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Abstract

This paper proposes a probabilistic method that infers the trans-
port modes and the physical path of trips from smartphone data that
were recorded during travels. This method synthesizes multiple kinds
of data from smartphone sensors which provide relevant location or
transport mode information: GPS, Bluetooth, and Accelerometer.
The method is based on a smartphone measurement model that cal-
culates the likelihood of observing the smartphone data in the multi-
modal transport network. The output of this probabilistic method is a
set of candidate true paths, and the probability of each path being the
true one. The transport mode used on each arc is also inferred. Nu-
merical experiments include map visualizations of some example trips,
and an analysis on the performance of the transport mode inference.

Keywords: multimodal map-matching, transport mode inference,
smartphone data, GPS, Bluetooth, acceleration

1 Introduction
Embedded with various sensors, such as GPS and accelerometer, smart-
phones can be utilized to understand the users’ context. They be-
come popular as data collection tools in studying mobility patterns
and transportation network performances. For examples, González,
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Hidalgo & Barabási (2008) learn from 100,000 mobile phone users’ po-
sitions that human mobility has a high degree of spatial and temporal
patterns; Tam & Lam (2008) use vehicles’ GPS data to estimate road
travel time; Bierlaire, Chen & Newman (2010) use smartphone GPS
data to model individual route choice behavior. As both information
receiver and context monitor, the smartphones can also be used as
a platform to learn users’ behavior responses to the transportation
information services.

In order to provide useful information for transportation studies,
the mobility history has to be recovered from the raw smartphone
data. Information such as the transport modes and the paths of trips
need to be learnt. Due to low-cost sensors’ poor performances and
various practical constraints, the smartphone data are usually sparse
and inaccurate. For example, data recording interval for GPS is set
to be quit large (10 seconds), and the smartphone GPS data are not
accurate (Bierlaire et al. 2010). Moreover, retrieving and synthesizing
information from various sensors are also challenging.

Traditionally, transport mode inference and physical path detection
(a.k.a map-matching) are applied to GPS data only, and consist of two
steps (e.g. Schuessler & Axhausen 2009a):

1. Split the data into multiple unimodal segments, each of which
representing a continuous travel without mode change or vehicle
change.

2. Do map-matching and transport mode inference for each segment
independently.

This two step technique poses a high risk of yielding wrong results,
because potentially wrong segmentations in the first step are not re-
coverable. Many algorithms assume that walking is necessary for
a transition between different modes, and they rely on dense GPS
data (1 second interval) to detect the mode (e.g. Zheng, Li, Chen,
Xie & Ma 2008, Zhang, Dalyot, Eggert, Sester, Ikg, Hannover &
De 2008, Schuessler & Axhausen 2009a). The validity of this assump-
tion is questionable, especially for smartphone data, because GPS data
could be missing due to the unavailability of the GPS signal while
walking indoor. Moreover, due to the sparsity of the GPS data on a
smartphone, they may not provide sufficient information for a proper
segmentation and mode inference.

In this paper, a novel algorithm is proposed to overcome these
drawbacks. The data collected from a trip do not need to be seg-
mented. The algorithm infers the physical path and the transport
mode of each road simultaneously. This algorithm is called as proba-
bilistic multimodal map-matching :
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• Multimodal, because the output is a set of multimodal paths.
Each arc on a path is associated with a specific transport mode.
The transport modes on different arcs may differ (see Section 2
for the definition and an example of multimodal path).

• Probabilistic, because the algorithm generates a set of candidate
paths, each of which associated with a probability to be the true
one.

Rich information available from multiple smartphone sensors is ex-
ploited in this algorithm. Smartphones, e.g. iPhone and Nokia 95,
are usually embedded with a 3-axis accelerometer with ±2G sensitiv-
ity. Researches have found that acceleration data from accelerometers
are useful in recognizing the motion status of the phone carrier (e.g.
Reddy, Burke, Estrin, Hansen & Srivastava 2009, Kwapisz, Weiss &
Moore 2010). Moreover, the BT sensor also provides valuable infor-
mation about the smartphone’s context. For example, the BT sensor
detects more nearby BT devices in a public transport environment
than in a private mode. We propose a framework that can exploit
any kind of data if it provides information about the location or the
transport mode. Although only data from GPS, BT and ACCEL are
studied in this paper, the method can be extended to any type of
sensor that provides contextual information, such as gyroscope.

