est obtained by the tracker. Following the same philosophy, we introduce
here the Incremental Temporally Weighted Visual Tracking with Spatial
Penalty (ITWVTSP) algorithm. This VT algorithm exploits the capacity of
the ITWPCA algorithm (introduced in Section 2) for considering temporal
weights for the samples added to the incremental PCA computation. The
considered temporal weights are a measure of the quality of the tracked
sample. This allows to decrease the impact on the PCA of bad quality
tracked samples, which reduces the risk of model drift and makes the
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Algorithm 1 Incremental Temporally Weighted PCA (ITWPCA). Given
Um, 20 |tw®]|;, a forgetting factor f, and a new data matrix Z(?), with
its corresponding weights ‘w®), ITWPCA computes U»? and ©(}?) from
the total set of data.

N®  (2) (2
1: Compute p? = m S w® 2 and
(1,2) _ flto M (1) [RESAR )
é I T O™
2: Compute
=(2)
2 2 2 2
7 - Wl @ = u®) e @l -

9 oL@ 2
1), o (1 = )]

~

= =(2)
3: Compute *Z =orth(Z —UWMUDTZ )
~(2
fam U(l)Tf( :
=T =(2) =(2)
0 ‘Z (Z -—-UuLhuwtz )
5. Compute SVD(R) = U'S'V'T
=(2)
6: Then, U2 = [UM LZ U and 202 = ¥,

4: Compute R =

tracking more robust. Furthermore, we introduce spatial weights in or-
der to favour accuracy in some predefined regions of the tracked objects,
which increases tracking accuracy as will be seen in the tests. If spatial
weights are not considered, which is equivalent to fix them to one, the
Incremental Temporally Weighted Visual Tracking (ITWVT) algorithm is
obtained. We start by introducing this algorithm in Section 3.1 for after-
wards introduce the “Spatial Penalty” capacity in Section 3.2.

3.1 The Incremental Temporally Weighted Visual Tracking
(ITWVT) Algorithm

A probabilistic interpretation of PCA (Tipping and Bishop, 1999) allows to
combine the object representation of a target, computed using PCA, with
a particle filter approach for object localisation. The most appropriate ap-
pearance representations for this setup is a rectangular template, consider-
ing as the state-space the six parameters of an affine transformation: trans-
lation (2 parameters), rotation angle, scale, aspect ratio and skew direction.



The particles, that are placed in this 6-dimensional space, represent a sam-
ple of the posterior density function of the state given the observations.
Their behaviour is defined by two models: the dynamical model and the
observation model. The dynamical model defines the dynamics between
states and the observation model the weights of particles.

Let us denote by z;, a point in the state-space at time k. If no particular
assumption about the allowed motion of the particles is taken, a Brown-
ian motion can be considered. Hence, the dynamical model, p(xy|zx_1), is
defined as

p(xplp—1) ~ N(zg; xp-1,0), (8)
where © is a diagonal covariance matrix containing the variances of the
affine parameters (translation, rotation, scale, aspect ratio and skew direc-
tion).

In the context of PCA, the observation model gives a measure of how
likely an image region, expressed as a vector z* € RY, belongs to the sub-
space generated by the projection matrix U, i.e. Span(U). A similar ap-
proach to Condensation (Isard and Blake, 1998) is adopted here, assigning
as weight to the particles directly their likelihood. Therefore, given an im-
age patch 2, a projection matrix U, a mean p and a diagonal matrix of
eigenvalues ¥, then

log p(2" € Span(U)) oc —(d; + dyy), ©)

where d! is the Euclidean distance of z* — u to the subspace Span(U), and

i, is the Mahalanobis distance within the subspace, i.e. the symmetric
bilinear form defined by the inverse of the auto-covariance matrix of the
data. These two distances can be computed as

di = —(' =) (I =UUT)( = p), (10)

where I denotes the identity matrix, and
v=(G - USTUT( — ). (11)
Note that since the principal components define a basis where the data is
uncorrelated, the auto-covariance matrix reduces to the diagonal matrix of

eigenvalues Y. The o2 term can be seen as the average variance lost in the
projection:

1
2 __
G_N—M,E:M (12)



In this last equation, IV, denotes the index of the last considered eigenvec-
tor, N the total number of eigenvectors and \; the eigenvalue correspond-
ing to the j-th eigenvector. Therefore, the weight of particle 7 at time step
k before normalisation is defined as

wy, = exp [—(d} + diy)]. (13)

