
Modeling Disease Spread: Integrating
Mobility, Awareness, and Behavior

Cloe Cortes Balcells * Rico Krueger † Michel Bierlaire *

March 14, 2025

Report TRANSP-OR 240909
Transport and Mobility Laboratory

School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

transp-or.epfl.ch

*École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and En-
vironmental Engineering (ENAC), Transport and Mobility Laboratory, Switzerland, {cloe.cortes,
michel.bierlaire}@epfl.ch

†Department of Technology, Management and Economics, Technical University of Denmark
(DTU), {rickr@dtu.dk}

1



Abstract
The COVID-19 pandemic has underscored the vital link between epidemiology
and transportation, particularly in the context of activity-travel behavior. While
much research has explored the role of mobility in disease spread, there is a no-
table gap in understanding how individual behavioral choices, especially regard-
ing testing, influence these dynamics. This paper introduces the Mobility-Aware
Behavioral Epidemiological Model (MABEM), an innovative framework that in-
tegrates activity-based modeling with latent variables to more accurately repre-
sent the impact of testing decisions on disease propagation. Using data from the
canton of Vaud, Switzerland, our model simulates the interactions between indi-
vidual behavior, mobility, and health status, revealing significant underreporting
of infections and highlighting the crucial role of testing choices in shaping ob-
served infection rates. The results suggest that testing behaviors vary significantly
across different demographic groups and regions, influencing both individual ac-
tivity patterns and overall disease spread. MABEM model proves to be computa-
tionally efficient and offers valuable insights for designing targeted public health
interventions. Despite some limitations related to data availability, this research
provides a comprehensive approach to understanding the interplay between mo-
bility, individual behavior, and disease dynamics, offering new possibilities for
more effective disease containment strategies.

Keywords: Interdisciplinary, Activity-Travel Behavior, Epidemiological Mod-
eling, Activity-Based Model, Discrete Choice Modeling, COVID-19.

1 Introduction
The COVID-19 pandemic has undeniably bridged the epidemiological and trans-
portation communities, highlighting the critical role of activity-travel behavior
in the spread of infectious diseases. Governments worldwide have implemented
curfews and quarantines to contain the virus. While the link between transporta-
tion and epidemiological communities is well-established, less attention has been
given to the crucial influence of individual testing choices on mobility patterns and
subsequent disease spread. Understanding the behavioral aspect of an individual’s
decision to get tested is crucial, as it directly impacts their reaction to the disease.
One of the main challenges in modeling such behavior is that key behavioral el-
ements are often latent and not directly observable. For instance, one cannot di-
rectly observe whether someone is infected; instead, one observes the outcome
of a test, which itself depends on the individual’s decision to get tested. This
creates a layer of complexity, as the model must infer latent states, like infection
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status, from observable actions and outcomes, such as test results. For example,
if an individual is unaware of being sick, they will continue their regular activ-
ities, potentially spreading the disease further. This underscores the importance
of modeling individual awareness from a mobility point of view. An example of
different behavior regarding testing choices can be found by analyzing Swiss data
from the COVID-19 2019 pandemic (Swiss National, 2021). This dataset clearly
shows a non-negligible difference in testing habits between French-speaking and
German-speaking cantons in Switzerland. Specifically, in the French-speaking
canton of Vaud, the average number of contacts per day per person is higher, and
the number of tests per 100,000 individuals is lower compared to the German-
speaking canton of Zurich. This disparity raises important questions regarding
how individual testing choices impact activity-travel behavior and, consequently,
disease spread.

Although several studies from the epidemiological and transportation com-
munities have begun to integrate aspects of human mobility and behavior into
their epidemiological models (see Müller et al., 2021; Hou et al., 2021; Gozzi
et al., 2021; Balcan et al., 2010), there remains a significant gap in current re-
search on how to dynamically include individual behavioral choices, particularly
regarding testing and the resulting behavioral adjustments. The epidemiologi-
cal community, while developing more complex models of disease transmission,
often relies on simplified representations of mobility patterns, such as static net-
works or average contact rates for groups of people. These approaches can over-
look the intricate ways in which daily activities contribute to disease spread. On
the other hand, the transportation community has made advances by introduc-
ing activity-based models to generate synthetic populations and detailed daily
schedules, yet they often oversimplify the transmission model by using predefined
transition probabilities and neglecting the crucial feedback loop between testing
choices and subsequent daily activities. Meanwhile, the medical community has
provided valuable insights into the importance of testing for controlling disease
spread and has developed strategies to encourage people to get tested (see Hengel
et al., 2021; Flynn et al., 2020). While these models are highly effective for policy
purposes, they are not typically embedded within an epidemiological framework,
nor do they model activity-travel behavior to assess how increasing testing im-
pacts both daily activities and, ultimately, the spread of the disease. There is
a clear need for interdisciplinary models that dynamically explore the relation-
ship among testing decisions, activity-travel behavior, and disease spread to fully
understand their interconnected impacts. Such models would bridge the gaps be-
tween the epidemiological, transportation, discrete choice, and medical commu-
nities, offering a comprehensive understanding of how individual behaviors drive
disease dynamics and informing more effective public health interventions (see
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Tuomisto et al., 2020).

To address these gaps, this paper proposes the Mobility-Aware Behavioral
Epidemiological Model (MABEM), an activity-based epidemiological model de-
signed to explore the impact of individual testing decisions on mobility patterns
and disease transmission. MABEM consists of two primary components: the
epidemiological-behavioral submodel and the mobility restriction submodel. The
epidemiological-behavioral submodel includes latent variables for exposure and
propensity for testing, allowing us to separately model the health state of indi-
viduals (susceptible, infected, or recovered) and their testing choices, along with
the outcomes of these tests. The mobility restriction submodel uses the state of
awareness, triggered by a positive test result, to modify individual schedules. This
comprehensive approach allows for a detailed analysis of how variations in test-
ing behavior influence not only an individual’s daily schedules but also the broader
dynamics of disease spread, providing essential insights for policymakers aiming
to craft more targeted and effective public health interventions.

The remainder of this paper is organized as follows: Section 2 reviews the
related literature. Section 3 details the methodology of our model. Section 4
presents the findings from a case study of 810,486 individuals in the canton of
Vaud, Switzerland. Finally, Section 5 offers concluding remarks and outlines fu-
ture research directions.

2 Literature Review

2.1 Epidemiological Models Overview and the Rise of Individual-
Based Models during COVID-19

Traditional epidemiological models can be classified into three categories: com-
partmental, network-based, and individual-based. Compartmental models, such as
SIR or SEIR models, simplify the population into distinct categories (for instance,
Susceptible, Exposed, Infected, and Recovered), where the transition of each cat-
egory is represented by differential equations (see Kelman, 1985). Despite their
mathematical simplicity and ease of analysis, these models often overlook the
“imperfect mixture” of populations, neglecting individual heterogeneity and com-
plex behaviors (Smieszek, 2009; Edmunds et al., 1997). Network-based models,
on the other hand, offer a more complex representation of social interactions, as
demonstrated in studies such as Hou et al., 2021 and Cui et al., 2021. These mod-
els use graph theory to map individual interactions (Mancastroppa et al., 2020).
Despite their ability to simulate social heterogeneity, network models face chal-
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lenges in densely populated environments and often lack dynamic representations.
On the contrary, activity-based models, which are a subset of individual-based
models, present a detailed representation of individual behaviors. These models
have been especially valuable for understanding the spread of disease in com-
plex real-world scenarios, as seen in studies such as Kerr et al., 2020, Hackl and
Dubernet, 2019, Müller et al., 2021, and Eubank et al., 2004. Activity-based
epidemiological models have been widely used to guide public health responses
during the pandemic (Kerr et al., 2020). With the onset of the COVID-19 crisis,
the importance of individual-based models has become more pronounced, since
they take into account the crucial role of individual behavior in the spread of the
virus.

2.2 Advanced Epidemiological Models and Limitations
The transportation community has experienced a significant increase in litera-
ture integrating mobility with epidemiological models (Kerr et al., 2020, Müller
et al., 2021) to help policymakers during the COVID-19 emergency. Müller
et al., 2021 use MATSim, an activity-based model, to simulate individual mo-
bility and incorporate a mechanistic infection model and a person-centric disease
progression model. Similarly, Kerr et al., 2020 developed CovaSim, an agent-
based model that simulates the spread of COVID-19 by incorporating individual
behaviors, contact networks, and intervention strategies. CovaSim can evaluate
the impact of various public health interventions, such as social distancing, test-
ing, and contact tracing, on the spread of the virus. While these models provide
valuable insights into how various public health measures impact disease trans-
mission, they do not fully address the complexity of behavioral modeling, partic-
ularly the challenge of inferring unobservable factors like infection status from
testing choices. Additionally, they overlook the critical feedback loop between an
individual’s choice to get tested and their subsequent behaviors, which is essential
for a more comprehensive understanding of infection dynamics.

