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Abstract
This study develops an Activity-Based Model (ABM) framework to provide a
deeper understanding of how activity restriction policies and perceived risks influ-
ence human mobility and, consequently, disease transmission. We propose three
main contributions: i) the Activity-Based Restriction Model (ABRM) systemat-
ically implements various activity restriction policies, such as closures, curfews,
and distance-based limitations, ii) we introduce a dynamic programming algo-
rithm to address computational intractability in large-scale scenarios, significantly
reducing computation time, iii) we build a Risk Perception Latent Variable Model
to simulate how perceived risks influence individual scheduling behavior. By em-
bedding this model into the ABRM, we create the Activity-Based Risk Perception
Restriction Model (ABR2M), which captures the dynamic interplay between risk
perception and activity scheduling given activity-restriction policies. This inte-
grated approach provides a detailed evaluation of individual schedules, offering
valuable insights for the development of informed transportation policies.

Keywords: interdisciplinary discipline, discrete choice model, activity-based
modeling, non-pharmaceutical interventions, public health policy, behavioral adap-
tations.

1 Introduction
The global COVID-19 pandemic has deeply disrupted individual daily sched-
ules through both government-imposed restrictions, such as lockdowns and cur-
fews, and personal behavioural adjustments influenced by risk perceptions (Rosi
et al., 2021; Lu et al., 2024; Alsharawy et al., 2021). Such changes have reshaped
daily life patterns, directly impacting disease transmission dynamics. Incorpo-
rating these behavioural shifts into epidemiological models is a valuable step for
developing more effective public health strategies to control disease spread.

The relationship between human mobility and disease transmission, particu-
larly in the context of COVID-19, has been a focus of significant research, estab-
lishing a bridge between transportation science and epidemiology. Several studies
(Hancean et al., 2021, Mazzoli et al., 2020, Palguta et al., 2022) have explored
how human movement patterns influence the transmission dynamics of diseases.
Also, Tuomisto et al., 2020, Kerr et al., 2020, Aleta et al., 2020, and Cortes Bal-
cells et al., 2023 employ detailed mobility data to simulate virus propagation,
aiding in the forecasting of outbreak scenarios and the assessment of control mea-
sures. Despite these advancements, existing models do not systematically address

1



how individuals adjust their behaviour in response to various epidemic control
measures and changes in subjective risk perceptions. In particular, the following
research question remains unasked:

How do we account for risk perception and epidemic control restric-
tions in the context of mobility-based epidemiological models?

Within this context, this study proposes an Activity Based Model (ABM) able
to account for modification of daily schedule due to perceived risk through an en-
dogenous choice set formation approach. The ABM, building on the specification
of the model developed by Pougala et al., 2022, presents the following capabili-
ties:

(a) It includes restriction policies, such as activity closures, curfews, and distance-
based limitations imposed by the authorities.

(b) It incorporates a perceived risk latent variable model to simulate how indi-
viduals adjust their activity schedules based on perceived risks associated
with specific activities.

(c) It significantly reduces computational time, achieving the global optima in
approximately three hours for large city scenarios, thereby making it feasi-
ble to model and simulate extensive urban populations for policy-making.

The structure of this paper is as follows: Section 2 reviews the relevant litera-
ture and highlights the main research gaps. Section 3 includes policies to provid-
ing the formulation of our Activity-Based Restriction Model (ABRM). Section
4 presents the Activity-Based Risk & Restriction aware Model (ABR2M). Both
ABRM and ABR2M are tested and compared to the standard ABM in Section 5.
Finally, Section 6 outlines the conclusions and future research directions.

2 Literature Review

2.1 State of the Art of ABMs in Epidemiology
ABMs have become essential tools for understanding and predicting individual
behavior patterns. These models simulate daily activities based on individual pref-
erences, constraints, and interactions with the environment. They offer a granu-
lar approach to modeling human behavior by considering the sequence and tim-
ing of activities, making them highly suitable for studying the impacts of public
health interventions. Several studies have demonstrated the application of ABMs
in the epidemiological context (Aleta et al., 2020, Tuomisto et al., 2020, Kerr
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et al., 2020, Hancean et al., 2021, Palguta et al., 2022).

For instance, Hancean et al., 2021 examine the impact of human mobility net-
works on the global spread of COVID-19. Their study underscores the importance
of interconnected mobility patterns in facilitating the rapid spread of infectious
diseases. Similar conclusions are drawn by Palguta et al., 2022, who investigate
how elections impact COVID-19 transmission dynamics using an ABM to simu-
late the effects of increased human interactions during election periods.

More interestingly, Aleta et al., 2020 propose an ABM to model the impact of
testing, contact tracing, and household quarantine on COVID-19 transmission in
the Boston metropolitan area. Similarly, Tuomisto et al., 2020 develop the REINA
model to simulate various policy actions on epidemic outcomes in the Helsinki
University Hospital region. However, both studies do not include the possibility
of having activity restriction policies, or lack the possibility of having different
policies such as partial closures, curfews, and distance-based limitations.
A solution to this gap is provided by the work of Covasim framework (Kerr
et al., 2020). Covasim is an ABM that integrates detailed mobility data to eval-
uate different interventions’ effectiveness. Despite the significant improvement,
Covasim does not consider the computational challenges posed by large-scale im-
plementations, nor does it account for changes in individual activity schedules
based on risk perception.

Overall, the literature lacks of a single ABM capable of considering restric-
tions and individual risk perception.

2.2 State of the Art ABMs for different application
ABMs have evolved over the past fifty years as an advancement over traditional
trip-based models, addressing the complexities of individual behaviour in travel
demand forecasting. These models are based on the principle that mobility is
driven by the need to perform daily activities (see Hagerstrand, 2005). Under-
standing individuals’ activity scheduling provides insights into their mobility choices,
thus predicting travel demand more accurately. The primary assumption of ABMs
is that travel behavior is a consequence of the need to perform activities. By mod-
eling these needs, ABMs offer a behaviorally realistic approach to forecasting
travel demand. ABMs can be broadly categorized into two types: utility-based
models and computational process models.

Utility-based models, such as those proposed by Adler and Ben-Akiva, 1979
and Bowman and Ben-Akiva, 2001, optimize individuals’ schedules to maximize
utility under budget and time constraints. These models use discrete choice econo-
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metric methods and have evolved to include micro-simulations for greater accu-
racy in capturing individual schedules. Notable examples include the STARCHILD
model (Recker et al., 1986) and TRANSIMS (Beckman et al., 2002), which utilize
synthetic populations to plan multimodal trips. Advanced techniques, like genetic
algorithms employed by Charypar and Nagel, 2005, further enhance the realism
by considering activity type, transportation mode, and location simultaneously.

On the other hand, computational process models reject the notion of opti-
mal decision-making, instead suggesting that individuals use context-dependent
heuristics (Arentze and Timmermans, 2004). These models simulate behavior by
programming agents to follow specific rules and react to their environment, rang-
ing from simple responses to complex adaptive behaviors. Computational process
models offer a flexible approach to capturing the dynamic and context-specific
nature of travel behavior.