This algorithm is an extension of the unimodal map-matching algo-
rithm proposed by Bierlaire et al. (2010). A probabilistic measurement
model is derived for each sensor to capture the data generation pro-
cess. (Section 3). An integrated smartphone measurement model is
constructed to integrate all sensor models in a unified framework. The
smartphone measurement model calculates the likelihood of observ-
ing the smartphone measurements on a multimodal path (Section 4).
Then, a multimodal map-matching algorithm is proposed to generate
candidate paths from the smartphone data and a multimodal network
(Section 5). The probability for each path being the true one is cal-
culated from the smartphone measurement model. Numerical experi-
ments are illustrated in section 6. Finally, discussions and conclusions
are given in section 7.

2 Smartphone data and transport net-
works
The method proposed in this paper rely on two types of inputs: a
model of the transport networks, and the smartphone data collected
during travels.
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2.1 Multimodal transport network and multi-
modal path
A network is a directed graph G = {N,A}, which is composed of a
set of arcs A that connect their nodes N . In a transport network,
each arc a ∈ A represents a road segment or a rail track segment,
and accommodates one particular transport mode m. Thus, a road
that can be traveled with bus and car, is represented by two arcs.
A unimodal transport network Gm contains only arcs with the same
transport modem. In this paper, we assume that the smartphone data
are recorded while the carrier is traveling on a multimodal transport
network. A multimodal transport network is represented by a union
of several unimodal transport networks, and virtual arcs that connect
them. A virtual arc is associated with a change of transport mode, and
connects two nodes belonging to two different unimodal networks but
associated with the same geographical location. This paper models
urban transport modes, private walk, bike, car, and public bus, metro.

A position x = (x,m) in a multimodal network is characterized by
horizontal coordinates x = (xlat, xlon) consisting of latitude and lon-
gitude, and transport mode m ∈ {walk, bike, car, bus,metro}. A path
is an ordered list of connected arcs. A multimodal path p is a path
in a multimodal network 1. A multimodal path may contain only one
single mode or several different modes. Figure 1 gives an example of
a multimodal network with two unimodal networks (bus and walk),
and a multimodal path. For the sake of clarity of the drawing, the
arcs are represented bidirectional, and the directions are not drawn.
Dashed lines represent virtual arcs that connect two unimodal net-
works. A multimodal path with direction starts from the bus network,
and change to walk via a virtual arc connecting x−c = (xc, bus) and
x+
c = (xc,walk), where xc denotes the coordinates of the mode change

location.
A free and open source map service, OpenStreetMap.org (OSM), is

used as the source of the transport networks data. In this database, the
transport mode accessibility on each road is specified and the public
transport lines are also available. The OSM data structure is only
designed for visualization, and the PT network data have to be pre-
processed for routing and map-matching usages. The metro stops are
sometimes disconnected from other networks. We assume that people
can access/egress them by walking from/to the nearest nodes, and
create walking arcs to connect metro stops to the 5 nearest nodes. For
the sake of simplicity, each arc is created as a straight line.

1By default , “path” refers to “multimodal path” in this paper; “physical path” refers to
a path without mode information.
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2.2 Smartphone data
Since 2009, the Nokia Research Center in Lausanne has been continu-
ously collecting data from 200 smartphones for 2 years (Kiukkonen,
Blom, Dousse, Gatica-Perez & Laurila 2010). These data include
GPS, acceleration (ACCEL), nearby WIFI spots, nearby Bluetooth
(BT) devices, etc. Smartphone data being studied in this paper are
collected with a dedicated data recording application (APP) devel-
oped by Nokia, Ecole Polytechnique Fédérale de Lausanne, and IDIAP
Switzerland. When a sensor is activated, the APP triggers sensor read-
ing events periodically and logs the data. The availability of data is
also subject to practical constraints. For example, GPS data are ob-
served only if the GPS signal is available. And sometimes, the user
may turn off the BT sensor. The raw sensor readings, e.g. a list of
MAC addresses of nearby BT devices, are usually not ready to be used
directly. So useful measurements need to be extracted from the raw
data. This process is termed feature extraction in pattern recogni-
tion literature. The mechanism of reading sensors, and the feature
extraction methods are explained below.