On the other hand, the epidemiological community explores the importance of
testing to contain the spread of the disease (Cui et al., 2021, Aronna et al., 2021).
For instance, Cui et al., 2021 propose a network-based model that examines dif-
ferent testing strategies, such as random testing and contact-tracking testing, and
their impact on epidemic control. Their study highlights that higher testing pri-
ority for individuals in close contact with confirmed cases significantly reduces
the infection scale. Aronna et al., 2021 introduce a compartmental model fo-
cusing on the effectiveness of testing and quarantine measures, finding that test-
ing asymptomatic cases is crucial for controlling the epidemic. Similar conclu-
sions are reached in the field of medical research (see Hengel et al., 2021; Flynn
et al., 2020). Flynn et al., 2020 present a drive-through testing model designed to
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increase the volume and optimize the use of limited resources for testing. Sim-
ilarly, Hengel et al., 2021 propose a decentralized point-of-care testing model
aimed at improving accessibility and making testing equally available across the
population, especially in underserved communities.

While all these studies capture how testing impacts disease spread, they fail
to properly model the activity-travel behavior of individuals and how it connects
to disease spreading. Addressing this gap requires an integrated approach that
considers the full spectrum of individual behaviors and choices, providing a more
comprehensive understanding of the dynamics of the disease.v

2.3 Literature Gaps
All in all, Sections 2.1 and 2.2 identify several gaps in existing epidemiologi-
cal models, especially regarding the integration of individual activity-travel be-
havior through activity-based models and decision-making processes like testing
choices into the modeling of disease spread. This paper aims to address these gaps
by incorporating individual choices, like infectious disease testing decisions, and
capturing the complexity of human behavior and interaction. This is crucial for
understanding and managing public health outcomes, particularly in global health
crises. The proposed model advances the field by dynamically tracking individual
health states and the impact of personal decisions on disease spread and control,
highlighted in the detailed literature review comparison visible in Table 1 . This
summary effectively outlines the current state of epidemiological research, iden-
tifying key areas that need more research and improvement, especially in terms of
behavioral modeling.

3 Methodology
This research aims to develop MABEM, which includes activity-travel behavior,
health state transitions, and testing choices. To provide a better understanding
of disease spread MABEM includes two submodels: the mobility restriction sub-
model, and the epidemiological behavioral choice submodel. The model considers
the infection dynamics, testing outcomes, the influence of a positive test on the in-
dividual’s mobility, and the impact of awareness of a positive test on mobility at
the individual level. The proposed framework simulates individual behaviors over
discrete time intervals. MABEM receives as input the schedule of each individual
from an activity-based model, together with information about the individuals,
and the facilities in the network, and returns not only whether the individual is
susceptible (s), infected (i), or recovered (r) at each time interval, but also tracks
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whether they have been tested (q), if the test was positive (+), and whether they
are aware of being sick (a).

3.1 Modeling Elements for MABEM
Time Discretization We discretize time to capture the dynamic behavior of in-
dividuals across the days. Specifically, we divide each day ℓ into P time periods,
where a typical duration for each period p can be 30 minutes. The simulation
spans L days, resulting in a total of T = PL time intervals, where t = 1, · · · , T ,
p = 1, · · · , P with P = 48, and ℓ = 1, · · · , L. For this reason, we can define t as:

t = p+ Pℓ. (1)

As a consequence of Equation (1), each timestep t corresponds to a couple (p, ℓ)
such that:

p(t) = t mod P (2)

ℓ(t) =

⌊
t

P

⌋
(3)

where ⌊⌋ and mod represent the quotient and the remainder of the integer division
t/P, respectively1. We say that a specific time interval t ′ belongs to a specific day
ℓ ′, i.e., t ′ ∈ ℓ ′, if and only if:

ℓ(t ′) = ℓ ′

Similarly, we define a total number of weeks, where w = 1, · · · ,
⌊
T
7

⌋
. A week w

can be linked with t by defining:

w = w(t) =

⌊
ℓ(t)

7

⌋
=

⌊
t

(7P)

⌋
(4)

and we say that t ′ belongs to a week w ′, or t ′ ∈ w ′ if and only if:
⌊

t ′

(7P)

⌋
= w ′.

2

1For example, if t = 50, then ℓ(50) = 1 and p(50) = 2, i.e. the simulation is at hour 1 of day
2.

2While this level of detail might seem excessive, it is necessary for accurately mapping time
intervals to specific days and weeks, given that the schedule varies daily. The equations ensure
precise synchronization within the simulation.
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Space and Facilities The space is represented by facilities f which belong to a
discrete set F of locations. Each individual n visits a facility f at each time t.
Each facility f has a set of J characteristics constant over time ŷj

f
3. The different

characteristics include information like the square meters of the facility, ventila-
tion level, or number of floors. We also consider a discrete list of A activities that
individuals can perform during the day. Each activity a is associated with a set of
locations or facilities Fa.

Population Characteristics We consider a generic population N consisting of
N individuals. For each individual n, we include a set of E socioeconomic charac-
teristics ŷe

n, which remain constant over time (e.g., income, education level, age,
or political orientation). Additionally, we include a set of H health characteris-
tics ŷh

n, also constant over time (e.g., body mass index, previous lung diseases, or
smoking habits).

Based on their socioeconomic characteristics, the population can be segmented
into various groups, such as age, gender, or residence location. We introduce the
index g to represent these groups, where g(n) denotes the specific group to which
an individual n belongs. It is important to note that these groups form a partition
of the population, meaning every individual belongs to exactly one group, and no
group overlaps with another. Finally, for each individual n, we define the timestep
t+n as the last timestep they test positive, and a recovery time γn, representing the
duration from the time of infection tin until the individual recovers.

Restriction Policies We define a measure u which involves activating a set of
parameters from a set U . Each element in U is defined as a set of binary parame-
ters, that activate a specific restriction, i.e. not participating in a specific activity,
curfew, or delaying the starting time and shortening the end time, for a given ac-
tivity a.

Individual Schedules We begin by importing a schedule for a reference day
which provides the location of each individual at each 30-minute interval p. For
each individual n ∈ N , facility f ∈ F , and p ∈ [1, . . . , 48], we assume that
each individual is assigned to a specific location during each time interval. This is
represented as:

ŷfnp =

{
1 if individual n is at location f during time interval p,
0 otherwise.

(5)

3Note that we use a hat notation (e.g., ŷj
f) for quantities that remain constant throughout the

simulation, while quantities without a hat are those manipulated by the simulator.
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This reference schedule serves as the baseline input to our simulation model and
repeats every day ℓ, i.e., every 48 time-steps if no restrictions are modified. To
obtain the reference schedule, we can use the output of a microscopic activity-
based model, such as such as MATSim, or TASHA (Axhausen, 2016; Yasmin
et al., 2015), which generate detailed activity schedules for N individuals. Alter-
natively, GPS tracking data from mobile phones or other mobility datasets could
be used, as long as they provide information about individuals’ locations at each
timestep and their encounters with others. The choice of data source depends on
the availability of data and the level of detail required for the study.

This approach is used because we are not employing a multi-day activity-
based model, and it also optimizes computational performance, enabling us to
integrate the simulation with optimization tools for policy decision-making. How-
ever, the framework is flexible and allows for different schedules to be preloaded
for each day if needed, accommodating more complex activity patterns. The ac-
tual schedule yfnt for individual n at facility f during time interval t:

yfnt =

{
1 if individual n is at location f during time interval t,
0 otherwise.

(6)

is then determined by both the reference schedule and the new schedule given
restriction u for individual n, during day ℓ. This can be expressed as:

yfnt =

{
ŷfnp(t) if no restriction u is applied,
ŷu
fnp(t) otherwise.

(7)

where ŷu
fnp(t) is the new reference schedule for individual n given restriction u.

From Facility to Individual Characteristics The definition of variable yfnt in
Equation (7) allows us to associate the characteristics of the facility to the indi-
viduals present in it at a given time t. We define yj

nt as the characteristic j of the
facility that n visits at time t as:

yj
nt =

∑
f

yfntŷ
j
f, ∀ j inJ . (8)

Health States The health state of individual n at time t can be susceptible (s),
infected (i), or recovered (r), and is captured by three binary variables. This is
a classical representation in the epidemiology literature, commonly referred to as
the SIR model (see Kelman, 1985). We define them as:

Zs
nt =

{
1, if individual n is susceptible at time t,

0, otherwise,
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Zi
nt =

{
1, if individual n is infected at time t,

0, otherwise,

Zr
nt =

{
1, if individual n is recovered at time t,

0, otherwise,

such that it satisfies the constraint:

Zs
nt + Zi

nt + Zr
nt = 1 ∀n, t. (9)

Testing Choices and Outcomes Moreover, to model the choice of testing and
the positive outcome of the test, we define Zq

nt, and Z+
nt, where:

Zq
nt =

{
1 if individual n decides to test at timestep t, and
0 otherwise.

Z+
nt =

{
1 if individual n tests positive at timestep t, and
0 otherwise.

Awareness We define a period of ν days during which an individual remains
aware of their infection status. This awareness period begins when the individual
becomes aware of their infection, modeled by the binary variable Za

nt, defined as:

Za
nt =

{
1 if individual n is aware of being infected at timestep t, and
0 otherwise.