Particularly interesting work has been done by Pougala et al., 2022, using a
new modeling approach for daily activity scheduling which integrates the differ-
ent daily scheduling choice dimensions (activity participation, location, schedule,
duration and transportation mode) into a single optimization problem. In details,
given a set of activities A , the ABM optimization problem1 for each individual n
is defined as:

max
ω,Z,x,τ

U0+
A

∑
a=0

Z0
a(χa+V1

a+V2
a)+

A

∑
a=0

A

∑
b=0

Zab ·θt ·ωab (1)

subject to:

∑
a

∑
b

(Z0
a ·x2a+Zab ·ωab) = 24 (2)

ωdawn =ωdusk = 1 (3)

x2a ≥ Z0
a ·τmin

a ∀a ∈ A (4)

x2a ≤ Z0
a ·T ∀a ∈ A (5)

Zab+Zba ≤ 1 ∀a,b ∈ A ,a ̸= b (6)

Za,dawn = Zdusk,a = 0 ∀a ∈ A (7)

∑
a

Zab = Z0
b ∀b ∈ A ,b ̸= dawn (8)

∑
b

Zab = Z0
a ∀a ∈ A ,a ̸= dusk (9)

(Zab−1) ·T ≤ x1a+x2a+Zab ·ωab−x1b ∀a,b ∈ A ,a ̸= b, (10)

1The description of the variables and parameters can be found in Appendix A, in Table 10.
Note that the dependence on n is implicit in all Equations (1)–(14) and has been omitted for
simplification purposes. For a detailed description of the problem see Pougala et al., 2022.
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(1−Zab) ·T ≥ x1a+x2a+Zab ·ωab−x1b ∀a,b ∈ A ,a ̸= b (11)

x1a ≥ χ−a ∀a ∈ A (12)

x1a+x2a ≤ χ+a ∀a ∈ A (13)

∑
a∈Fa

Z0
a ≤ 1 ∀a ∈ A (14)

where:

V1
a = θearly

a ·max(0,κa−x1a−∆early
a )+θlate

a ·max(0,x1a−κa−∆late
a ) (15)

V2
a = θshort

a ·max(0,τa−x2a−∆short
a )+θlong

a ·max(0,x2a−τa−∆long
a ) (16)

In this work, we proposed different modifications to Problem (1-16) to:

(a) consider restriction policies,

(b) include individual perceived risk,

(c) make the problem tractable for large population scenarios.

3 Influence of Restriction Policies on Daily Activity
Scheduling

3.1 Integration of Restriction Policies in the ABM: ABRM
This section includes the individual responses to public health policies during pandemics
in the initially proposed ABM. The restriction policies are considered by complementing
Problem (1)-(16) with new constraints and a new term on the objective function, to obtain
the ABRM.

3.1.1 Modeling elements

The ABRM is operated under four main inputs:

1. Individual Characteristics xekn: This includes details about each individual, such
as their personal identifier, city of residence, age, employment status, and the iden-
tifiers and coordinates for their home and workplace.

2. Facility Characteristics xfm: This includes information about each facility, such as
its identifier, type (e.g., education, shop, or leisure), type identifier, and geographic
coordinates.

3. Restriction Policies: Each policy p involves activating a set of parameters from
the set P . Each element in P is defined as a set of parameters ϕℓ,a, which takes
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the value 1 if restriction ℓ is activated for activity a, and 0 otherwise. ϕℓ,a is a
vector where each element ℓ corresponds to a specific type of restriction as

ℓ=



1 if Closure restrictions,
2 if Time slot starting time restrictions,
3 if Time slot closing time restrictions,
4 if Peak hour restrictions,
5 if Travel time restrictions,
6 if Curfew restrictions.

4. Desired Duration and Start Time for Each Activity and Individual: This spec-
ifies when and for how long each individual wishes to perform their activities. The
parameters κan and τan, represent the desired starting time and duration of activity
a, respectively.

3.1.2 Optimization Problem

The objective function (1) is updated incorporating the term φ5,aV
3
ab, to limit the distance

between two activities a and b in term of time of travel, resulting in the final form of the
function as follows:

max
ω,Z,x,τ

U0+
A

∑
a=0

Z0
a(χa+V1

a+V2
a+φ5,aV

3
ab)+

A

∑
a=0

A

∑
b=0

Zab ·θt ·ωab (17)

where V3
ab is defined as:

V3
ab = θt ·ωab, (18)

This addition together with restriction (25) ensures that individuals traveling from activity
a to activity b to have a travel time smaller or equal to the constant t5θ. Moreover, consid-
ering the set of activities A and the set of constraints P , the new activity restrictions for
the optimization problem for each individual n can be defined as follows:

φ1,aZ
0
a = 0 ∀φ1,a ∈ P,a ∈ A (19)

φ2,ax
1
a ≥φ2,at

1
Θ ∀φ2,a ∈ P,a ∈ A (20)

φ3,a(x
1
a+x2a)≥φ3,at

2
Θ ∀φ3,a ∈ P,a ∈ A (21)

φ4,a(x
1
a+x2a)≤φ4,a(t

3
Θ+24∗ (1−Z2)) ∀φ4,a ∈ P,a ∈ A (22)

φ4,ax
1
a ≥φ4,a(t

4
Θ−24∗ (1−Z1)) ∀φ4,a ∈ P,a ∈ A (23)

φ4,a(Z1+Z2−1)≥ 0 ∀a ∈ A (24)

φ5,a(Zab ·ωab)≤φ5,at
5
Θ ∀φ5,a ∈ P,a ∈ A (25)

φ6,aτdawn ≤φ6,at
6
Θ ∀a ∈ A (26)
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φ6,axdusk ≥φ6,at
7
Θ ∀a ∈ A (27)

These new convex constraints (19)-(27) reflect multiple interventions, such as closure of
activities (19), starting-time restrictions (20), ending-time restrictions (21), closing peak-
hours restrictions (22)-(24), travel-time restrictions (26) and the activation of the term
φ5,aV

3
ab from the objective function (1), and finally, curfew restrictions (26)-(27).

The mixed integer programming optimisation problem (17), (2)-(27) is the core of
the proposed ABRM. This problem allows for not only integrating the different daily
scheduling choice dimensions into a single optimization problem but also include indi-
vidual responses to restriction policies.

3.2 Dynamic Programming and Computational Complexity
Problem (2)-(27) is difficult to solve with commercial solvers (e.g., CPLEX) in a rea-
sonable amount of time. Indeed, the problem of finding the optimal daily schedule of
an individual in the population is a variant of the well-know Elementary Shortest Path
problem with Resource Constraints (ESSPRC) (see, Desaulniers et al., 2005), which is a
common sub-problem for the solution of vehicle routing problems. The method used to
solve this variant of the shortest path problem is usually a Dynamic Programming (DP)
method, also known as labeling algorithms (e.g., Torres et al., 2022a, Torres et al., 2022b).
In this work, we proposed a tailored DP algorithm to efficiently solve the ABRM problem.
The rationale of the proposed DP algorithm is as follows:

• We use discretized time intervals of 5 minutes (i.e. 288 per day).

• We define a state using a label L = (a,U,t,x3a,u,R), where a is the current
activity, U is the total utility collected including the current activity, t is the time
interval, x3a is the duration of the activity, u is the cumulative cost, and R is the set
of activities that cannot be reached2.

• The algorithm starts with an initial label that represents the start of the day.

• At each iteration, the algorithm explores all possible feasible activities from the
current state and extends the label to each activity3.

Naturally, this method would lead to an exponential number of labels since we are ex-
panding and creating labels for each possible feasible combination of activities and time.
However, special techniques such as dominance rules are used to dominate a label, and
thus, delete them, reducing significantly the number of labels necessary to reach the opti-
mal solution. More details can be found in Appendix B.

2Activities can be unreachable either because they have been completed or they are mutually
exclusive with completed activities.