For reducing the impact of bad samples of the tracked object, the ITW-
PCA algorithm is used for updating the PCA matrix. Let us introduce two
measures of the quality of a tracked sample. Given a tracked patch ex-
pressed as a vector of pixel values z = [z, ..., zy]" € R, the reconstruc-
tion error (according to the PCA matrix at this time step) gives information
about the distance between the tracked patch and the subspace generated
by the PCA. The difference between this patch and the PCA mean gives
also information about how far is the new sample from the PCA subspace.
Then, let us define the confidence on the tracked patch at time step %, ¢,

as
_ a M . ; M . < M
Cp = 1 M Zz:l f(’z“g)? lf Zz:l.f(’z“g) = a 7 (14)
0, otherwise
where ¢ € [0, 1], « € R* and two different options for f(z;, <), namely
1, if Zi — i) — Z; Z 9
Fne) = falzne) = 4 0 MG malze (15)
0, otherwise
and
1, if Zi — Mg Z £
f(zi>€) = fM(Zivg) = { | Iu | ) (16)
0, otherwise

being z; the i-th component of the vector z = UU' (2 — ). The measure
proposed in Eq. (14) gives more importance to the number of pixels with
a significant error (¢) than to the amount of the error itself. Furthermore,
samples with more than 2% of the pixels with more than ¢ error are dis-
carded (w = 0). This strategy tries to penalise samples containing big re-
gions with a significant amount of error (reconstruction error or distance
to the mean). Indeed, this is the typical situation when for instance a re-
gion of the tracked object is occluded by another object. The neutral value
of @ = 2 has been adopted in all the tests, i.e. samples with more than
50% of the pixels with a significant error are not considered in the PCA
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computation. Depending on the context of the application, this value can
be increased, with the risk of being too restrictive and therefore becoming
unadapted to the object of interest.

3.2 Adding Spatial Weights: the ITWVTSP Algorithm

In a VT application, all the sensors that feed variables (pixel sensors) are
supposed to be identical, which makes spatial weights in the PCA esti-
mation process not as easy to interpret as temporal weights. Indeed, this
weighting would give more importance to some pixel than to others, while
all sensors are supposed to be identical. In fact, in VT the important thing
is the accuracy in the tracking of certain regions of the object of interest,
not the accuracy of the model for these regions. For instance, if a face is
being tracked, special care must be taken in order to correctly track the
regions containing more information (eyes, nose and mouth), but a correct
delimitation of the cheek is not as important, in general.

A higher tracking accuracy on this important regions, which translates
to a higher tracking accuracy, can be achieved by penalising the contri-
bution of important pixels to the distances in Egs. (10) and (11), i.e. by
applying a spatial penalty to hypothesis. Let us define a vector of posi-
tive values *w € RM as the desired spatial weights, i.e. pixel weights. The
higher the value applied to a pixel, the higher the penalty applied to this
pixel and therefore more importance assigned to this pixel, since hypothe-
sis fitting better these more penalised pixels will be favoured. Thus, let us
redefine Egs. (10) and (11) by considering spatial weights as

d = —g(e— W)U - UUTYO% — p), (17)

dy = (z—p)*QUSU*Q(z — p), (18)

where *Q = diag(*w) is a diagonal matrix with the spatial weights, and o
is defined in Eq. (12). The expression in Eq. (17) computes a weighted
Euclidean distance to the subspace generated by the PCA, while Eq. (18)
computes a weighted Mahalanobis distance within this subspace.

Using these equations for computing particle weights considers the im-
portance given beforehand to every pixel of the tracked region. This im-
plies that the values of individual pixels of every hypothesis have different
importance in the computation of the particle weight. However, an impor-
tant thing to take into account is that an excessive increase of the weight
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applied to certain pixels can render the tracking algorithm unstable (as
will be shown in Section 4).

In Algorithm 2, a detailed description of the complete proposed visual
tracking algorithm with incremental temporally weighted PCA and spa-
tial error penalty is shown. Note that by fixing *w = 1,41, we obtain the
ITWVT algorithm. We denote by “/R” the use of Eq. (15) and by “/M”
the use of Eq. (16), i.e. for instance we denote by ITWVT/M the ITWVTSP
algorithm using f(z,¢) and *w = Lps«;.