(10)

This awareness is determined by the individual’s health status and the result
of a positive test, represented mathematically as:

Za
nt = 1 ∀t : t+n < t < tin+ν. (11)

After this awareness period of ν days, if no new positive test occurs, the indi-
vidual’s awareness resets and Za

nt = 0.

From Infectious Contacts to Individual Characteristic Equation (12) calcu-
lates the proportion of infected individuals that individual n encounters at time
t by dividing the total encounters with infected individuals across all locations
by the total encounters with all individuals, excluding n. The proportion is used
instead of the absolute number because it better represents the risk of infection,
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considering the overall context. Encountering a higher proportion of infected in-
dividuals in a group generally increases the risk of exposure, as the likelihood of
contact with an infected person is greater.4

yv
nt =

∑
f

∑
m∈N−{n}

yfmt · Zi
fmt∑

f

∑
m∈N−{n}

yfmt

. (12)

Latent States The latent states in our model are continuous variables designed
to capture underlying and unobserved processes. Specifically, we define Q⋆

nt as a
latent variable representing the propensity of an individual n to seek testing at time
t. Additionally, E⋆

nt is another latent variable that defines the level of exposure of
individual n to the disease at time t, reflecting both environmental factors and
interactions that could lead to transmission. These latent states allow the model
to account for the variability in testing behavior and exposure risk over time and
across individuals, and their unit and scale is arbitrary.

Data In terms of infection information, we define ŷq
nt as a binary variable that

defines whether n has tested at t. We assume to have at our disposal, the observed
number of positive cases ŷ+

gw, the observed number of negative cases ŷ−
gw, and the

observed number of tested individuals ŷq
gw for each age group g of the population

and each week w. Finally, we assume to have at our disposal for each day ℓ, a
variable ŷ+

gℓ that contains all positive cases for that day, per group g. These data
variables are used to estimate the parameters of the epidemiological behavioral
choice model and as initialization values.

3.2 MABEM Input and Outputs
The main input of MABEM is ŷfnp which defines the facilities that an individual
visits across one day. The rest of the inputs include the socioeconomic character-
istics ŷe

n of the individuals, their health characteristics ŷh
n, and the characteristics

of the facility that n is visiting at timestep t, yj
nt.

As outputs, MABEM generates the following indicators: Zs
nt, Z

i
nt and Zr

nt,
and Zq

nt, Z
+
nt, and Za

nt. Zs
nt, Z

i
nt, and Zr

nt represent the health state of the indi-
vidual, Zq

nt their choice of testing, Z+
nt the test outcome, and Za

nt how the test
outcomes impact activity-travel behavior.

4For example, being in the same location of one infected individual out of ten (10%) represents
the same risk proportionally as encountering 20 infected individuals out of 200 (10%). However,
the absolute number of encounters could influence the cumulative risk in scenarios where multiple
contacts are likely.
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ŷfnpU

Mobility
Restriction

Model
(Section 3.4)
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Figure 1: Overview of the methodologies.

In order to provide a clearer understanding of the workflow and interrelation-
ships between the different components of our framework, we include Figure 1 to
portray the various models involved visually, the sections where each is detailed,
and their respective inputs and outputs.

3.3 Epidemiological-Behavioral Choice Submodel
3.3.1 Model Overview

Figure 2 illustrates the epidemiological-behavioral choice submodel, providing a
visual representation of the two latent states (represented in an oval), the explana-
tory variables (represented in a rectangle), and the observed variable from data
(represented in a square shape). The model is fed with all the inputs presented in
Sec. 3.1.

The first latent state presented in Figure 2, i.e. the level of exposure E⋆
nt,

captures the level of contact an individual has with the infection, which depends
on several factors (ŷh

n, yj
nt and yv

nt). The inclusion of facility characteristics, such
as ventilation or square meters, reflects their critical role in influencing disease
transmission. For instance, a well-ventilated, spacious area reduces the risk of
infection, while a crowded, poorly ventilated space increases it.

From this exposure state, we model the probability that the individual becomes
infected, providing a dynamic and individualized measure of risk. The second
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E⋆
nt

Proportion of infected individuals that n encounters at t (yv
nt)

Health characteristics of n (ŷh
n)

Facility characteristics of n (yj
nt)

Q⋆
ntSocio-economic characteristics of n (ŷe

n) ŷq
nt

Figure 2: Epidemiological Behavioral Model: Structural Diagram

latent state, propensity to test, is influenced by the individual’s socioeconomic
characteristics (ŷe

n) and their exposure level. This combination allows the model
to capture how likely an individual is to seek testing based on their perceived
risk. Socioeconomic characteristics are crucial to model the propensity to test,
as they strongly impact the likelihood of testing of an individual. This model,
therefore, integrates both behavioral and environmental factors to simulate the
complex dynamics of disease spread and individual decision-making.

3.3.2 Structural equations

Exposure State Modeling The hidden exposure state E⋆
nt is a continuous vari-

able that captures the individual’s level of exposure to infection. As previously
discussed, this latent state takes as exogenous variables the health characteristics
of the individual ŷh

n, the characteristics of the facility that individual n is visiting
yj
nt, and the proportion of infectious individuals yv

nt that an individual n encoun-
ters at timestep t in facility f. We define the structural equation for E⋆

nt as:

E∗
nt = β0

E⋆ +
∑
h∈H

βhŷh
n + βvyv

nt +
∑
j∈J

βjyj
nt + εE⋆ , (13)

where βh is the parameter h from ŷh
n, ∀h ∈ H, βv is the parameter of yv

nt de-
fined in (12), βj is the parameter j from yj

nt, ∀j ∈ J , defined in (8), β0
E⋆ is the

intercept, and εE⋆ is the error term. Note that while the current expression of ex-
posure employs a linear term to approximate the relationship between health and
facility characteristics and infection risk, we acknowledge the potential benefits
of exploring multiplicative or non-linear models in future studies as they might
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provide better insights, especially with access to more detailed data.5

Propensity to Test To model an individual’s propensity to test, we use another
latent state defined as:

Q⋆
nt = β0

Q⋆ +
∑
e∈E

βeŷe
n + ηE⋆E⋆

nt + εQ⋆ , (14)

where βe is the parameter e from ŷe
n, ∀e ∈ E , ηE⋆ is the parameter for E⋆

nt, β
0
Q⋆ is

the intercept, and εQ⋆ is the error term. Note that the decision to get tested is not
directly tied to an individual’s health status; even those infected and aware of their
condition might opt for testing, perhaps out of curiosity or to confirm whether
they can safely resume their regular activities.

3.3.3 Measurement Equations

As observed data, the choice model presented requires knowing whether an in-
dividual n tested or not at each timestep t. However, obtaining such detailed,
individual-level data is complicated due to data privacy concerns and the logisti-
cal challenges of tracking a large number of individuals over an extended period to
monitor their testing behavior. This process would involve monitoring a vast pop-
ulation continuously for months, which is both resource-intensive and potentially
invasive.

Given these challenges, we propose a method to use aggregated data instead.
To link the tests performed for each individual and timestep, with the observed
number of tests ŷq

gw per segment of the population g and per week w, we de-
fine Nq

gw as the number of individuals in group g who get tested in a week w.
Similarly, to link the positive tests per individual and timestep, with the observed
number of positive tests ŷ+

gℓ per group g and per day ℓ, we define N+
gℓ as the num-

ber of individuals in the segment who get tested in day ℓ, as:

Nq
gw =

∑
n∈g

∑
∀t∈w

P(Zq
nt = 1), (15)

N+
gℓ =

∑
n∈g

∑
∀t∈ℓ

P(Z+
nt = 1), (16)

where P(Zq
nt = 1) is the probability of an individual n to test at timestep t,

and P(Z+
nt = 1) is the probability of an individual n to test positive at timestep

5The lack of data does not allow for including protective measures, such as facemask usage,
which are not explicitly modeled. However, the impact of facemasks can be conceptualized as a
multiplicative factor in the exposure equation, reducing the overall exposure risk. This factor can
decay over time, reflecting varying compliance and effectiveness.
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t, defined below in Equations (25) and (26)–(27), respectively. To estimate our
model, we need to provide a connection to our data. This connection is established
through the log-likelihood functions L1(θ) and L2(θ), where θ = [βe, βh, βj, βv,