3To extend a label Lk to a new activity aj, we first check if the extension is feasible, ensuring
that no constraints (such as time or budget) are violated and aj is not in Rj. If feasible, we create
a new label Lj with updated resource states.
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4 Influence of Perceived Risk due to COVID-19 on
Daily Activity Scheduling

In this section, we investigate the inclusion of perceived risk in our model by examining
its impact on individuals’ scheduling choices. To achieve this, we first propose a method
to estimate perceived risk as a latent variable model. We then assess its effect within a
scheduling choice model. Based on the results, we determine the need to integrate this
variable into the previously established ABM.

4.1 Perceived Risk Latent Variable Model
Employing a dataset that includes both attitudinal and explanatory variables, we propose
to estimate a latent variable model to capture individuals’ perceived risk of COVID-19.
This model consists of a structural equation for the latent variable and a set of measure-
ment equations that link this latent variable to observable indicators. The aim is to as-
sess the risk perception levels (high, moderate, low) for various activities, such as work,
leisure, and education, for each individual, based on their socioeconomic characteristics.

Structural Equation for the Latent Variable The latent variable for each individ-
ual, denoted as X∗

n, represents the high perceived risk and is estimated by the following
structural equation:

X∗
n = β∗

0+
K

∑
k=1

β∗
kx

∗
kn+σϵ∗ (28)

where: i) β∗
0 is the intercept, ii) β∗

k are the coefficients for the K explanatory variables x∗kn
for each individual n, iii) σ is the standard deviation of the error term, iv) ϵ∗ represents
the error term associated with the latent variable..

Measurement Equations The indicators, measured on a Likert scale from 1 to 5,
indicate risk perception or attitude toward COVID-19 by an individual n. These indicators
are associated with the latent variable through the following measurement equations:

Y∗
in = α∗

0i+α∗
iX

∗
n+σ∗

iξ
∗
i (29)

where: i) α∗
0i is the intercept for the i-th indicator, ii) α∗

i is the coefficient relating the
latent variable to the i-th indicator, iii) σ∗

i is the standard deviation of the error term for
the i-th indicator, iv) ξ∗i is the error term for the i-th indicator, v) τi are the thresholds that
define the categories of the Likert scale.

Yin =



1 if Y∗
in < τ1,

2 if τ1 ≤ Y∗
in < τ2,

3 if τ2 ≤ Y∗
in < τ3,

4 if τ3 ≤ Y∗
in < τ4,

5 if τ4 ≤ Y∗
in.

(30)
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As the measurements are using a Likert scale with M = 5 levels, we define 4 parameters
τi. The thresholds τi are defined symmetrically around zero to facilitate interpretation.
For this reason, we define two positive parameters δ∗1 and δ∗2 as:

τ1 =−δ∗1−δ∗2,

τ2 =−δ∗1,

τ3 = δ∗1,

τ4 = δ∗1+δ∗2.

Finally, the contribution to the likelihood for the ordered probit model is given by:

Pr(Yin = ji) = Pr(τi−1 ≤ Y∗
n ≤ τi)

= Pr
(
τi−1−α∗

0i−α∗
iX

∗
n

σ∗
i

< ξi ≤
τi−α∗

0i−α∗
iX

∗
n

σ∗
i

)
=Φ

(
τi−α∗

0i−α∗
iX

∗
n

σ∗
i

)
−Φ

(
τi−1−α∗

0i−α∗
iX

∗
n

σ∗
i

)
.

(31)

where Φ denotes the cumulative distribution function of the standard normal distribution.

4.2 Assessing the Impact of Perceived Risk on Scheduling Choices
To understand if perceived risk is changing individual choices, we begin by estimating
its impact in a simple binary choice model. This model presents the alternative between
two mutually exclusive activities, for instance working from home or working from the
office. This approach helps us establish the role of risk perception in scheduling decision-
making. Although this is a simplification to study the impact of perceived risk, it can be
extended to more complex scenarios.

Latent variables can be included in choice models. Consider a binary choice model
with two alternatives. The utility functions are of the following form:

U1 = 0,

U2 = V2 +ε2 = ASC2 +βT
2 Time 2 +ε2

(32)

where Time2 is the travel time to go to alternative 2, and βT
2 is defined as:

βT
2 = β

′T
2 exp(−βX⋆

2 X⋆), (33)

where X⋆ is defined by (28), so that

βT
2 = β

′T
2 exp(−βX⋆

2
(
X̄s+σϵ∗

)
). (34)

Technically, such a choice model can be estimated using the choice observations only,
without the indicators. Assuming that ε2 is i.i.d. extreme value distributed, we have

Pr(2 | ϵ∗) =
exp(V2)

exp(V2)+ exp(V1)

Pr(2) =
∫∞
ϵ∗=−∞ Pr(2 | ϵ∗)ϕ(ϵ∗)dϵ∗,
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where ϕ(·) is the probability density function of the univariate standardized normal dis-
tribution. The choice model is a mixture of logit models.

After estimating the parameters, if both parameters βX⋆

2 and β
′T
2 are significant, we ex-

pect β
′T
2 to be positive, since it represents a positive effect on utility from travel time.This

would mean that risk awareness has a significant impact and needs to be considered in
scheduling choices.

To further study impact of the latent variable in the choice of the alternative, we
compute the marginal utility of βX⋆

2 . Specifically:

∂U2

∂βX⋆

2
=−(β

′T
2 X⋆)Time2 exp(−βX⋆

2 X⋆). (35)

Since exp(−βX⋆

2 X⋆) is always positive regardless of the values of βX⋆

2 and X⋆, the
sign of ∂U2

∂βX⋆
2

is determined by −β
′T
2 X⋆Time2:

• If β
′T
2 > 0 and X⋆ > 0, the derivative is negative.

• If β
′T
2 > 0 and X⋆ < 0, the derivative is positive.

• If β
′T
2 < 0 and X⋆ > 0, the derivative is positive.

• If β
′T
2 < 0 and X⋆ < 0, the derivative is negative.

Now, we can compute the probabilities of each alternative. In order to include the impact
of the perceived risk of the non-selected alternative in our scheduling problem, we can
modify the desired duration τa. By setting the desired duration of the non-picked activity
to zero in the ABRM model, it ensures that the non-selected activity is not included in the
individual’s schedule, effectively modifying their schedule based on the perceived risk.

5 Case Studies and Performance Assessment
In this section, we validate and demonstrate the operation of both ABRM and ABR2M.
Section 5.1 illustrates how various policies impact mobility patterns, while Section 5.2
explores how perceived risk modifies individual schedules. These case studies provide
valuable insights into the effectiveness and adaptability of our models in real-world sce-
narios.