GPS sensor The APP triggers a reading event every 10 seconds.
A GPS measurement ĝ = (x̂, v̂, ĥ, σ̂x, t̂) is extracted for each GPS
reading, and it contains: t̂, the measurement time, in seconds; x̂ =
(x̂lat, x̂lon), a pair of GPS horizontal coordinates in WGS84 format;
σ̂x, the standard deviation of the horizontal error in x̂, in meters; v̂,
a speed measurement, in km/h; ĥ, a heading measurement, that is
the angle to the north direction, from 0 to 359, clockwise. Sometimes,
the GPS sensor fails to measure the speed and heading values for a
measurement, and it reports the exact same values as in the previous
measurement. In this case, the speed and heading values of the mea-
surement have to be calculated. If we denote two consecutive GPS
measurements as ŷ1 and ŷ2 respectively, Figure 2 shows how to calcu-
late v̂2 and ĥ2.

Bluetooth sensor The APP configures the BT sensor to scan
for nearby BT devices every 180 seconds. Each scan returns a list
of nearby BT devices with their unique identifiers (MAC addresses).
Nowadays, many people carry BT-enabled personal electronic devices,
such as smartphones and tablets. These devices are visible to each
other if, they are in a range of approximately 10 meters; and they do
not move out of this range for a short time, which is 1.92 seconds in
average (Naya, Noma & Kogure 2005). The number of nearby visi-
ble BT devices varies with the context. In public transport, people
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are more compact in the vehicle, and they are stationary relative to
each other. Hence a smartphone has a higher chance to observe more
BT devices than in private transport. Therefore, we utilized the in-
formation about nearby BT devices in differentiating public/private
transport context. A measurement (̂b, t̂) is extracted from each BT
scan, and b̂ is equal to 1 if there is at least one BT device nearby, and
0 otherwise. It is also associated with a time stamp t̂.

Accelerometer sensor Accelerometer readings provide motion
status of the phone user. It has been proposed in the literature to
use them to detect the transport mode of the traveler (e.g. Reddy
et al. 2009). A N95 smartphone is embedded with a 3-axis accelerom-
eter with the sensitivity of ±2G. An accelerometer reading is a triplet
that contains the accelerations measured from 3 axes. The unit of the
acceleration is 1

280m/s
2, in which 280 is a normalization factor. The

APP triggers an accelerometer reading event every 120 seconds. Every
reading event lasts for 10 seconds in a frequency of 40Hz. Therefore,
it returns 400 accelerometer readings. Table 1 gives an example of
data returned from a reading event. The first two columns indicate
the index and the time stamp of each piece of reading. The last three
columns are elements of the triplets measured from the three axes.

We assume random orientation of the smartphones, and calculate
the acceleration for each reading by taking the 2-norm of the triplet.
Due to the high frequency of recording noisy acceleration data, an
aggregation method is needed here. The aggregation takes a time
resolution of 2 seconds, and split the 10 seconds data into 5 equal time
windows. This aggregation technique is generally used in practice in
order to reduce the noise in the acceleration data (e.g., Reddy et al.
(2009) use 1 second as the time resolution). In each time window, a
measurement (â, t̂) is generated with â as the mean of the accelerations
in this time window. The measurement time t̂ is set to be the middle
of the time window. Consequently, 5 accelerometer measurements are
generated by each ACCEL reading event.