ηE⋆ , βQ⋆

0 , βE⋆

0 , r1, r2] is the vector that contains all the decision variables, with βe

for all e ∈ E , βh for all h ∈ H, and βj for all j ∈ J . To describe these functions,
we opt to use the negative binomial distribution for modeling the count data rep-
resented by ŷq

gw and ŷ+
gℓ primarily due to its flexibility in handling overdispersed

data. The Poisson distribution, traditionally used in epidemiological studies for its
simplicity and the property of the mean equaling the variance, is often inadequate
when the data exhibit greater variability than the Poisson model can accommodate
(Cameron and Trivedi, 2013). This overdispersion in epidemiological data can be
attributed to unobserved heterogeneity in the population, where differences in sus-
ceptibility, exposure, and reporting rates across demographic segments can lead to
variance that significantly exceeds the mean. The negative binomial distribution
introduces an extra parameter (r1, r2), which allows it to adjust for this variability
by letting the variance be greater than the mean, thus providing a more accu-
rate and fitting model for our epidemiological counts (Hilbe, 2011). Moreover,
the negative binomial is particularly suited for data like ours, where the count of
positive tests and the number of tests conducted can vary widely across different
population groups and times. It effectively captures the stochastic nature of dis-
ease transmission and the associated observation processes, which are influenced
by varying policy interventions and behavioral responses over time. By employ-
ing the negative binomial framework within our log-likelihood functions L1(θ)
and L2(θ), we ensure that our model is robust to these complexities, enhancing
the reliability and validity of our epidemiological inferences. This methodolog-
ical choice is not only supported by the nature of our data but also aligns with
advanced statistical practices in epidemiological research that require accommo-
dating overdispersion (Lawless, 1987). L1(θ) and L2(θ) are described as:
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L1(θ) =
∑
n∈g

∑
w∈W

(
log Γ(ŷq

gw + r1) − log Γ(r1)

− log Γ(ŷq
gw + 1) + r1 · log

(
r1

r1 +Nq
gw

)

+ ŷq
gw · log

( Nq
gw

r1 +Nq
gw

)
,

(17)

L2(θ) =
∑
n∈g

∑
ℓ∈L

(
log Γ(ŷ+

gℓ + r2) − log Γ(r2)

− log Γ(ŷ+
gℓ + 1) + r2 · log

(
r2

r2 +N+
gℓ

)

+ ŷ+
gℓ · log

( N+
gℓ

r2 +N+
gℓ

)
.

(18)

where r1 and r2 are the parameters of the negative binomial. These parameters
control the shape of the distribution, particularly how much the variance of the
data exceeds the mean, accounting for overdispersion in the observed counts ŷq

gw

and ŷ+
gℓ .

3.3.4 Epidemiological Model

A hidden Markov chain is employed to model the transitions between health
states. The model is characterized by the following state transition matrix B:

Bn,t =



Bs,s Bs,i 0

0 Bi,i Bi,r

Br,s 0 Br,r




n,t

,

where Bk1,k2
n,t represents the probability of transitioning from state k1 to state k2 at

any timestep t. Each row of the matrix sums to one, ensuring that the probabil-
ities cover all possible state transitions for an individual at time t. In particular,
the transition probability from the susceptible toward the infected health state is
calculated using:

Bs,i
n,t = P(Zi

n(t+1) = 1|Zs
nt = 1) =

1

1+ e−µE⋆
nt
, (19)

where µ is set to 1, reflecting the non-estimable nature of the scale parameter in
this model context , and E⋆

nt is the hidden state of exposure defined in Equation
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(13). As a consequence, the probability of remaining susceptible is the comple-
ment to one of the probability defined in Equation (19):

Bs,s
n,t = P(Zs

n(t+1) = 1|Zs
nt = 1) = 1− Bs,i

n,t. (20)

If an individual is infected, the probability of them transitioning to the recov-
ered state, accounting for the recovery time γn, can be defined as6:

Bi,r
n,t = P(Zr

n(t+1) = 1|Zi
nt = 1) = t− tin > γn. (21)

and, similarly to Equation (20):

Bi,i
n,t = P(Zi

n(t+1) = 1|Zi
nt = 1) = 1− Bi,r

n,t. (22)

Finally, we assume that an individual who recovers stays recovered until the
end of the simulation. Following this logic, we define:

Br,r
n,t = P(Zr

n(t+1) = 1|Zr
nt = 1) = 1, (23)

Br,s
n,t = P(Zs

n(t+1) = 1|Zr
nt = 1) = 0. (24)

3.3.5 Behavioral Model

At each timestep t, an individual can decide to get tested. As previously discussed,
we assume that the propensity of an individual to get tested depends on their
socio-economic characteristics, and their exposure, described in Equation (14).
We model the probability of an individual deciding to get tested through a logit
model:

P(Zq
n(t+1) = 1) =

1

1+ e−µQ⋆
nt
, (25)

µ is set to 1, with the same reasoning as in Equation (19). For individuals
who are tested, that is when Zq

nt = 1, we compute the outcome of the test. To
accurately reflect the test results, we consider the possibilities of true positives in
Equation (26) and false positives in Equation (27) from the literature (see Pecoraro
et al., 2022 and American Society, 2022).

P
true positive
nt = P(Z+

nt = 1|Zq
nt = 1 andZi

nt = 1) = 0.88± (0.86− 0.90), (26)

P
false positive
nt = P(Z+

nt = 1|Zq
nt = 1 andZi

nt = 0) = 0.02± (0.01− 0.03). (27)

6This probability can be calculated using the cumulative distribution function (CDF) of the
distribution representing the time to recovery γn. In this case, we assume that γn follows a log-
normal distribution as explained in Appendix B.
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For simplicity, we assume that these probabilities remain constant throughout
the simulation, across all individuals n and timesteps t. The ranges in parentheses
correspond to the 95% confidence intervals. Note that after deciding to get tested,
individuals continue with their scheduled activities until they receive test results.
This approach assumes no immediate change in behavior during the waiting pe-
riod.

3.4 Mobility Restriction Submodel
Positive test results on infected individuals trigger a user-defined awareness period
of ν days, during which individuals modify their behavior, influencing the overall
infection spread. For those who test positive and are infected (see Equation (11)),
awareness (Za

nt) is activated as defined in Equation (10) and remains active for ν
days. The mobility restriction submodel defines the activity-travel behavior mea-
sures u which sets user-defined rules on how aware individuals should behave.
This triggers an activity-based model (for example, the activity-based model de-
fined in Cortes Balcells et al., 2024) passing u as an input in order to obtain the
new schedule for each aware individual ŷu

fnp.

3.5 Simulation
The schematic in Figure 3 provides an overview of the dynamics in our frame-
work, illustrating the sequential process each individual undergoes during the
simulation. The process begins with the Initialization phase, where each indi-
vidual’s daily schedule and initial health state, whether Susceptible, Infected, or
Recovered, are established.

Following initialization, the model calculates each individual’s exposure level
based on location and interactions, subsequently influencing their propensity to
get tested. For each susceptible individual n at time t, their infection status at the
next time step t+1 is determined by sampling from a Bernoulli distribution, using
the calculated probability of becoming infected:

Zi
n(t+1) ∼ Bernoulli(Bs,i

n,t). (28)

If the individual is infected (as opposed to being susceptible or recovered), we
determine their recovery status at time t + 1 by sampling from another Bernoulli
distribution:

Zr
n(t+1) ∼ Bernoulli(Bi,r

n,t). (29)

Also, for each individual n at time t, the decision to get tested is modeled as a
Bernoulli random variable::
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Zq
n(t+1) ∼ Bernoulli(P(Zq

n(t+1) = 1)), (30)

The outcome of the test Z+
n(t+1) for each tested individual is then determined

by:

Z+
n(t+1) ∼ Bernoulli

(
Zi
ntP

true positive
nt + (1− Zi

nt)P
false positive
nt

)
, (31)

which captures the test result for an individual at time t + 1, determining
whether the result is positive or negative based on the individual’s infection status
and the associated probabilities of true and false positives.

In Figure 3, decision points are represented by diamonds, which guide the flow
based on conditions such as whether an individual is selected for testing or if their
health state transitions from susceptible to infected. These decisions lead to differ-
ent outcomes, including testing results and subsequent actions like confinement,
which are depicted as rectangular blocks. The model also incorporates feedback
mechanisms, where outcomes like self-isolation feed back into recalculating ex-
posure. Overall, the figure captures the iterative and conditional nature of the
model, showing how individual states are updated over time through interactions.

3.6 Estimation of the parameters
To estimate the parameters of the model, we need to maximize the sum of the
likelihoods defined in Equations (17) and (18), as follows:

maxL(θ) (32)

subject to:

βe, βh, βj, βv, ηE⋆ , βQ⋆

0 , βE⋆

0 ∈ R ∀e ∈ E,∀h ∈ H, ∀j ∈ J (33)
0 < r1, r2 < 1 (34)

where the objective function is defined as L(θ) = L1(θ)+L2(θ), L1(θ) is defined
in (17), and L2(θ) is defined in (18). θ represents the vector of decision variables,
and the constraints include boundaries for each element of θ.