5.1 Restriction Policies Influence on Daily Activity Scheduling
5.1.1 Data

As input for the ABRM model, we need to provide a synthetic population that includes
individual-level demographic and socio-economic characteristics, as well as a network
outlining the spatial layout of activities. In this case, we use the open-source synthetic
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population provided by He et al., 2020 for a sample of of 320,000 individuals and 207,370
facilities, which includes data on individuals’ age, gender, employment status, and ed-
ucation level. Additionally, this synthetic dataset integrates a geographic network that
assigns coordinates to nodes, each tagged with specific activity types such as education,
work, secondary, and home. Finally, we use the desired schedules for each individual
provided by this data-frame to derive distributions on desired start time and duration for
each activity. This distributions are computed conditional to age and employment. As
socio-demographic information of the individuals, we include the attributes of age, gen-
der, employment status, and education level. As facility information, we incorporate the
type of facility (e.g., education, shop, home, or secondary), and their geographic coordi-
nates. The desired duration τan and start time κan for each individual are drawn from
distributions based on the binary variable of employment status, and four age categories:
child (0-18), young adult (18-30), adult (30-60), and elder (60+). As policy inputs, we
explore seven different scenarios p, each representing a different imposed policy p, as
detailed in Table 1. Note that if a combination of restriction φℓ,a is not activated, it is set
to 0. Table 1 presents the different tested scenarios, each considering various restriction

Tested Scenarios Closure Constraints
Secondary Education Work Curfew

No restrictions
Outing limitations φ1,secondary = 1

Early curfew φ6,secondary = 1 φ6,education = 1 φ6,work = 1 t7Θ = 5pm

Economy preservation φ1,secondary = 1 φ1,education = 1

Work-education balance φ1,education = 1 φ1,work = 1

Secondary facilities closure φ1,secondary = 1

Table 1: Tested scenarios, each one considering different NPIs as input to the
ABM.

policies input to the ABRM. In particular:

• No restrictions: Represents a baseline with no imposed restrictions.

• Outing limitations: Activates constraint φ1,secondary = 1 in Eq. (19) for the sec-
ondary activities, closing fully these activities.

• Early curfew: Activates constraints φ6,secondary = 1, φ6,education = 1, and φ6,work =
1 in Eq. (26) and (27). The curfew constraint t7Θ = 5pm limits activities after dusk.

• Economy preservation: Activates constraints φ1,secondary = 1 and φ1,education = 1

in Eq. (19), but preserves economic activities.

• Work-education balance: Activates constraints φ1,education = 1 and φ1,work = 1 in
Eq. (19), balancing restrictions between work and education activities.
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• Secondary facilities closure: Activates constraint φ1,secondary = 1 in Eq. (19),
targeting the closure of secondary facilities.

These constraints enforce different combinations of activity restrictions, representing var-
ious policy measures to control mobility and activity patterns.

5.1.2 Aggregated Validation of Activity Patterns Throughout Scenarios

Figure 1 displays the total number of individuals engaged in each activity type across
different intervention scenarios throughout the day and allows for assessing whether the
simulated activity patterns align with the restrictions we have imposed. The ’Normal

(a) Normal life (b) Outings limitation

(c) Early curfew (d) Only economy

Figure 1: Aggregated visualization of the total count of individuals in each activity
throughout the day under various scenarios. Activities are represented as follows:
Home (blue), Education (purple), Work (green), and Secondary (orange).

Life’ scenario (Fig. 1a) provides a baseline for comparison, depicting a typical day with-
out restrictions. In the ’Outings Limitation’ scenario, visible in Fig. 1b, we observe that
all secondary activities disappear. Additionally, there is an increase in work activities, as
work becomes the only allowed activity. In contrast, the ’Early Curfew’ scenario (Fig. 1c)
reveals a significant decline in evening activities, reflecting adherence to the imposed 5
PM curfew. The model effectively reschedules activities earlier in the day to comply with
the curfew restrictions. Interestingly, there is a noticeable delay between the time activ-
ities conclude and the time individuals return home, due to the travel time from the last
activity to their residence. Finally, the ’Only Economy’ scenario (Fig. 1d) shows the clos-
ing of secondary and educational activities.
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Overall, the changes across all scenarios align with the constraints imposed in the sim-
ulation, showing that the ABRM can accurately model the imposed restrictions through
noticeable changes in activity patterns, validating the model’s sensitivity to different re-
striction policies. This validation is crucial for ensuring the model’s reliability in predict-
ing how different policies can influence public behavior and mobility, thereby aiding in
the design and implementation of effective transportation and public health interventions.

5.1.3 Disaggregated Consistency Check of the Baseline Scenario

Table 2 examines the schedules of randomly picked individuals in the baseline scenario,
to check whether the simulation captures the variability inherent in real-world behaviour.
The table displays the schedule of Individual 2837 (6-year-old kid), Individual 2107 (20-
year-old partially employed student), and Individual 0107 (47-year-old employed adult).
The schedule differences show that the model accurately reflects individual variations in
activity patterns, which is critical for the realistic simulation of disease spread. Although
this is not a model validation, it is an important consistency check for the baseline sce-
nario, showcasing the ability of the model to capture such detail at the individual level,
making it suitable for further epidemiological analysis.

Time Individual n.2837
(6-year-old)

Individual n.2107
(20-year-old)

Individual n.0107
(47-year-old)

00:00 - 07:00 Home Home Home
07:00 - 08:00 Home Home Home
08:00 - 09:00 School Home Work
09:00 - 13:00 School University Work
13:00 - 15:00 Home Secondary Work
15:00 - 18:00 Home Work Home
18:00 - 24:00 Home Home Home

Table 2: Hourly Daily Schedule of Individuals

5.1.4 Behavioral Adaptations

One of the most significant features of the proposed framework is that it allows individ-
uals to adjust their schedules in response to the introduction of restriction policy. This
capability reveals diverse individual and population-level responses to various mobility
restriction scenarios. To provide an overview of these rescheduling choices, we present
Figure 2, which illustrates the activity-swapping phenomenon. By examining the total
duration per activity type, we observe that if secondary and education facilities are closed
(as in the ’Only Economy’ scenario), individuals increase the time spent at work since it
remains the only permissible activity outside the home. This activity-swapping mecha-
nism is evident across all scenarios. When observing the histogram of total duration per
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activity type for different policies p, it is apparent that the total duration for each activity
type always differs compared to the ’Normal Life’ scenario. If this were not the case,
activities would either be closed or remain unchanged, and the excess individuals unable
to perform the closed activities would shift to spending more time at home. Note that
these results are derived from the ABRM framework, which does not include risk percep-
tion in the activity scheduling process. If rescheduling is not modeled within the ABRM
framework, and activities are simply set to zero when closed (e.g., closing work and set-
ting work to zero), it overlooks the fact that individuals will reallocate their time to other
activities. Thus, it is crucial for policy-making to account for rescheduling to accurately
predict how people adapt to restrictions since it directly impacts on how and when people
meet, and therefore the spread of the disease.

Figure 2: Total Duration, Average Duration and Average Total Deviation Start per
Activity Type.

5.1.5 Tested Scenarios and Computational Complexity

The model efficiently manages a facility choice set of 207,370 with a population of
320,000, achieving an average execution time of 3h and 12 minutes for the ’No Restric-
tion’ scenario, as detailed in Table 3. The significantly reduced runtime of 5 minutes for
the ’Economy Preservation’ scenario is due to the decreased choice set of facilities, as
only work activities are available, and only employed adults need to schedule activities
while the rest of the population stays home. These results show the model’s computational
robustness for 1000 draws. A similar concept can be applied to explain the differences
in runtime for the other scenarios, where the restrictions on activities and population seg-
ments lead to variations in computational complexity. Our method significantly outpaces
the model created by Pougala et al., 2022 in terms of speed. Using their model for a choice
set as large as 207,370 would not be feasible, underscoring the difficulties of efficiency
and scalability when dealing with larger groups and more extensive sets of facilities.

5.1.6 Discussion

To conclude, the main takeaways of this first study case are here below summarised:
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Execution time [h:mm:ss] individuals/second seconds/individual

No restrictions 3:12:42 16.57 0.06
Outing limitations 0:45:24 69.01 0.014
Early curfew 3:05:54 16.85 0.059
Economy preservation 0:05:29 570.13 0.0018
Work-education balance 2:26:55 21.33 0.047
Leisure facilities closure 1:12:51 43:01 0.023

Table 3: Execution details, for each tested scenario.