2.3 Measurements sequence from a trip
The APP records data from independent sensors with a pre-defined
schedule. We assume that the data have been preprocessed so that
we have access to all the measurements recorded during a trip, and
store them in a chronologically ordered sequence (ŷ1, . . . , ŷT ), which is
abbreviated as ŷ1:T

2, where T is the total number of measurements.

2This paper deals with data sequences, and the notation follows this abbreviation
convention throughout the paper.
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The entire sequence is composed of 3 subsequences: the GPS, the BT,
and the ACCEL. For example, we denote all the GPS measurements
as (ĝ1, ĝ2, . . . , ĝI), where I is the total number of GPS.

Since only GPS provides valuable geographical location informa-
tion, the measurements sequence ŷ1:T is processed such that the first
and the last measurements are GPS. All BT and ACCEL measure-
ments recorded before the first GPS or after the last GPS are excluded.
In ŷ1:T , if different types of measurements have the same time stamp,
the order is set to be BT, ACCEL, and then GPS. If two GPS mea-
surements have a large time gap, they do not provide reliable location
information to BT and ACCEL data observed between them. There-
fore, we decide to discard BT and ACCEL data if the time gap is
large, and 20 seconds is chosen as the time threshold. The reason is
explained in Section 4.3 in details.

Some sensor data (dataset A) with annotated transport modes are
used to calibrate sensor measurement models (Section 3) and a speed
distribution for each transport mode (Section 4). These data are col-
lected from 3 smartphone users while they are traveling with various
transport modes. The true transport modes of the travels are known.
The numerical experiments in Section 6 use measurements sequences
(dataset B) that are collected from 2 smartphone users while they are
traveling in urban and outskirt areas. More details about the data will
be provided in the corresponding sections.

3 Sensor measurement models
In this section, measurement models are defined to represent the sen-
sors’ operations in a multimodal transport network context. A mea-
surement model has the form Pr(ŷ|x, t), where the state variable x =
(x,m) is the position of the phone carrier in the network, and ŷ de-
notes a sensor measurement collected at time t̂. Conditional on the
state x, the measurement ŷ is derived for a value of t equal to the time
stamp t̂ of the measurement. Therefore, the model can be denoted as
Pr(ŷ|x). The rest of this section defines a sensor measurement model
for each type of measurement, i.e. GPS, BT and ACCEL.

3.1 GPS measurement model
The GPS measurement model proposed here focuses on the location
only, and is therefore denoted by Pr(x̂|x). It is an extension of the mea-
surement model proposed by Bierlaire et al. (2010). In this multimodal
context, it is assumed that the horizontal coordinates are independent
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of the transport mode,

Pr(x̂|x) = Pr(x̂|x) = exp

(
−
‖x− x̂‖22

2σ̂2

)
, (1)

where ‖x− x̂‖2 calculates the distance (in meters) between the recorded
coordinates x̂ and the coordinates x in the transport network; the vari-
ance σ̂2 is approximated by σ̂2 = σ2

network + σ̂2
x, where σnetwork = 30m

is the standard deviation of the horizontal error in network data (for
more detailed discussions, see Bierlaire et al. 2010).

3.2 BT measurement model
As discussed in Section 2.2, we assume that the BT measurement b̂
only depends on whether the transport mode is public or private, then
we have:

Pr(̂b|x) = Pr(̂b|m) =

{
Pr(̂b|m ∈ PT) if m is PT
Pr(̂b|m /∈ PT) if m is non-PT

where PT = {bus,metro} denotes the set of public transport modes.
The PT and non-PT models are based on empirical distributions. They
are calibrated from the annotated BT data of dataset A, and reported
in Table 2. The number of measurements used for calibration is 869
for PT and 1826 for non-PT respectively. We observe that the chance
of observing a BT device is higher in public transport.

3.3 ACCEL measurement model
Acceleration merely provides information about the transport mode,
so we assume it to be independent of the location. As for the BT
data, we derive a model based on an empirical distribution. Then we
have Pr(â|x) = fa(â|m), where fa(â|m) denotes the probability den-
sity function of the ACCEL measurement for mode m. Furthermore,
we assume that motor-based transport modes (including car, bus and
metro) have the same pattern of acceleration. Then we calibrate a
probability density function for walk, bike and motor-based transport
modes respectively, and denote them as fa(â|walk), fa(â|bike) and
fa(â|motor).