As seen in Equation (12), yv
nt is endogenous over time, complicating the model

estimation since it depends on parameters that evolve throughout the simulation.
This interdependence makes it challenging to estimate the model’s parameters
without running the full simulation. For this reason, we develop an algorithm
to estimate the model parameters to tackle this issue. The algorithm, as defined
in Algorithm 1, relies on iteratively solving the optimization problem defined in

19



Initialization

Input:
ŷh
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e
n, y

v
nt,

Calculate
Exposure E∗

nt

(13)

Calculate
Propensity Q∗

nt

(14)

Compute the
probability
of infection

(19)

Compute the
probability
of testing

(25)

Selected
for

testing?
(30)

No Action
Calculate Test
Probabilities

(26)–(27)

Positive
test? (31)

Set awareness
and ŷu
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Equations (32)–(34). Initially, the algorithm starts with an arbitrary set of param-
eter values, which may result in a high Mean Squared Error (MSE) between two
sets of simulated values of yv

nt, obtained under varying parameter sets or simu-
lation conditions. Through successive iterations, it refines the parameters (θ∗) to
better align these simulated outcomes, effectively calibrating the model. This iter-
ative process continues until the MSE falls below a predefined threshold, indicat-
ing an adequate estimation of the model parameters. The approach is based on the
Banach fixed-point theorem (see Rudin, 1976), which assumes that the mobility
and infection variables will converge to a stable equilibrium during the estimation
process. According to the theorem, if the iterative mapping is a contraction, the
sequence will converge to a unique fixed point, ensuring that the model parame-
ters stabilize. In our case study, we confirm that the conditions are met, allowing
for consistent and reliable parameter estimation as the MSE decreases and con-
vergence is achieved.

Algorithm 1 Model Calibration
Require: Simulation model, Optimization solver, MSE threshold
Ensure: Calibrated parameter values

1: Initialize MSE = ∞
2: Run simulation to obtain yv

nt ∀n and t

3: Compute (15) and (16) using yv
nt

4: while MSE > 0.05 do
5: Solve optimization problem (32) with constraints (33)–(34) to find θ∗

6: Run simulation with θ∗ to obtain yv ′
nt

7: Update MSE between yv ′
nt and yv

nt

8: end while
9: Output calibrated parameter values θ∗

To solve this problem, we use the ’trust-constr’ solver from SciPy,
suitable for non-convex bounded optimization problems. At each iteration, we
start the optimization from five different initial points for θ to ensure that the
solution is unique and to avoid local minima.
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4 Case Study
The proposed framework is validated on a case study concerning the population
of Vaud in Switzerland, comprising 810,486 individuals. The discretization of
time is fixed at 30 minutes, which was chosen to balance the computational cost
of the simulations and the accuracy in capturing activity-travel behavior dynam-
ics. A finer resolution, while potentially offering more precise behavioral insights,
would significantly increase the computational burden, making it impractical for
the scale of our study covering 810,486 individuals over 77 days. Conversely, a
lower frequency discretization could overlook important patterns in how individ-
uals schedule and conduct their activities, potentially leading to less accurate pre-
dictions of disease spread patterns. The 30-minute interval represents a compro-
mise allowing detailed behavior modeling without overextending computational
resources, thereby maintaining the feasibility of extensive simulations while still
providing robust analytical value. The length of the simulation is 77 days, i.e. 11
weeks. In this section, we present: i) the data used for our case study, ii) the fi-
nal model specification given the available data, iii) the calibrated output analysis,
iv) the behavioral changes before and after testing positive, v) the geographical
distribution of infection spots, vi) and the impact of self-quarantine duration on
the disease spread.

4.1 Data
For the epidemiological data, we use two primary sources: Google Cloud Platform
(CloudPlatform, 2021) and the Swiss Federal Office of Public Health (FOPH)
Riou et al., 2021. The data from the Google Cloud Platform provides the total
number of tests and positive tests per week, disaggregated by 10 age classes g,
each spanning a range of 10 years. Additionally, the data from FOPH includes
the total number of positive tests, further broken down by age (from 0 to 100
years), gender (male and female), and municipality. Both datasets cover the period
starting from February 2020, until September 2021. This data is used to calibrate
the parameters of the epidemiological behavioral choice model and to initialize the
simulations. It is important to note that these figures represent officially reported
cases and may not fully account for the prevalence of self-testing, specifically
self-testing at home, which can lead to discrepancies in the observed and actual
incidence rates. This consideration is important in interpreting the data used to
calibrate the parameters of the epidemiological behavioral choice model and to
initialize the simulations.

As mobility data, we use the population input of MATSim that includes the
socioeconomic characteristics of the population of Switzerland, such as age and
gender (see Table 3 in Appendix A). Secondly, we run the Switzerland MATSim
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scenario provided by Horl and Balac, 2021, and obtain the output of MATSim,
which contains the schedule of each individual for a generic day ℓ. The sched-
ule includes detailed information about each individual’s activities throughout the
day, specifying the type of activity (home, work, education, secondary activities,
shop, and public transportation), geographic coordinates, start and end times, and
the facility id or transport mode at which the activity takes place. This data al-
lows us to obtain two main inputs for the model: the binary variable yv

fnt, which
defines the facilities that an individual visits for every time t, and the vector of so-
cioeconomic characteristics ŷe

n for each individual. However, it does not provide
information on the health characteristics ŷh

n or the detailed facility characteristics
yj
nt. This limitation restricts the model’s ability to fully capture the complexity

of exposure, thereby limiting its potential to comprehensively explain the factors
influencing disease transmission.

4.2 Calibration of the Epidemiological-Behavioral Choice Sub-
model

Structural equations Given the unavailability of disaggregated data to train our
model, which ideally would include individual socio-economic and health charac-
teristics, information on positive and negative tests, as well as their daily schedule,
we develop a simplified model with a few characteristics to be able to calibrate it.
For this reason,E∗

nt from Equation (13) only depends on the proportion of infected
individuals per timestep, yv

nt. The individual’s propensity to test (Q⋆
nt) from Equa-

tion (14) includes ŷage
n and ŷ

employed
n as socioeconomic characteristics, see Table 3,

where βv, βage, βemployed,βQ⋆

0 ,and ηE⋆ are parameters to be estimated, and εQ⋆ is
set to 0. Also, there are two extra parameters to be calibrated, which are the pa-
rameters of the negative binomial r1 and r2, see Equation (17) and (18).

Calibrated parameter values The parameters of the model are calibrated with
data from June 2020 to the end of August 2020, and their values are shown in
Table 2, ensuring that the model accurately reflects the observed data.

Specifically, the calibrated infection parameter is βv = 0.018. The positive
sign indicates that a higher proportion of infected individuals increases the ex-
posure and therefore the probability of infection. For the testing propensity, the
model includes an age coefficient (βage) of 0.03 and an employment status coef-
ficient (βemployed) of 0.01 for the employed individuals. Additionally, the model
includes an eta parameter (ηE⋆) set at 185 and an alternative specific constant for
testing (βQ⋆

0 ) set at -8.9. Analyzing the signs of these parameters:
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Latent Variable Parameter Variable Defined Value t-statistic p-value

E∗
nt βv ŷv 0.018 11.3 < 1.00× 10−3

Q∗
nt

βage ŷe
n 0.031 -28.6 < 1.00× 10−3

βemployed ŷe
n 0.010 5.43 < 1.00× 10−3

βQ⋆

0 Q∗
nt -8.91 -48.9 < 1.00× 10−3

ηE⋆ E∗
nt 185 -95.3 < 1.00× 10−3

Table 2: Values of the calibrated parameters, their categories, t-statistics, and p-
values.

1. The age parameter (βage = 0.03) is positive, indicating that older individu-
als have a higher propensity to get tested.

2. The employment parameter (βemployed = 0.01) is also positive, suggesting
that being employed increases the likelihood of getting tested.

3. The eta parameter (ηE⋆ = 185) is positive, showing a strong influence of
the exposure level on the propensity to get tested. This high value indicates
that as exposure increases, the propensity to test rises significantly.

4. The alternative specific constant for testing (βQ⋆

0 = −8.9) is negative, re-
flecting a generally low baseline propensity for testing, which means that in
the absence of other factors, especially exposure, individuals are not likely
to seek testing.

It is worth mentioning that the calibrated parameters reveal a low willingness
to get tested (Q⋆), consistent with observed data where the maximum weekly pos-
itive tests were around 8,000 in a population of 800,000, during a period with no
restrictions. For example, even with a high infected fraction of 0.1, the contribu-
tion of exposure (E⋆ = 0.0018) adds only 0.33 to Q⋆, keeping it on the far-left
side of the logistic function and resulting in very low testing probabilities.

To further validate the robustness of these calibrated parameters, where θ rep-
resents the vector of decision variables including βv, βage, βemployed, ηE⋆ , and βQ⋆

0 ,
we perform a sensitivity analysis using bootstrapping. The t-statistics are com-
puted using the formula:

t-statisticb =
θ̄b − θb

SEθb

where θ̄b is the mean of the bootstrap estimates for the b-th parameter in the
vector θ, θb is the initial calibrated value of that parameter, and SEθb is the stan-
dard error of the estimates, calculated as the standard deviation of the bootstrap
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samples divided by the square root of the number of samples. The correspond-
ing p-values are obtained using the cumulative distribution function (CDF) of the
t-distribution with c − 1 degrees of freedom, where c is the number of bootstrap
samples. These calibrated values provide insights into how different factors in-
fluence testing behaviors. Age and employment status increase the likelihood of
getting tested, while exposure significantly raises the propensity for testing, em-
phasizing the model’s sensitivity to perceived infection risk.