Algorithm 2 Incremental Temporally Weighted Visual Tracking with
Spatial Penalty (ITWVTSP). The target region (image of the object in the
first frame) is denoted by z; N(?) denotes the size of the processed blocks;
f denotes the forgetting factor; and K denotes the maximum number of
considered eigenvalues.

1 p=2,n=1and UV, Y, 7@ and 'w® are empty

2: Set *w to the desired spatial weights (by default, *w = 1)/41)

3: for every frame of the video do

4:  Draw particles according to the dynamical model (Eq. (8)) and the
weight distribution of particles.

5:  For each particle, compute its weight according to the observation
model and spatial weights (Eq. (17) and Eq. (18)).

6:  Store in Z® the image region corresponding to the most likely par-
ticle, and in 'w® its PCA weight (Eq. (14))

7. if there are N® stored images in Z(? then

8: if n < K then
9: tWw® =1, Vi=1,... N®
10: Apply Algorithm 1 with [[!w™||; = n, discarding the eigenvectors
that exceed K.
11: Set UM = 12, (1) = 202 and n = fn + [|'w@ ||
12: Empty Z? and fw®

4 Tests and Results

We have performed several tests to the ITWVT and the ITWVTSP algo-
rithms on several video sequences. For showing the improvement ob-
tained by the weighting strategy, the results are compared with the results
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obtained by the IVT algorithm introduced in (Ross et al., 2008)!. For a
general comparison against state-of-the-art algorithms, we compare also
our results with the results obtained with the TLD algorithm introduced
in Kalal et al., 20102.

With IVT, ITWVT and ITWVTSP, we use the same parameters than
those proposed in (Ross et al., 2008), i.e. 600 particles, an eigenvector size
of 32 x 32 pixels, a maximum number of 16 eigenvectors and a block up-
date of 5 images. We only increase slightly the forgetting factor (from 0.95
to 0.97) since the temporal weights increase the quality of the model and a
longer memory is beneficial. With these parameters, the implementation
of ITWVTSP in MatLab runs at 7 frames per second in a laptop with a
2.0GHz processor.

The standard deviations of the dynamical model (Eq. (8)) in all the ex-
periments are 9.0px for row and column displacements, 0.05 radians for
rotation, 0.05 for scaling in the = direction, 0.001 for scaling in the y di-
rection and 0.001 radians for the scaling angle defining » and y directions,
which are similar values to those proposed in the implementation of IVT.
By using the same parameters for the three algorithms, the performance
improvement due to the temporal and spatial weighting strategy can be
clearly perceived. With TLD, the standard parameters provided in the
distributed implementation are used.

For visualisation of the tracking results, we use the same template as
in (Ross et al., 2008): the first row contains the current frame with the
tracked region, the second row contains the mean, the tracked window,
the reconstruction error and the reconstructed image, and finally, the third
and fourth rows contain the first ten eigenvalues. In Figure 2 an example
is shown.

The performed experiments are divided in two groups. In the first
group, there are experiments performed on labelled video sequences, i.e.
video sequences with a ground truth. In these experiments, quantitative
performance scores are computed to show the performance of the algo-
rithms. In the second group, the proposed algorithms are applied to sev-
eral unlabelled video sequences in a variety of tracking applications, to
show the polyvalence of ITWVT and ITWVTSP.

1Implemen’cation available at http://www.cs.toronto.edu/ dross/ivt/ (last visited in
october 2011)

2Implemen’tation available at http://info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html
(last visited in october 2011)
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4.1 Labelled Video Sequences

First, we have performed a tracking of the face in the Dudek sequence
(Jepson et al., 2003) (see Figure 2) with IVT, TLD, ITWVT and ITWVTSP.
This sequence is a very challenging video with changes in the tracked
object, the camera position and the illumination. The ground truth of 7
manually labelled points on the face is available for this sequence. This
allows to compare quantitatively the obtained results, by computing the
Root Mean Squared Error (RMSE) of the tracked points with respect to
the real ones. Given the implicit stochasticity of the algorithms, ten inde-
pendent runs per algorithm are performed in all the tests. All the runs
producing a RMSE bigger than 10.0px are considered as losses of track.