• Section 5.1.2: The ABRM model accurately captures the impact of various restric-
tion policies on activity patterns, validating its sensitivity to policy changes.

• Section 5.1.3: The model accurately reflects diverse daily routines of different
demographic groups, ensuring robustness in simulating real-world behaviors.

• Section 5.1.4: The model simulates behavioral adaptations, showing individuals
adjust schedules under different restriction policies, demonstrating its dynamic na-
ture.

• Section 5.1.5: The model is computationally efficient, handling large populations
and complex scenarios effectively, with execution times varying based on restric-
tion levels.

5.2 Perceived Risk Influence on Daily Activity Scheduling
5.2.1 Data

This study uses a survey dataset (see Chauhan et al., 2022) collected in the US during
the COVID-19 pandemic to analyze the impacts on individuals’ mobility patterns and
travel decisions. The survey was conducted in three waves: the first from April 2020 to
June 2021, the second from November 2020 to August 2021, and the third from October
2021 to November 2021. In total, 9,265 responses were collected initially, with 2,877
participants returning for the second wave and 2,728 for the third. This dataset allows
for the calibration of the latent variable model which integrates behavioural responses to
COVID-19. The survey dataset includes responses from a diverse demographic, providing
detailed information on their mobility patterns, including the frequency of performing an
activity a during the pandemic. Specifically, the survey collected data on pre-pandemic
commute times, specifically asking participants:

"Before the COVID-19 pandemic, how many minutes did it usually take you
to get to work?"
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The responses regarding pre-pandemic commute times were categorized into nine travel
time bins, as follows:

TimeWFO =



< 48m
≥ 48m & < 96m
≥ 96m & < 144m
≥ 144m & < 192m
≥ 192m & < 240m
≥ 240m & < 288m
≥ 288m & < 336m
≥ 336m & < 384m
≥ 432m & < 480m

where WFO is Work From Office. Additionally, we observe i attitudinal variables
for each individual n, noted as Yin. Yin reflects the individuals’ risk perceptions and
concerns regarding the pandemic. These responses are key in modeling the psychological
underpinnings influencing activity-travel behavior during a public health crisis. The list
of indicators can be found in Table 4. The survey also includes the socio-demographic
information of the respondents4.

5.2.2 Latent Variable Model Results

In our study, we employed Exploratory Factor Analysis (EFA) to investigate the under-
lying structure of the attitudinal dataset, aiming to identify latent factors that capture the
correlations among observed variables related to individuals’ travel behaviors during the
COVID-19 pandemic. From this, we keep the indicators belonging to Factor 1, that de-
scribe our latent variable named High_Risk_Perceived. The progression from a simple
model to one with additional indicators and variables is done systematically, with each
step evaluated for improved likelihood and significance of parameters.5

The final model of X∗
n presented in Eqs. (28) and (29) includes 4 different explana-

tory variables xenk (gender, ethnicity, educational level and location), 8 indicators Yin
(risk_percp_1, risk_percp_2, risk_percp_3, risk_percp_5, risk_percp_6, att_covid_friends
severe, att_covid_stayhome,att_covid_sh_norm) and is shown in Figure 3. The demo-
graphic coefficients β∗

k of the explanatory variables are visible in Table 5 and explain the
difference in how various groups perceive risk. In particular, negative coefficients indicat-
ing a lower perceived risk among females, non-Caucasian and people with low education
respondents compared to their counterparts. Meanwhile, regional differences are also
evident, as seen in the negative coefficient for respondents living in the Western region,
possibly hinting at regional variations in COVID-19 impact or public health responses.

4Each Information k of the individual n is represented as xkn in the dataset visible in Table 7.
5Table 8 quantitatively interprets how respondents’ perceptions of COVID-19 risk across vari-

ous everyday activities relate to the latent variable ’High_Risk_Perceived’.
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Name Description N Histogram of
Responses

att_covid_selfsevere If I catch the coronavirus, I am concerned
that I will have a severe reaction.

1716
1 2 3 4 5

att_covid_friendssevere I am concerned that friends or family mem-
bers will have a severe reaction to the coron-
avirus if they catch it.

1716
1 2 3 4 5

att_covid_stayhome Everyone should just stay home as much as
possible until the coronavirus has subsided.

1716
1 2 3 4 5

att_covid_overreact Society is overreacting to the coronavirus. 1716
1 2 3 4 5

att_covid_economic Shutting down businesses to prevent the
spread of coronavirus is not worth the eco-
nomic damage that will result.

1716
1 2 3 4 5

att_covid_sh_norm My friends and family expect me to stay at
home until the coronavirus subsides.

1716
1 2 3 4 5

att_covid_mask Everyone should wear a mask when in public
indoor spaces.

1716
1 2 3 4 5

risk_percp_1 How do you perceive your COVID-19 risk
from going to work?

900
1 2 3 4 5

risk_percp_2 How do you perceive your COVID-19 risk
from shopping at a grocery store?

1716
1 2 3 4 5

risk_percp_3 How do you perceive your COVID-19 risk
from riding public transportation?

1715
1 2 3 4 5

risk_percp_4 How do you perceive your COVID-19 risk
from walking or bicycling?

1716
1 2 3 4 5

risk_percp_5 How do you perceive your COVID-19 risk
from taking a taxi or ride-hailing service?

1716
1 2 3 4 5

risk_percp_6 How do you perceive your COVID-19 risk
from traveling in an airplane?

1716
1 2 3 4 5

Table 4: COVID-19 Attitudes and Risk Perception Indicators. Coding for agree-
ing indicators: 1=Strongly disagree, 2=Somewhat disagree, 3=Neutral, 4=Some-
what agree, 5=Strongly agree, -1= Question not displayed to respondent. Coding
for risk indicators: 1=Extremely low risk, 2= Low risk, 3=Medium risk, 4=High
risk, 5=Extremely high risk.
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Structural Latent Model

HighPerceivedRiskngender_female

technical_school

notCaucasian

zone_West

risk_percp_1 risk_percp_2 risk_percp_3

risk_percp_5 att_covid_stayhome

att_covid_sh_norm

risk_percp_6

risk_percp_5

att_covid_friendssevere

Figure 3: Diagram of the Risk Perception Latent Variable Model

β∗
k Value Rob. Std err Rob. t-test Rob. p-value

β⋆_gender_female -0.25 0.0478 -5.23 1.67×10−7

β⋆_notCaucasian -0.265 0.0509 -5.2 1.94×10−7

β⋆_technical_school 0.142 0.0583 2.44 1.47×10−2

β⋆_zone_West 0.0905 0.0421 2.15 3.16×10−2

α∗
i Value Rob. Std err Rob. t-test Rob. p-value

α⋆_risk_percp_1 0.64 0.127 5.04 4.54×10−7

α⋆_risk_percp_2 0.376 0.0878 4.28 1.86×10−5

α⋆_risk_percp_3 0.372 0.0874 4.26 2.08×10−5

α⋆_risk_percp_5 0.273 0.0792 3.45 5.62×10−4

α⋆_risk_percp_6 0.406 0.0891 4.55 5.27×10−6

Table 5: Selected results parameters from Latent model

Moving to the measurement equations, the parameters α∗
i , also visible in Table 5,

reflect respondents’ perceived risk from engaging in specific activities: shopping at a
grocery store, riding public transportation, and using a taxi or ride-hailing service, etc.
The positive values of these parameters indicate a direct correlation - those who perceive
greater risks associated with these activities contribute to a higher perceived risk. For
instance, α⋆_risk_percp_2’s positive coefficient suggests that individuals who perceive a
higher risk from shopping at grocery stores also tend to report a higher overall perceived
risk of COVID-19. This is intuitive as grocery shopping involves being in relatively en-
closed spaces with other people, a condition that could increase the perceived risk of virus
transmission. Similarly, α⋆_risk_percp_3’s significance reflects concerns over the close
quarters and high contact nature of public transportation, while the positive coefficient for
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α⋆_risk_percp_5 likely stems from the proximity to drivers and other passengers within
the confined space of a taxi or ride-sharing vehicle.