4.3 Simulation
We simulate the epidemic incidence from September 21, 2020, to December
13th 2020, using the calibrated parameters from the previous section. Regard-
ing the initialization process, we force the first week of the simulation to have
the same number of tested individuals (ŷq

gw) and test positive (ŷ+
gw) individu-

als as observed in the real data from Google CloudPlatform, 2021. We use the
data from Google containing the number of tested and test-positive individuals
per age group (grouped in 10-year intervals) and per week. For the first week,
we randomly select individuals from each age group, randomizing the process
per timestep, ensuring that the chosen number of individuals tested matches the
real data. We compare the predictions of our epidemiological model against ob-
served data to evaluate its accuracy and validity. In the simulation for this study
case, MABEM considers an 80% probability of self-isolation at home in case of
awareness 7. If the individual does not self-isolate, they continue their usual ac-
tivities, potentially contributing to ongoing disease transmission. Now, for the
individuals that are aware, their schedule is modified so that they stay home
∀t ∈ [ℓ(tin) + 1, . . . , ℓ(tin) + 1 + ν]. We assume that individuals complete their
schedule and begin self-isolating the day after becoming aware. Since the model
does not capture whether an individual is symptomatic, we assume that all in-
fected individuals who test positive are likely to self-isolate. We impose a closure
restriction ∀a,wherea ̸= home, which means swapping all the activities of ŷfnt

and replacing them for home. This assumption improves computational efficiency
and aligns with the framework’s primary focus on the effects of self-isolation on
mobility dynamics and disease spread, rather than on activity substitution due to
restriction policies, even though the framework is flexible enough to accommodate
other implementations.

7This percentage reflects the high compliance rates observed in Switzerland during the
COVID-19 pandemic. This rate is supported by analysis from the KOF Swiss Economic Insti-
tute (see Pleninger et al., 2021), which highlights the effectiveness of containment measures and
the substantial public adherence to self-isolation guidelines.
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4.4 Validation
4.4.1 Infection Rates vs. Positive Tests

In order to compare the aggregated simulated data with the observed data, we
present Figure 4. Figure 4 shows the epidemic incidence and COVID-19 testing
trajectory including five trajectories: "Simulation - Daily New Infections," "Sim-
ulation - Daily Positive Tests," "Test Data - Daily Positive Tests," "Simulation
- Daily Tests," and "Test Data - Daily Tests." The x-axis represents the weeks,
while the y-axis represents the count of individuals. In addition, the filled areas
around the simulation curves represent the 95% confidence intervals, which are
computed using a rolling standard deviation with a window of 3 weeks. These in-
tervals provide a visual representation of the uncertainty in the simulation results,
offering insight into the potential variability in the epidemic incidence and testing
trajectories.

Figure 4: Epidemic Incidence and COVID-19 Testing Trajectory: A comparison
between simulated data and actual test data over time.

In Figure 4, the simulated data gives an estimate of the unobserved number of
total cases, which is significantly higher than the reported cases. This indicates
that many infections go undetected due to limited testing, asymptomatic cases, or
individuals choosing not to get tested. Indeed, the infection curve is approximately
four times higher than the curve for positive tests at the weekly peak, highlighting
the significant impact of individual testing choices on the observed data. To fur-
ther quantify the discrepancy between the reported and predicted values, we cal-
culate the Root Mean Squared Error (RMSE), which measures the average error
between actual and predicted data points. The RMSE between the reported num-
ber of tested individuals and the simulated estimates is 2067.78, which if divided
by the total tests, represents the 0.01%. These results indicate that the prediction
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for total tests aligns closely with the reported data, providing a preliminary vali-
dation of our results with respect to the total number of tests. Similarly, for the
positive tests, we obtain an RMSE of 1114.94, which represents the 0.02% of the
total positive tests. This result provides a first validation regarding the number of
tests and positive tests, suggesting that our model’s predictions are consistent with
the reported data. Our calibrated model, therefore, validates the hypothesis that
testing choices significantly affect observed infection rates and can distort the true
spread of the disease. This has important implications for public health policies,
emphasizing the need for widespread testing and encouraging individuals to get
tested to understand better and control the epidemic’s spread.

4.4.2 Epidemiological Data and Comparative Analysis

To further validate our model, we propose a comparative analysis with established
epidemiological models to substantiate the robustness and accuracy of our simu-
lations. We use data from Scire et al., 2023 which offers estimates of the effective
reproduction number ŷRe for Switzerland over the same study period, complete
with confidence intervals. Their results address underreporting by estimating the
actual ŷRe , acknowledging that not all infections are documented due to discrep-
ancies in testing practices. The estimates from Scire et al., 2023 are derived using
advanced deconvolution techniques to refine raw epidemiological data. Decon-
volution techniques are mathematically straightforward methods to infer the inci-
dence curve of an epidemic from a recorded daily death curve and time-to-death
distribution. This approach allows for more accurate representations of the in-
fection dynamics, as detailed in Goldstein et al., 2009. To be able to establish a
comparison with these values, we compute the yRe values for our MABEM. This
requires determining the aggregated force of infection λ, and the aggregated re-
covery rate γ, thus defining the yRe as the ratio between λ and γ. We employ a
simple, fully aggregated SIR model as outlined in Kermack et al., 1927, to derive
λ and γ. The model initialization is based on the reported number of positive tests
from the first week, mirroring the approach used for MABEM. We use a Mini-
mum Square Error (MSE) objective function to fine-tune λ and γ to ensure the
simulated trajectory of infections (green line in Figure 5) aligns closely with the
MABEM simulated data (blue line in Figure 5). Finally, we juxtapose the repro-
duction number ŷRe from Scire et al., 2023 (dashed red line in Figure 5) against
our model’s reproduction number, yRe , achieving a difference in percentage of
0.004. This low RMSE corroborates the accuracy of our model, particularly in
capturing underreporting rates that are remarkably consistent with those reported
by Scire et al., 2023, further validating our approach.
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Figure 5: Comparison of MABEM simulated new weekly infections with SIR
model outputs and observed ŷRe values, illustrating the alignment with empirical
data and model predictions.

Figure 5 illustrates the comparison of the simulated infection rates from our
model against the benchmark values and the corresponding confidence intervals,
highlighting the alignment of our model with the empirical data reported by ETH
Zurich, affirming the credibility of our simulation approach. Moreover, this val-
idation demonstrates that our model not only aligns with the reported ŷRe values
but also reflects realistic disease spread dynamics as captured by advanced epi-
demiological studies. The consistency of our model’s outputs with established
data underscores its potential utility in policy-making contexts, particularly in sce-
narios requiring quick and accurate assessment of public health strategies.

4.4.3 Qualitative Positive Test Analysis

Finally, to further validate our findings, we plot Figure 6 to study the correlation
between the difference in new infections and newly tested positives from the simu-
lation compared to the percentage of positive tests from CloudPlatform, 2021. The
upward trend observed in this correlation plot substantiates the model’s ability to
capture the real dynamics of infection transmission, highlighting a consistent in-
crease in the proportion of newly tested positives alongside rises in simulated new
infections. This trend is particularly significant given that over 35% of tests are
positive during the peak period, which starkly contrasts with the new infections
comprising less than 1% of the total population each week, indicating substan-
tial underreporting (Lau et al., 2021; Albani et al., 2021). This underreporting is
consistent with findings from diverse regions, where the rate of positive tests is
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used as an indicator of adequate testing and epidemic control, varying from below
10% in places like Chicago and New York City to 2% in Denmark, as reported
in Albani et al., 2021. This correlation not only confirms the effectiveness of
our model in reflecting actual COVID-19 transmission trends but also emphasizes
the model’s utility in providing reliable data for policy formulation and epidemic
management.

Figure 6: Correlation between the difference in new infections and newly tested
positives from simulation and the percentage of positive tests, validating the
model’s capability to capture real infection dynamics.

4.5 Behavioral Changes in Mobility Patterns Before and After
Testing Positive

This section investigates the different possible behavioral responses and scenarios
related to COVID-19 testing and infection awareness. We focus on how individ-
uals’ awareness of their infection status, influenced by testing results, can affect
their mobility patterns and adherence to public health guidelines. We illustrate
various cases showing how different individuals might behave based on their in-
fection status and test results.

Figure 7 shows the diversity of behavioral responses to testing and awareness
of infection status. Each subfigure describes a specific behavioral pattern of a spe-
cific individual from the simulation, reflecting the complex relationship between
individual awareness, infection, and testing choices. The subfigure on the left (Id
14239) shows the ideal scenario where an individual, who is already infected on
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Figure 7: Diversity of behavioral responses to testing and awareness of infection
status among individuals.

day 48, tests on day 50, and upon receiving a positive test result on day 52, consci-
entiously adjusts their travel habits (becomes aware) to mitigate the spread of the
virus. This is indicated by Zi

nt = 1, Zq
nt = 1, Z+

nt = 1, and Za
nt = 1. Finally, on

day 61, they become recovered. The central subfigure (Id 7) presents a scenario
where an individual is tested and found not to be infected at that moment (day 10).
Later on, it becomes infected but never tested. For this reason, this individual’s
behavior does not comply with public health guidelines since they are never aware
of their infection status. The subfigure on the right (Id 310) shows an individual
who is infected but not tested, thus remaining unaware of their infection status and
never changing their activity-travel behavior. This scenario underscores the risks
associated with undetected infections and the critical role of widespread testing in
controlling the spread of the virus.