The ITWVT algorithm has been tested using Eq. (15) and Eq. (16),
for 25 different values of ¢ between 0.01 and 0.9. Both variants of the al-
gorithm, ITWVT/M and ITWVT/R, provide similar results, with small
variance among runs for ¢ € [0.02,0.12]. This is due to the fact that small
values of ¢ produce low temporal weights, avoiding a good adaptation of
the model to the tracked face, and big values of ¢ produce big weights,
making the performance similar to IVT (in terms of RMSE and number of
track losses). For ¢ € [0.02,0.12], the compromise between good model
adaptation and corruption avoidance seems to be satisfied for the Dudek
sequence.

According to the obtained results, a reasonable value for the error thresh-
old is € = 0.07. For this value, ITWVT/M obtains a best RMSE = 5.6537px
and ITWVT/R a best RMSE = 5.8645px. The best run with IVT obtains
a RMSE = 6.2324px, which shows that the use of temporal weights im-
proves the performance of the tracking. In addition, only one out of the
ten runs lost the track (RMSE higher than 10.0px) for both, ITWVT/M and
ITWVT/R, while five are lost with IVT. This shows the improvement in the
robustness of the tracking thanks to the better quality of the model. Perfor-
mances of ITWVT/R and ITWVT/M are similar, although looking to the
obtained temporal weights, it can be observed that weights obtained us-
ing the reconstruction error are more consistent. Indeed, only frames with
an occlusion or high out-of-plane rotations of the face, present a clearly
reduced weight.

Let us note that the value of ¢ is application-specific. Indeed, the ap-
pearance of a rigid object changes slightly, which allows to fix a more re-
strictive (smaller) €. On the contrary, a deformable object like for instance

14



Figure 2: Frame of the Dudek sequence where an occlusion of the face is
starting. First row contains the current frame with the tracked region. The
second row contains the mean, the tracked window, the reconstruction er-
ror and the reconstructed image. Finally, the third and fourth rows contain
the first ten eigenvalues.
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(a) “Spec” spatial weights (b) “Iso” spatial weights

Figure 3: Spatial weights used in the experiments. Brighter regions cor-
respond to high weight values, darker regions to spatial weights equal to
1.0.

a pedestrian, changes its appearance considerably, which forces to fix ¢
to higher values if we want to avoid unjustified small temporal sample
weights. Faces are somehow in between highly deformable objects and
rigid objects, which makes ¢ = 0.07 an appropriate candidate value when
no information about the application is available.

For observing the effect of spatial penalty, we have designed two *w
vectors. The first one assigns higher weight values to pixels on important
regions of the face (see Figure 3(a)), we call this the “spec” spatial weights
and denote its use by “-spec”. The second one is a two-dimensional Gaus-
sian shape, centred in the middle of the patch (see Figure 3(b)), we call this
the “iso” spatial weights and denote its use by “-iso”. The “iso” spatial
weights considers that pixels far from the boundary of the tracked object
are more important.

For each variant of the algorithm, i.e. ITWVTSP /M-spec, ITWVTSP /M-
iso, ITWVTSP/R-spec and ITWVTSP/R-iso, the maximum value of the
spatial weight (*wmax) has been varied between 1 and 3.5, launching 10
runs for each value (with ¢ fixed to ¢ = 0.07). The minimum value in
the “w vector is always 1.0. For values of *wm,x > 2.0 using “spec”, the
algorithm starts to be unstable, producing more losses of track than cor-
rect tracking among the ten performed runs. For the “iso” spatial weights,
the gradual transition make the algorithm more stable allowing to go up
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Weight

Frame Number

Figure 4: Weights applied to each tracked sample of the Dudek sequence
using ITWVTSP/R-Spec with ¢ = 0.07 and *wm.x = 1.8. These weights
correspond to the run that gave the best RMSE value (4.5969px, see Table
1). The frames that present an occlusion or the frames where the face is
rotated out-of-the-plane are clearly noticeable (small weights).

to *wmax = 3.2. Good values for the maximum spatial weights are 1.8 for
“spec” and 3.2 for “iso”, although smaller values can be used if we want
to minimise the risk of loss of track due to excessive spatial penalty.