Overall, the parameters are consistent with our theoretical expectations, providing
a robust model that effectively captures the complexities of perceived risk during the
COVID-19 pandemic.

5.2.3 Assessing the Impact of Perceived Risk on Scheduling Choices Work-
ing from Home and Working from Office

To demonstrate that risk perception impacts the scheduling of individuals, we combine the
latent variable model with the choice model by using sequential estimation. Considering
a binary choice model with two alternatives, where alternative 1 is Working From Home
(WFH), and alternative 2 is Working From Office (WFO). For the sequential estimation,
we use Eqs. (28) and (33), where the values of the coefficients β⋆

k are the result of the
estimation presented in Table 8. We have again a mixture of logit models, but with fewer
parameters, as the parameters of the structural equation are not re-estimated. The esti-
mated parameters of the choice model are presented in Table 6. The choice data we use
from the survey is the categorical variable that gives the number of times an individual
goes to the office per week during COVID-19, and we transform it into a binary variable.
We pick this choice because it is the closest we can do to model the switching of activities
given the risk perception. Specifically, an individual will choose ’home’ as an activity
instead of ’work’ based on their perceived risk. If an individual works at least one time
from home, we assign the choice as WFH instead of WFO.

Value Rob. Std err Rob. t-test Rob. p-value
ASCWFO 0.754713 0.106462 7.089038 1.350475×10−12

βX⋆

WFO 1.828736 0.421655 4.337042 1.444132×10−5

β
′T
WFO -0.013845 0.003314 -4.177443 2.948044×10−5

σs 0.387208 0.167638 2.309787 2.089995×10−2

Table 6: Results of the choice model from the sequential estimation.

Interestingly, the parameter βX⋆

WFO, associated with the latent variable of risk percep-
tion, is both positive and statistically significant. This indicates that an increased percep-
tion of risk correlates with a higher likelihood of individuals choosing to work from home
rather than commute to the office. This finding underscores the impact of risk perception
on activity-travel behavior and validates the inclusion of this latent variable model within
the activity-based framework.6

However, due to the absence of actual choices and schedules of each individual through-
out the day in the dataset, it is challenging to fully integrate the hybrid choice model

6The full estimation of the hybrid choice model, in which all the parameters are estimated
simultaneously, can be found in the Appendix A, Table 9.
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with the proposed ABRM. Consequently, our methodology is constrained by the need to
make certain assumptions to integrate risk awareness in the previously proposed ABRM.
Nonetheless, the latent variable of risk perception is statistically significant for the choice
model of WFH vs WFO, underlining the fact that risk awareness is a non-negligible factor
to consider in pandemic-oriented ABMs.

5.2.4 Integration of Risk in the ABRM: ABR2M

Given the lack of data discussed in the previous section, to model the influence of the
individual perceived risk due to COVID-19 on daily activity scheduling, we make the
following assumption:

Hypothesis 1 The perceived risk influences the ABM model by altering the desired dura-
tion of activities τan for every individual.

That is to say: a higher perceived risk associated with an activity leads to a reduction
in the time individuals are willing to allocate to that activity. This adaptive behavior is
modeled by adjusting the desired activity durations τan from Equations (15) and (16), by
using a sigmoid function with the mid-point set at υ2, and a steepness of υ1

7. The new
desired duration becomes:

τ ′
an = τan

1

1+ exp(−υ1(j
⋆
ni−υ2))

, (36)

where j⋆ni, is the risk perceived by an individual n to perform an activity a from the
indicators i associated to risk perception for that activity a. The algorithm to estimate of
j⋆ni is discussed in the Appendix C, Algorithm 1. Through this mechanism, the updated
ABRM model dynamically incorporates individual-level responses into the simulation of
mobility and activity patterns.

5.2.5 Comparative schedules with or without latent variable model

We run the baseline scenario ’Normal Life’ with and without the latent variable model to
assess the impact on how the perception of risk impacts the total count of individuals per
type of activity. Figure 4a shows how, by accounting for the perception of risk in the sec-
ondary and work activities, we observe how people prefer to go very early in the morning
to work but then stay home in the afternoon. Around lunchtime, the participation in sec-
ondary and work activities dramatically drops, reaching 80% and 50% reduction around
lunchtime, respectively. The changes in the hourly count of individuals per activity, as
shown in Figure 4b, highlight the greater sensitivity of work activities compared to sec-
ondary activities. The data indicates that individuals are more likely to avoid going to
work during a pandemic, whereas they continue to engage in secondary activities. This

7Note that υ1 and υ2 need to be determined from data, and that we assume no mandatory
participation in any activity. For this case study, the mid-point is set at 3 (which corresponds to
’Medium Risk’), and steepness of 1.5
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phenomenon can be explained by the fact that many secondary activities, such as shop-
ping, are essential and cannot be postponed, whereas work can often be conducted from
home.

5.2.6 Discussion

Overall, these findings emphasize the impact of risk perception in shaping daily activ-
ity patterns. The alteration in schedules due to risk perception changes the frequency
and timing of contacts in various facilities throughout the day. This shift influences the
transmission dynamics of a disease, highlighting the importance of incorporating these
behavioral changes into models. By doing so, we can better assess how different policies
impact the number of infections, deaths, and the economic consequences of implementing
restriction policies.

6 Conclusions
This study presents the Activity-Based Restriction & Risk aware Model (ABR2M), which
integrates individual risk perceptions and public health policies to simulate daily activity
schedules during pandemics.

The model shows that activity restriction policies, such as curfews and closures, sig-
nificantly alter daily activity patterns. Individuals adapt by rescheduling or substituting
activities rather than eliminating them. For instance, the total duration of time spent at
work by the population increases by 250% (in relative percentage) when all the activities
are forbidden but work, highlighting the significant influence of activity swapping on daily
routines when restrictions are applied. Perceived risk also modifies the timing and dura-
tion of activities, as individuals avoid high-risk activities. For example, the participation
in secondary activities can drop by up to 80% around lunchtime, while work activities see
a reduction of up to 50%. These behavioral changes are crucial for understanding shifts
in mobility patterns and their impact on disease transmission.

The model is computationally robust, effectively handling large-scale populations and
facility networks. It can generate approximately 7,000 schedules in one minute for an av-
erage city population, demonstrating significant speed compared to other models. How-
ever, it faces certain limitations. One major challenge is the availability of detailed data
for calibrating risk perception. Additionally, the model simplifies transportation modes
and excludes activity capacity constraints. To fully implement the model, we would need
comprehensive datasets that include detailed schedules of individuals before and during a
disease outbreak, their socioeconomic characteristics, and their attitudes towards the dis-
ease and activity participation.

Referring back to our research question: “How do we account for risk perception and
epidemic control restrictions in the context of mobility-based epidemiological models?”,
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this study has made significant progress in addressing this question by developing and
validating the ABR2M. The model incorporates both restriction policies and perceived
risk, providing a more comprehensive understanding of how these factors influence daily
activity schedules and, consequently, disease transmission dynamics.