Through this figure, we observe how the model captures the varying behav-
ior and mobility patterns among individuals. These differences underscore the
importance of accurate and widespread testing to inform individuals and enable
them to take appropriate actions to mitigate the spread of COVID-19. Our anal-
ysis highlights the impact of testing choices on observed infection rates and the
actual spread of the disease, demonstrating the need for comprehensive public
health strategies to encourage testing and ensure effective disease control.
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4.6 Geographical Distribution of Infection Hotspots
This section provides a visual analysis of the geographical spread of COVID-19
infection hotspots over the course of the pandemic, using heatmaps overlaid on
a map to represent the intensity and movement of outbreaks. The heatmap, as
shown in Figure 8, dynamically displays the local density of cases throughout the
landscape, revealing areas of higher transmission risk.

Figure 8: Heatmap visualization of COVID-19 infection hotspots: the upper map
highlights the different number of cases throughout the region over the observed
period, with color intensities indicating the level of new infections from low (deep
purple) to high (yellow). The lower graph tracks the total epidemic incidence over
time, displaying the number of new infections each day. The vertical dashed line
corresponds to a specific point in time within the epidemic curve, providing a
cross-reference between the geographic and temporal data.

The figure indicates that areas with high population density, such as Lausanne,
not only show the highest absolute numbers of infections but also have elevated
infection rates per capita. Other cities, like Nyon and Vevey, also show signifi-
cant infection hotspots. This coherence between population density and infection
values underlines the importance of focusing public health efforts on densely pop-
ulated areas to mitigate the spread of the virus, showing the activity-based aspect
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of our model.
Beneath the geographical representation, the graph titled ’Total epidemic inci-

dence over time’ illustrates the trajectory of the outbreak. The x-axis of the graph
measures the days since the initial case was reported, while the y-axis shows the
number of new infections. The dashed vertical line marks a specific day in the
epidemic’s progression, serving as a temporal reference point between the map
and the graph.

This visualization is essential for understanding how activity-travel behavior
influences disease spread, as more densely populated areas exhibit higher infec-
tion intensity. It provides public health authorities and policymakers with a valu-
able tool to monitor the effectiveness of interventions over time and allocate re-
sources to areas in most urgent need. Additionally, it offers the general public
a clear understanding of how the epidemic spreads geographically, underlining
areas where increased vigilance and adherence to public health measures are nec-
essary.

4.7 Impact of Quarantine Duration on Total Number of Infec-
tions

This subsection examines the impact of different quarantine durations on the total
number of infected individuals. By varying the length of the quarantine period, we
evaluate the effectiveness of this containment strategy in reducing disease trans-
mission. It is important to remember that only individuals who are aware of being
infected, due to testing positive, undergo quarantine.

According to the findings in Ashcroft et al., 2021, a 7-day quarantine com-
bined with a negative PCR test on day 5 results in minimal additional risk of
onward transmission compared to longer quarantines without testing. This ap-
proach significantly reduces the person-days spent in quarantine, thus lowering
the social, psychological, and economic impacts while maintaining epidemiolog-
ical safety. Our model simulations explored varying quarantine durations (5, 7, 9,
18, 25 days) to assess their effectiveness in controlling the spread of the disease.

Figure 9 illustrates how these varying durations impact the total number of
infected individuals. Our results show that while longer quarantine periods ef-
fectively reduce the number of infections, shorter quarantines, especially a 7-day
period as described by Ashcroft et al., 2021, lead to a 30% reduction in infections
compared to a 5-day quarantine. Moreover, we observe that a 7-day quarantine
can provide a nearly equivalent epidemiological benefit compared to 9, 18, and 25
with less disruption, allowing individuals to resume normal activities sooner.
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Figure 9: Impact of different quarantine durations on the total number of infec-
tions, illustrating the effectiveness of shorter quarantine periods combined with
testing.

Our findings advocate for informed decision-making in public health policy,
emphasizing the benefits of modeling to optimize quarantine durations over as-
suming standard durations that might not be optimal for all situations. These
results align with our research question, which explores how individual testing
choices and subsequent behaviors impact disease spread. The findings demon-
strate that compliance with quarantine measures can significantly reduce infection
rates, underscoring the importance of adhering to public health guidelines. This
analysis offers valuable insights for policymakers to design effective containment
strategies and emphasizes the critical role of quarantine in controlling the pan-
demic.

4.8 Key Insights
The Vaud case study yields several important insights that inform the effectiveness
of the model and its implications for public health strategies. Section 4.2 shows
that socioeconomic characteristics impact testing choices, although challenges in
data granularity limited the model’s ability to capture the full complexity of dis-
ease transmission. Section 4.4 demonstrates that the model accurately reflects the
significant underreporting of COVID-19 infections due to limited testing, with the
simulation revealing that the true number of infections is much higher than the re-
ported cases, emphasizing the role of testing in understanding the actual spread of
the disease. Section 4.5 highlights significant variability in individual choices to
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COVID-19 tests, with infection awareness being crucial for containment. Section
4.6 displays that high-density areas like Lausanne exhibit the highest infection
rates, underscoring the need for targeted testing in these regions as a containment
method. Finally, 4.7 shows that while extended quarantine periods effectively
reduced infection rates, they also posed social and economic challenges, empha-
sizing the need for a balanced approach.

5 Conclusion
This study investigates the impact of individual testing choices on the spread of
disease, with a focus on the COVID-19 pandemic. By developing and validating
an activity-based epidemiological behavioral model (MABEM), we address the
critical question of how individual testing choices influence activity-travel behav-
ior and, consequently, affect disease spread. Using detailed mobility schedules
through an activity-based model combined with epidemiological data, we capture
the interactions between testing behaviors and the transmission of disease within
the population of Vaud, Switzerland. The calibrated model reveal a significant dis-
parity between the actual number of infections and reported cases, underscoring
the extent of underreporting due to limited testing and asymptomatic cases. This
finding highlights the need of integrating testing choices into pandemic models
to more accurately reflect the true dynamics of disease spread. MABEM also
demonstrates its computational efficiency, simulating 810,486 individuals over 90
days with 30-minute timesteps in just 1 minute and 11 seconds on a MacBook Pro
(14-inch, November 2023) with an Apple M3 Pro chip and 36 GB of memory,
running macOS version 14.6.1. This performance makes it a practical tool for
large-scale simulations and public health strategy development.

The key findings of our results include: i) Socioeconomic factors, such as
age and employment status, influence testing propensity. This suggests that pub-
lic health interventions should be tailored to improve testing rates and compli-
ance with health guidelines. ii) There is significant variability in how individu-
als respond to positive COVID-19 test results, with awareness of infection sta-
tus being crucial for disease spread containment and changes in daily activities.
iii) In regions with high population density, like Lausanne, both the total num-
ber of infections and the rate of infection per capita are significantly higher. This
finding emphasizes the need for targeted testing policies and health measures in
densely populated areas to control and reduce the spread of the disease effec-
tively. iv) While longer quarantine periods significantly reduce infection rates,
they can also be highly disruptive. Striking a balance between the effectiveness
of quarantine duration and its impact on individual well-being is essential. These
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findings emphasize the importance of individual testing choices in understanding
the spread of disease and offer valuable insights for policymakers to design effec-
tive public health strategies.

Nonetheless, our study comes with some limitations. Firstly, the lack of dis-
aggregated data challenges the model calibration, which impacts the accuracy of
our predictions. The lack of epidemiological individual data, including whether
an individual tested positive, negative, or did not test each day, makes it very hard
to calibrate the model, so adding more parameters becomes a very difficult task.
To improve the calibration process of our model, we would need more individual-
based data, particularly through surveys that track individual testing behaviors,
including the frequency of tests, test results (positive or negative), and associated
individual characteristics. This approach would not only improve the precision of
our predictions but also allow for a deeper understanding of the factors influencing
testing choices. Additionally, the lack of data concerning facility characteristics,
such as square meters, ventilation, floors of the building, or rooms in the building,
prevents us from fully understanding the most relevant variables to include in the
exposure latent state. Future work should include the use of OpenStreetMap and
similar resources to enhance the representation of facility characteristics in our
model. Moreover, due to these limitations in available data, we do not model
specific visits to healthcare facilities for testing purposes. Instead, we streamline
the simulation process by assuming that tests occur in the home setting, which
aligns with the data’s capability to provide detailed location and time information
without the granularity needed to model distinct healthcare visits. This is further
complicated by the absence of health characteristics of individuals, which would
significantly impact the probability of getting infected given the level of exposure.
Finally, the lack of symptom data penalizes us in two ways: first, it hinders model
calibration since symptoms could be used as observed data for the exposure latent
state; and second, it forces us to assume that people are aware of their infection
only if they test positive and have symptoms, at which point they will self-isolate.
These limitations highlight the need for more comprehensive data collection to
improve the robustness and accuracy of the model.