In Table 1, statistics of values of RMSE obtained with each algorithm
are shown, for the parameter values commented above. As it can be ob-
served, the ITWVTSP algorithm produces a considerable better tracking
performance than IVT with, at the same time, an increased robustness (two
out of ten track losses for ITWVTSP against five out of ten for IVT). The
statistics using TLD are not shown in this table because all the runs pro-
duce a RMSE higher than 10.0px. In this case, this is not due to a loss of
track in all the runs. Indeed, TLD tends to enlarge or reduce the tracked re-
gion on the Dudek sequence, which causes a displacement on the template
of the tracked points and therefore a higher RMSE value. In Figure 4, the
weights applied to each tracked sample for the best run of ITWVTSP/R-
Spec, can be observed.

For testing the algorithms in a real situation with partial occlusions, we
recorded the Rockstar sequence. In this sequence, composed of 171 frames,
a subject in front of the camera is recorded. At a certain moment, the
subject puts on a pair of sunglasses that he takes off later. These sunglasses
generate an occlusion of the eyes of the subject, which is an important part
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Algorithm Losses of Track | Mean RMSE | Max RMSE | Min RMSE | StdDev RMSE
IVT 5 6.8702 7.2790 6.2324 0.3964
ITWVT/R 1 6.6765 7.8109 5.8645 0.7013
ITWVT/M 1 6.5527 7.5133 5.6537 0.6473
ITWVTSP /M-iso 2 5.4659 6.2991 4.9586 0.4604
ITWVTSP /M-spec 2 5.2210 5.9466 4.7596 0.3755
ITWVTSP/R-iso 2 5.2135 5.6375 4.6927 0.3145
ITWVTSP /R-spec 2 4.8869 5.4463 4.5969 0.2637

Table 1: Statistics of the obtained results on the Dudek sequence. The parameters are ¢ = 0.07, *wmax = 3.2

for “iso” and *wmax = 1.8 for “spec”.




of the face, clearly coded in the appearance model. The distance between
the face of the subject and the camera, and therefore its size in the image,
remains almost constant during the whole video. This allows to label the
ground truth of the sequence by displacing the starting bounding box that
contains the face, in order to keep eyes, nose and mouth centred along the
whole video sequence. This has been done manually for generating the
ground truth.

Ten runs of IVT, ITWVT, ITWVTSP and TLD have been performed
on this sequence. For spatial weights, a conservative approach has been
adopted, taking *wmax = 2.0 for “iso” and *wmax = 1.6 for “spec”. Precision
and lost track ratio scores (Maggio and Cavallaro, 2010) have been com-
puted for all the algorithms and the results are shown in Table 2. For
computing precision score, the intersection over union criterion with a
threshold value of 0.8 has been used. For the lost track ratio, dice error
with a threshold value of 0.8 has been employed. The results show clearly
the better performance of the family of algorithms introduced. However,
the negative impact in this case of the spatial penalty can be observed too.
Indeed, the persistence of the partial occlusion in an important region, in
terms of spatial weights, seems to have a negative effect in the perfor-
mance, although it is anyway better than with IVT and TLD. These two
algorithms suffer from a displacement of the tracked region while the sub-
ject is wearing the sunglasses, which causes the bad precision and lost
track ratio scores. Some selected frames of the best run using IVT and
ITWVT/M are shown in Figure 5 and Figure 6, respectively.

4.2 Unlabelled Video Sequences

In Figure 7, several frames of the poster sequence are shown. In this se-
quence, a poster is recorded while several partial occlusions are gener-
ated. The total sequence is composed of 585 frames, and during the first
100 frames there are no occlusions. In order to see the effect of the tempo-
ral weights, we compute the deviation from the “correct” first eigenvector
due to these occlusions in IVT, ITWVT/R and ITWVT/M. As “correct”
eigenvectors we consider the eigenvectors at frame 100, with a forgetting
factor fixed to 1.0 and the temporal weights up to frame 100 equal to 1.0.
Note that the first eigenvector is the one with the highest eigenvalue, and
therefore the most important one for computing particle weights. The de-
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Precision Lost Track Ratio

Algorithm Best | Worst | Mean | St.Dev. | Best | Worst | Mean | St.Dew.
IVT 0.9064 | 0.3392 | 0.6526 | 0.1877 0.0 0.1637 | 0.0965 | 0.0831
TLD 0.6260 | 0.3493 | 0.5598 | 0.0833 | 0.1053 | 0.2398 | 0.1632 | 0.0671
ITWVT/R 0.9591 | 0.3392 | 0.8474 | 0.1859 0.0 0.0117 | 0.0012 | 0.0037
ITWVT/M 0.9708 | 0.7661 | 0.9129 | 0.0739 0.0 0.0760 | 0.0111 | 0.0241