Despite these advances, further work remains. Future research should focus on inte-
grating the model into an epidemiological framework and proposing an optimal policy-
making problem to contain future pandemics.
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(a) Percentage difference in hourly activity counts between ABRM and ABR2M

(b) Changes in hourly count of individuals per activity when between ABRM and
ABR2M.

Figure 4: Comparison of ABRM and ABR2M results
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A Additional Data and Tables

Variable Name Description Type Counts
age_above_60 Is the individual above 60 years old? Binary 578
age_bw_30_60 Is the individual between 30 and 60 years old? Binary 2259
age_under_30 Is the individual under 30 years old? Binary 553
gender_female Is the individual female? Binary 2057
notCaucasian Is the individual not Caucasian? Binary 684
bachelors_or_more Does the individual have a bachelor’s degree or more? Binary 2059
technical_school Did the individual attend technical school? Binary 918
high_school Did the individual graduate from high school? Binary 413
worker Is the individual currently employed? Binary 3390
zone_Midwest Is the individual located in the Midwest zone? Binary 779
zone_Northeast Is the individual located in the Northeast zone? Binary 404
zone_South Is the individual located in the South zone? Binary 974
zone_West Is the individual located in the West zone? Binary 1229
income_below_35 Is the individual’s income below $35k? Binary 545
income_35_to_100 Is the individual’s income between $35k and $100k? Binary 1495
income_above_100 Is the individual’s income above $100k? Binary 1350
hh_single Is the household single? Binary 534
hh_partner Is the household in partnership? Binary 2046
hh_children Does the household have children? Binary 1182
hh_parents Does the household have parents? Binary 389
single_only Is the individual single only in the household? Binary 534
partner_only Is the individual in partnership only in the household? Binary 1110
children_only Is the individual responsible for children only in the

household?
Binary 216

parents_only Is the individual responsible for parents only in the house-
hold?

Binary 238

partner_and_children Is the individual in partnership and responsible for chil-
dren in the household?

Binary 851

partner_and_parents Is the individual in partnership and responsible for par-
ents in the household?

Binary 36

children_and_parents Is the individual responsible for both children and parents
in the household?

Binary 66

multiple_automobiles Does the household own multiple automobiles? Binary 2119
hhsize_1 Is the household size 1? Binary 565
hhsize_2 Is the household size 2? Binary 1125
hhsize_3 Is the household size 3? Binary 665
hhsize_4 Is the household size 4? Binary 616
hhsize_4plus Is the household size more than 4? Binary 419
hhfamilyhouse Is the household a family house? Binary 2616
hhapartment Is the household an apartment? Binary 655
hhnonstandard Is the household a nonstandard housing type? Binary 119
hhyard Does the household have a yard? Binary 2877
covid_positive Is the individual COVID-19 positive? Binary 154

Table 7: Explanatory variables for the Latent Model
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Name Value Rob. Std err Rob. t-test Rob. p-value
α⋆_att_covid_friendssevere 0.416 0.107 3.87 1.08×10−4

α⋆_att_covid_stayhome 0.753 0.111 6.79 1.12×10−11

α⋆_att_covid_sh_norm 0.523 0.123 4.25 2.13×10−5

α⋆_risk_percp_1 0.64 0.127 5.04 4.54×10−7

α⋆_risk_percp_2 0.376 0.0878 4.28 1.86×10−5

α⋆_risk_percp_3 0.372 0.0874 4.26 2.08×10−5

α⋆_risk_percp_5 0.273 0.0792 3.45 5.62×10−4

α⋆_risk_percp_6 0.406 0.0891 4.55 5.27×10−6

α⋆
0_att_covid_friendssevere -0.539 0.0309 -17.4 0

α⋆
0_att_covid_stayhome -0.489 0.0333 -14.7 0

α⋆
0_att_covid_sh_norm 0.0953 0.0332 2.87 4.07×10−3

α⋆
0_risk_percp_1 0.0959 0.0347 2.76 5.73×10−3

α⋆
0_risk_percp_2 0.0615 0.0229 2.68 7.4×10−3

α⋆
0_risk_percp_3 -0.51 0.026 -19.6 0

α⋆
0_risk_percp_5 -0.127 0.0219 -5.78 7.27×10−9

α⋆
0_risk_percp_6 -0.493 0.027 -18.2 0

σ⋆_att_covid_friendssevere 0.778 0.0226 34.5 0
σ⋆_att_covid_stayhome 0.924 0.0242 38.1 0
σ⋆_att_covid_sh_norm 0.766 0.0195 39.3 0
σ⋆_risk_percp_1 0.72 0.0189 38 0
σ⋆_risk_percp_2 0.492 0.0127 38.7 0
σ⋆_risk_percp_3 0.62 0.0185 33.5 0
σ⋆_risk_percp_5 0.547 0.0141 38.7 0
σ⋆_risk_percp_6 0.643 0.0184 35 0
β⋆_gender_female -0.25 0.0478 -5.23 1.67×10−7

β⋆_intercept -0.103 0.0388 -2.66 7.83×10−3

β⋆_notCaucasian -0.265 0.0509 -5.2 1.94×10−7

β⋆_technical_school 0.142 0.0583 2.44 1.47×10−2

β⋆_zone_West 0.0905 0.0421 2.15 3.16×10−2

δ_1 0.266 0.0063 42.2 0
δ_2 0.581 0.0129 45 0

Table 8: Results parameters Latent model
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Name Value Rob. Std err Rob. t-test Rob. p-value
ASC_WFO 0.635 0.0846 7.51 5.86×10−14

βX⋆

WFO 1.92 0.497 3.87 1.11×10−4

β
′T
WFO -0.0138 0.00338 -4.09 4.25×10−5

α⋆_att_covid_friendssevere 0.403 0.0862 4.68 2.94×10−6

α⋆_att_covid_selfsevere 0.382 0.0972 3.92 8.68×10−5

α⋆_att_covid_stayhome 0.701 0.0939 7.47 8.15×10−14

α⋆_att_covid_sh_norm 0.508 0.104 4.9 9.62×10−7

α⋆_risk_percp_1 0.537 0.105 5.13 2.96×10−7

α⋆_risk_percp_2 0.259 0.0746 3.47 5.19×10−4

α⋆_risk_percp_3 0.25 0.076 3.29 1.00×10−3

α⋆_risk_percp_5 0.208 0.0676 3.08 2.08×10−3

α⋆_risk_percp_6 0.348 0.0796 4.37 1.22×10−5

α⋆
0_att_covid_friendssevere -0.532 0.029 -18.3 0

α⋆
0_att_covid_selfsevere -0.188 0.0306 -6.12 9.09×10−10

α⋆
0_att_covid_stayhome -0.494 0.032 -15.5 0

α⋆
0_att_covid_sh_norm 0.0876 0.0323 2.71 6.67×10−3

α⋆
0_risk_percp_1 0.0795 0.0328 2.42 1.54×10−2

α⋆
0_risk_percp_2 0.0492 0.0223 2.21 2.71×10−2

α⋆
0_risk_percp_3 -0.503 0.0257 -19.5 0

α⋆
0_risk_percp_5 -0.124 0.0217 -5.71 1.13×10−8

α⋆
0_risk_percp_6 -0.489 0.027 -18.1 0

σ⋆_att_covid_friendssevere 0.761 0.0209 36.4 0
σ⋆_att_covid_selfsevere 0.845 0.0204 41.5 0
σ⋆_att_covid_stayhome 0.916 0.0229 40 0
σ⋆_att_covid_sh_norm 0.755 0.0181 41.8 0
σ⋆_risk_percp_1 0.708 0.0175 40.4 0
σ⋆_risk_percp_2 0.487 0.0119 40.8 0
σ⋆_risk_percp_3 0.621 0.0171 36.3 0
σ⋆_risk_percp_5 0.542 0.0133 40.9 0
σ⋆_risk_percp_6 0.643 0.0173 37.1 0
β⋆_gender_female -0.251 0.044 -5.69 1.27×10−8

β⋆_intercept -0.177 0.0409 -4.33 1.47×10−5

β⋆_notCaucasian -0.216 0.0523 -4.13 3.69×10−5

β⋆_technical_school 0.24 0.0622 3.86 1.11×10−4

β⋆_zone_West 0.1 0.0415 2.42 1.56×10−2

δ_1 0.257 0.00573 44.9 0
δ_2 0.592 0.0124 47.8 0

Table 9: Results parameters of the hybrid choice model.