Future research includes more detailed health characteristics and further cal-
ibrating the model could enhance its accuracy. In addition to improving the
model’s precision through more detailed health characteristics and extensive cal-
ibration, future versions of the model will integrate with the policy optimization
framework from Cortes Balcells et al., 2021, which uses individual activity-travel
behaviors to simulate optimal policy outcomes. This integration aims to provide
targeted public health strategies that balance health impacts with economic con-
siderations. For example, the model could propose policies that show mortality
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with economic trade-offs, offering practical insights for policy decision-making
and preparation before epidemic outbreaks.Additionally, future iterations of this
model will aim to extend its geographical applicability and relevance by incor-
porating case studies and scenarios from various global contexts, as suggested
in studies such as Anupriya et al., 2022; Kucharski et al., 2021. This expansion
will allow us to explore how regional differences in travel patterns, particularly
air travel, affect disease spread and public health response effectiveness. Under-
standing these dynamics will be crucial for developing more universally applica-
ble public health intervention strategies. Furthermore, inspired by recent studies
such as Singh et al., 2023, which evaluate the impact of different public health
interventions, we plan to add to our model the ability to optimize and evaluate
various intervention strategies on top of activity restrictions. This addition will
include different policies, such as social distancing mandates, testing frequency,
and quarantine measures, giving us insight into how these policies impact disease
transmission within different demographic groups and community settings. Also,
recognizing the influence that joint decisions, particularly within family units,
have on the effectiveness of public health interventions, future iterations of this
model will investigate mechanisms for incorporating familial relationships into
our modeling framework. This development will include modeling the decision-
making processes of parents regarding testing and activity-travel behavior for their
children, particularly for school-related activities, which have been identified as
critical in the spread of diseases. Finally, applying the model to different cantons
and analyzing how testing behavior changes in different sociodemographic pop-
ulations, and how it impacts the spread of the virus, could offer valuable insights
for regional public health policies. These adaptations will enable policymakers
to craft strategies that are not only scientifically sound but also culturally and so-
cially informed, enhancing the overall effectiveness of public health interventions.

In conclusion, MABEM emphasizes the importance of individual testing choices
and subsequent behaviors in influencing the spread of diseases. This approach
opens up new possibilities for developing more effective strategies for disease
spread containment by deeply exploring the interplay between individual behav-
iors, public health interventions, and disease dynamics.
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A Tables

Name Description
x

age
n Age of the individual (in years).

xsex
n The gender of the individual, 1 = Female; 0 =

Male; -1 = others.
x

bike availability
n Binary variable, where: 1 = Yes; 0 = No.

x
car availability
n Binary variable, where: 1 = Yes; 0 = No.

x
employed
n Binary variable, where: 1 = Yes; 0 = No.

xhas license
n Binary variable, where: 1 = Yes; 0 = No.

xhome_x
n Latitude geographic coordinate as decimal frac-

tion of a degree
x

home_y
n Longitude geographic coordinate as decimal

fraction of a degree
xhousehold income
n Income of the individual (in CHF).

x
is car passenger
n Binary variable, where: 1 = Yes; 0 = No.

x
municipality type
n The municipality type, based on the Swiss Fed-

eral Statistical Office: 1 = Rural; 2 = Urban; 3 =
Others.

xindividual has GA
n Binary variable indicating whether the individ-

ual has a GA Travelcard, which offers unlimited
travel across the Swiss public transportation net-
work, where: 1 = Yes; 0 = No.

xcivil status
n Binary variable, where: 1 = Married; 0 = Single,

divorced, or widowed.

Table 3: The agents’ social, economic, and demographic characteristics

B Recovery Time
The recovery time γn represents the duration an individual takes to transition from
being infected to a recovered state. The first timestep t in which individual n
changes the health state from Zs

nt = 1 to Zi
nt = 1 is tin, defined as:

tin =

T∑
t=1

(Zi
nt − Zs

n(t−1))t,
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and the timestep in which individual n transitions from Zi
nt = 1 to Zr

nt = 1, is
denoted as trn. Where γn is the time interval between trn and tin:

γn = trn − tin.

This time interval is assumed to follow a log-normal distribution as in Wolfel
et al., 2020, a probabilistic model widely used to describe variables that are the
product of many small independent factors. For our specific case, the mean and
standard deviation of the underlying normal distribution are 8 days and 2 days,
respectively.

γn ∼ lognormal(384, 96), ∀n, (35)

where the mean and the standard deviation are expressed in timesteps t. To
implement this distribution in our model, we generate recovery times for individ-
ual n by computing:

γn = e384+96π, (36)

where π is a random number drawn from a standard normal distribution and
384 and 96 are respectively the mean and standard deviation of the logarithm of
recovery time. This process ensures that the recovery times vary in accordance
with the log-normal distribution parameters. We compute γn for each individual,
ensuring heterogeneity for the recovery time within the population.

C Derivation of Negative Binomial Model Equations
To derive the log-likelihood function for the Negative Binomial distribution as
shown, let’s start by recalling the probability mass function (PMF) of the Negative
Binomial distribution and then proceed step by step to transform it into the given
log-likelihood function format.

1. PMF of the Negative Binomial Distribution The Negative Binomial dis-
tribution models the number of failures before achieving a specified number
of successes in a sequence of independent Bernoulli trials. If Y is a Neg-
ative Binomial random variable representing the number of failures before
the r1-th success, the PMF of Y is given by:

P(Y = y) =

(
y+ r1 − 1

y

)
pr1(1− p)y

where r1 is the number of successes, y is the number of failures, p is the
probability of success in each trial
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2. Logarithm of the PMF To find the log-likelihood function, we take the
logarithm of the PMF. Let r1 represent the number of successes, ŷq

gw the
observed number of failures, and Nq

gw the total number of trials minus suc-
cesses (failures plus successes until the r1 successes are achieved). The
PMF then becomes:

logP(ŷq
gw) = log

(
ŷq
gw + r1 − 1

ŷq
gw

)
+ r1 logp+ ŷq

gw log(1− p)

3. Simplifying the Binomial Coefficient The binomial coefficient
(ŷq

gw+r1−1

ŷ
q
gw

)

can be expressed using gamma functions:
(
ŷq
gw + r1 − 1

ŷq
gw

)
=

Γ(ŷq
gw + r1)

Γ(r1)Γ(ŷ
q
gw + 1)

Then, the log of this expression is:

log
(
ŷq
gw + r1 − 1

ŷq
gw

)
= log Γ(ŷq

gw + r1) − log Γ(r1) − log Γ(ŷq
gw + 1)

4. Relating p to Nq
gw and r1 Express p and 1 − p in terms of r1 and Nq

gw

assuming p = r1
r1+N

q
gw

, then:

p =
r1

r1 +Nq
gw

and 1− p =
Nq

gw

r1 +Nq
gw

Plug these into the log-likelihood equation:

logP(ŷq
gw) = log Γ(ŷq

gw + r1) − log Γ(r1) − log Γ(ŷq
gw + 1) (37)

+ r1 · log
(

r1

r1 +Nq
gw

)
+ ŷq

gw · log
(

Nq
gw

r1 +Nq
gw

)
(38)

5. Summation for Log-Likelihood The total log-likelihood L1(θ) for all ob-
servations across all groups g and weeks w (or whatever the indexing pa-
rameters represent) is the sum of the log probabilities for each observation:

L1(θ) =
∑
n∈g

∑
w∈W

(
log Γ(ŷq

gw + r1) − log Γ(r1) − log Γ(ŷq
gw + 1)

+ r1 · log
(

r1

r1 +Nq
gw

)
+ ŷq

gw · log
(

Nq
gw

r1 +Nq
gw

))
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Notations

Variable Concept Type
+ positive index
a awareness index
b age index
c gender index
d municipality index
e parameter socioeconomic characteristics index
f facility index
g age group index
h parameter health characteristics index
i infected index
j parameter facility characteristics index
ℓ day index
m,n individual index
p time interval per day index
q choice of testing index
r recovered index
s susceptible index
t time interval throughout days index
v visit index
w week index
E number of socioeconomic characteristics discrete
J number of facility characteristics discrete
H number of health characteristics discrete
L number of days discrete
N number of individuals discrete
P number of timesteps within a day discrete
T number of timesteps throughout days discrete
W number of weeks discrete
F set of locations set
E⋆
nt level of exposure for individual n at time t latent

Q⋆
nt propensity to test for individual n at time t latent

Z+
nt individual n is positive at time t binary

Za
nt individual n is aware at time t binary

Zi
nt individual n is infected at time t binary

Zq
nt individual n has tested at time t binary

Zr
nt individual n is recovered at time t binary

Zs
nt individual n is susceptible at time t binary
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Zv
fnt restriction of a facility f for an individual n at

time t

binary

yfnt presence of individual n in facility f at timestep
t

variable

yj
nt characteristic j of the facility where n is at time t variable

yv
nt proportion of infected individuals that individual

n encounters at the facility where they are at time
t

variable

ŷe
n socioeconomic characteristic e of an individual

n, ∀e ∈ E

data

ŷh
n health characteristic h of an individual n, ∀h ∈

H

data

ŷj
f characteristic j of a facility f, ∀j ∈ j data

ŷ0
fnt presence of individual n in facility f at period p

in day 0

data
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