ITWVTSP/M-iso | 0.7895 | 0.3509 | 0.6018 | 0.1239 0.0 | 0.1579 | 0.0287 | 0.0518
ITWVTSP/M-spec | 0.9532 | 0.7602 | 0.8111 | 0.0753 0.0 |0.0877 | 0.0322 | 0.0391
ITWVTSP/R-iso 0.8187 | 0.3333 | 0.5468 | 0.1752 0.0 | 0.1579 | 0.0503 | 0.0744
ITWVTSP /R-spec | 0.9825 | 0.6842 | 0.7754 | 0.0813 0.0 |0.1637 | 0.0830 | 0.0733

Table 2: Obtained results on the Rockstar sequence. The parameters are ¢ = 0.07, *wmax = 2.0 for “iso”
and *wmax = 1.6 for “spec”.



Figure 5: Results obtained with the IVT algorithm on the Rockstar se-
quence. The eigenvectors show how the sunglasses corrupt the appear-

ance model, avoiding a correct tracking continuation after taking them
off.
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(d) ITWVT/M - Frame (e) ITWVT/M -
#115 #130

Frame Number

Weight

(g) Weights applied by the ITWVT /M algorithm to every tracked sample of the Rock-
star sequence.

Figure 6: Results obtained with th%ZITWVT/ M algorithm on the Rock-
star sequence. The eigenvectors show how the information of the sun-
glasses has a low impact on the appearance model, as can be observed in
the eigenvectors. This is achieved thanks to the low weight values for the
corresponding object samples.



(a) Frame #100 (b) Frame #161 (c) Frame #310

Figure 7: Several frames of the Poster sequence. The total sequence is
composed of 585 frames.

Distance

550
Frame Number

Figure 8: Distances between the first eigenvector at frame 100 and the first
eigenvector computed using IVT (solid line), ITWVT/R (dashed line) and
ITWVT/M (dotted line) at subsequent frames.

viation is computed as the distance between the first “correct” eigenvector
and the first eigenvectors given by each algorithm. In Figure 8, a plot of
these distances is given, showing that ITWVT/R and ITWVT/M keep the
eigenvectors closer to those before the occlusions start. As commented be-
fore, ITWVT/M produces smaller sample weights (see Figure 9), which
makes the distances slightly smaller than with ITWVT/R.

Finally, to show the polyvalence of the algorithms presented here, we
have performed several experiments in two other tracking applications:
pedestrian tracking and vehicle tracking. The videos do not present par-
ticular difficulties in terms of partial occlusions, which makes that similar
performances are obtained using ITWVT and ITWVTSP. Here we show
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Figure 9: Weights applied to the samples of the poster in the Poster se-
quence using ITWVT/M and ITWVT/R.
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the results with ITWVTSP /R-iso.

In Figure 10, the tracking of a subject in sequence S1-T1-C of Cam-
era 3 of the PETS2006 Dataset® is shown. Given the variability on the ap-
pearance of a pedestrian, mainly due to the legs, we use an “iso” spatial
weighting strategy but with the Gaussian shape displaced toward the up-
per part of the patch. This gives more importance to the body of the pedes-
trian than to his legs. The maximum spatial weight used is *wm.x = 3.2 and
the noise threshold € = 0.12.

In Figure 11 and Figure 12, a vehicle tracking is performed. In the first
sequence, the tracked vehicle experiences extreme and sudden changes
in its illumination, which can be observed in the temporal weights go-
ing to zero. In the second sequence, which runs at night, the illumination
is considerably bad during the whole sequence, but without any signifi-
cant variation of the conditions. This can also be observed in the weights,
which are around the same values during the whole sequence.

5 Conclusions and Perspectives

In this paper we have introduced an incremental PCA algorithm with
weighted samples, the Incremental Temporally Weighted PCA (ITWPCA)
algorithm. This algorithm can be used in any application requiring an
incremental computation of a PCA, due to either computational require-
ments or the lack of the whole dataset at the beginning. The capacity of
this algorithm for weighting the contribution of samples can be used for
minimising the impact of outliers in the computed PCA. Using this al-
gorithm, a robust VT algorithm capable of being constantly adapted to
the tracked object while trying to avoid model drift has been also devel-
oped, the Incremental Temporally Weighted Visual Tracking with Spatial
Penalty (ITWVTSP) algorithm. Furthermore, this algorithm allows to con-
sider spatial weights for giving more importance to some regions of the
tracked object, which increases tracking accuracy. The combination of
these two weighting strategies produce an improvement in terms of RMSE
values on the test sequences of around 26% (see Table 1). When comparing
Precision and Lost Track Ratio scores, the increase of the robustness given
by these weighting strategies is also clearly noticeable (see Table 2).