29



Notation Description
Z0
a binary variable set to 1 if activity a is scheduled during the day, 0 otherwise

Z0
b binary variable set to 1 if activity b is scheduled during the day, 0 otherwise

Zab binary variable set to 1 if activity b follows immediately activity a where a ̸= b

x1a discrete variable representing the starting time of activity a

x1b discrete variable representing the starting time of activity b

x2a discrete variable representing the duration of activity a

ωdawn discrete variable representing the starting time of the activity at dusk time
ωdusk discrete variable representing the starting time of the activity at dusk time
κa discrete parameter representing the desired starting time of activity a

τa discrete parameter representing the desired duration of activity a

ωab discrete parameter representing the travel time between facilities a and b

∆a discrete parameter representing the flexibility level of activity a

χa utility associated with participating in an activity during day a

θt travel time penalty
θa penalty for activity a for starting early, late, being short, or being long
t1Θ user-defined time slot to start an activity
t2Θ user-defined time slot to end an activity
t3Θ user-defined start closing time to avoid peak hours
t4Θ user-defined end closing time to avoid peak hours
t5Θ user-defined maximum travel time
t6Θ user-defined staying at home time
t7Θ user-defined starting time of dusk activities
t8Θ user-defined maximum allowed time in an activity

Table 10: Description of the variables and parameters
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B Dynamic Programming Algorithm
Dominance rules have to be developed carefully so that we can delete the highest number
of labels and guaranty that the optimal solution is not deleted from the list of labels.

B.1 Dominance Rules
Label L1 dominates label L2 if the following rules are true:

1. a1 = a2

2. t1 = t2

3. x1 = x2

4. U1−u1 >U2−u2

5. R1 ⊆ R2

Lemma 1 All future activity schedules reachable from a label L1, dominated by an-
other label L2 using the dominance rules are reachable from label L2 with higher cumu-
lative utility.

Proof Notice that the current activity and time for both labels are the same, i.e., a1 = a2

and t1 = t2. Also the time, cost, and resource consumption for each extension is the same
for all combination of activities. Hence, time constraints or any resource constraint cannot
be violated for any future sequence of activities for label L1 but not for label L2, i.e., if
the extension is not feasible to L1 then certainly it will not be feasible for L2. Now,
utility will be the same for all extensions due to the dominance (2) and due to dominance
rule (4) the previous utility must be strictly lower for the dominated label.

The result can be more formally arrived to by contradiction. We suppose it was not
true, i.e., that some resource will be higher, and then arrive to a contradicting result.

By Lemma 1, we can prove that all future extensions are possible without worsening
the value of the objective function. Even though, the utility is a function that depends on
the start time, and duration of the activity.

Proposition The Dominance rules do not eliminate the optimal solution if a solution
exists.

Proof Let Li be a dominated label by a label Lj and let Pi = {a1, . . . ,ai} be the se-
quence of activities performed by label Li, similarly, let Pj = {a1, . . . ,aj} be the sequence
of activities performed by label Lj, and let a1 = home, i.e., the start of the schedule.

By contradiction, suppose that an optimal solution does exist with path P∗ = {a1, . . . ,

ai, . . .a1}, i.e., a path obtained from an extension of the dominated label with a total
optimal utility of U∗. However, we can create a new path by replacing the dominated
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label with label Lj, i.e., Pz = {a1, . . . ,aj,. . .a1} with a total utility of Uz. By Lemma 1
we know that Uz >U∗ hence contradicting the assumption that P∗ is optimal.

B.2 Decremental State Space Relaxations (DSSR)
Decremental State Space Relaxations (DSSR) are procedures applied to dynamicy pro-
gramming where we relax the state space and gradually decrease the relaxation if the
solution violates the constraints. In our case, the complicated constraints are the elemen-
tarity constraints, (i.e., that an activity can only be done once). Hence, dominance rule 5
(i.e., R1 ⊆R2) is dropped. However, the solution to the relaxation can be infeasible since
an activity can be performed several times in the relaxed problem. With DSSR we add a
dominance rule 5 just for the repeated activity in the best solution found and not in every
activity. In this way, the relaxation is decreased gradually, and the number of labels does
not increase as rapidly.

Algorithm 1: Basic DP
Initiate time, t← 0;
Initiate the list of labels, Label[1] = {L0 = (home,0,1,1,0,0, {})};
while t ̸= T do

t← t+1;
for ℓ1 in Label[t] do

Extend label to all feasible extensions;
L ∗← feasible extension;
t∗← REF(t);
for ℓ2 in Label[t∗] do

Apply dominance rules;
if ℓ2 is dominated then

delete ℓ2;
continue;

if L ∗ is dominated then
delete L ∗;
break;

Label[t∗] ∪L ∗

return Best label at time T

B.3 DP heuristic
The dynamic programming algorithm introduced previously is exact (1), i.e., it finds the
optimal solution. In practice, the population of individuals in a region can be over mil-
lions, thus, a fast solution is required to apply the algorithm to a large population. A
heuristic method was developed that is faster than the exact DP algorithm by simple mod-
ifying the dominance rules. The dominance rule 3 was removed, while maintaining the
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feasibility checks. Feasibility checks ensures that the solution will be feasible, while by
relaxing rule 3 allows us to delete more labels. As a consequence, we lose the guar-
anty of finding an optimal solution, but we get fast solutions, necessary to analyze large
populations.

C Algorithms

Algorithm 2: Draw from X∗
n, Compute Probabilities, and Assign the

Maximum Probability Category for Each Individual and Risk Perception
Indicator

Input: β∗
0,β

∗
k,α

∗
0i,α

∗
i ,σ

∗
i ,τj,x

∗
kn,N,J, I,num_draws = 1000

Output: Assigned category value j⋆ for each individual n and indicator i
for each indicator i= risk_percp_m for m= 1, · · · ,6 do

for each individual n= 1 to N do
Initialize an empty list psum of length J with zeros;
for each draw d= 1 to num_draws do

Draw ϵ∗ ∼ N (0,1);
X∗
n← β∗

0+∑
K
k=1β

∗
kx

∗
kn+σ∗

iϵ
∗;

for each category j= 1 to J do
if j= 1 then

pj←Φ
(
τj−α∗

0i−α∗
iX

∗
n

σ∗i

)
;

else
pj←Φ

(
τj−α∗

0i−α∗
iX

∗
n

σ∗i

)
−Φ

(
τj−1−α∗

0i−α∗
iX

∗
n

σ∗i

)
;

psum[j]← psum[j]+pj;

j⋆← argmaxjpsum[j];
Store j⋆ for individual n and indicator i;
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