3 Available at http:/ /www.cvg.reading.ac.uk/PETS2006/data.html (last visited in oc-
tober 2011)
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Figure 10: Example of pedestrian tragking using ITWVTSP/R-iso (¢ = 0.12
and “wmax = 3.2) on the sequence S1-T1-C Camera 3 of the PETS2006
Dataset.



(a) Frame #1

(d) Frame #300 (e) Frame #500 (f) Frame #650

Weight
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(g) Weights applied to each frame

Figure 11: Example of vehicle tracking using ITWVTSP/R-iso (¢ = 0.07
and *wmax = 2.0).
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Figure 12: Example of night vehicle tracking using ITWVTSP /R-iso (¢ =
0.12 and *wmax = 2.0).
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Several alternatives for the computation of temporal weights and spa-
tial penalty have been introduced, producing a family of VT algorithms.
All the alternatives have been tested on challenging video sequences, show-
ing their good performance compared to state-of-the-art techniques, and
their polyvalence with respect to the scenario of application. Indeed, the
algorithms have been applied to face tracking, pedestrian tracking, vehi-
cle tracking and on the tracking of a rigid and static object (the poster). On
video sequences where the tracked object was labelled, the superiority of
the proposed approach against state-of-the-art techniques has been clearly
shown by means of RMSE, precision and lost track ratio.

ITWVTSP considers two weighting strategies: the temporal weighting
of samples and the spatial penalty of hypothesis. With respect to the tem-
poral weighting, a more in-deep interaction between the particle filter and
the weighting strategy arises as an interesting future line of research to be
explored. Indeed, the weights of the particles seems to be a good source of
information about the quality of the tracking and therefore could be used
for modulating the contribution of samples to the PCA. With respect to
spatial weights, in the Rockstar sequence we have seen that changes in
the appearance of the tracked object, in spatially important regions, can
decrease the performance of ITWVTSP compared to ITWVT. This suggest
the study of dynamical spatial penalty strategies. Indeed, reconstruction
error gives valuable spatial information about changes of the object ap-
pearance. This information could be used for adapting dynamically the
values of the spatial weights.
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A  Proof of Lemmal

Lemma 1. Let Z() = [V . 1(\/(1)] and AC I P N<2)] be two data
matrices; 'w® = [V ... 7w1(v21)] and tw® = [wf),. w(2<2)] the wezghts cor-

responding to each sample in Z) and Z respectively, 70D = [ZMW 7] the
concatenation of matrices Z) and Z® and /L(l) p® and p?) the weighted
means according to 'w™ and tw® of ZW, 72 and Z(?), respectively.

Then, the weighted scatter matrix of Z (172), S .2, can be computed as

S, = Sya + S,

[ Y sl () —
['w®lly + [[fw® ],

+ PO =) (19)

where S,a) and S ) are the weighted scatter matrices of Z @ gnd 73, respec-
tively, and || - ||, denotes the 1-norm.

Proof. Note that

§LD — "™, (1) (=il @),
[fw® |l + [[fw®, [fw® |l + [[fw®y
and so " (2)”
L _ 02 _ wih 1 _ @)
I 1 ||tw(1>||1+||tw<2>||1<“ ), (20)
nd ]
@ _ 012 _ Wl @ _ @
Then,
N@
Sgom = el = ptH)(E? — ul )T
=1
N(®)
2 2 2
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=1
N
1
- Zwﬁ 20 M 0 02)y
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N(©2)
+ Zwi(?)(zi(?) _ ,u(2) + u(2) _ M(1’2))

(2@ 4@ 4 @ _ 02T

7

= SZ<1) + SZ(2>

N®
+ Zw p B2 () — 2T
N<2
+ Zw D) (u® — )T (22)

Applying Egs. (20) and (21) on Eq. (22), we obtain

SZ(l,z) = SZ(1)+SZ(2)

el ']

w4+ [['w® ]y

+ () = @) (D — )7
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