For each density function, a finite mixture of normal is used to
model the distribution of the acceleration measurement:

fa(â) =
J∑

j=1

wjφ(µj , σ
2
j ). (2)
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The following parameters need to be estimated: J , the number of
normal components; wj , the proportion of component j (wj ≥ 0,∑J

j=1wj = 1); µj and σ2
j , the mean and the variance of the normal

distribution φ(µj , σ
2
j ). These parameters are estimated from the anno-

tated ACCEL data of dataset A. The estimation technique is described
by Park, Zhang & Lord (2010) where the same method is applied to
model the heterogeneous speed data. A R package mixAK is used for
the estimation (Komárek 2009). The histograms of the ACCEL mea-
surements and the predictive densities are drawn in Figure 3. Table 3
reports the parameter estimates (standard error is given in parenthe-
ses). On the header, the figure below each mode indicates the amount
of measurements used for the calibration. The gravity 1G corresponds
to 280 in the ACCEL measurement, so deviation from 280 means ac-
celeration caused by the smartphone’s movement. Acceleration less
than gravity is usually caused by vertical movements. We can observe
distinct patterns from the distributions. Walk is the least stable move-
ment status since it has a higher chance to observe a high acceleration
value. Bike has a peak near 1G, which means that the movement is
quite stable with little acceleration. Motor has a peak centered at
less than 1G, which depicts vertical movements caused by the road
condition (e.g., bumps and uphills) and the usage of the phone in the
vehicle.

4 Smartphone measurement model
In this section, an integrated smartphone measurement model is pro-
posed to combine the sensor measurement models in a unified frame-
work. This smartphone measurement model Pr(ŷ1:T |t1:T , p) is intended
to calculate the likelihood of observing all the smartphone measure-
ments ŷ1:T on a multimodal path p at time t1:T respectively. We as-
sume that the time is recorded without error. Therefore, the model
will return a non zero probability only when the sequence t1:T exactly
matches the sequence of time stamp t̂1:T in the data.

4.1 Derivation of the smartphone measurement
model
The derivation of the smartphone measurement model builds on the
procedure described by Bierlaire et al. (2010). In this paper, we focus
on the main differences introduced by the multimodal context and the
integration of various sensors.
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The measurement equation is decomposed as:

Pr(ŷ1:T |t1:T , p) = Pr(ŷ1|t1, p)
∏T
k=2 Pr(ŷk|ŷ1:k−1, t1:k, p), (3)

where Pr(ŷk|ŷ1:k−1, t1:k, p) is the conditional probability for observing
ŷk, and is calculated iteratively. The complex dependency in the se-
quentially observed measurements is modeled by this conditional prob-
ability. In order to simplify its derivation, we assume that the obser-
vation of measurement ŷk on path p at time tk only depends on the
previous observation. Then the conditional probability for observing
ŷk simplifies to

Pr(ŷk|ŷ1:k−1, t1:k, p) ≈ Pr(ŷk|ŷk−1, tk, p), (4)

For the first measurement, which is always a GPS measurement by
construction, we derive

Pr(ŷ1|t1, p) =
∫
x1∈p Pr(ŷ1|x1) Pr(x1|t1, p)dx1 (5)

=
∫
x1∈p Pr(x̂1|x1) Pr(x1|t1, p)dx1, (6)

where the probability Pr(x1|t1, p) captures a prior knowledge of the
initial position of the device. If nothing is known, it can for instance
be defined as 1

Lp
where Lp is the length of path p. For each subsequent

observation k ≥ 2, we have

Pr(ŷk|ŷk−1, tk, p) =

∫

xk∈p
Pr(ŷk|xk) Pr(xk|ŷk−1, tk, p)dxk, (7)

where Pr(xk|ŷk−1, tk, p) represents the prior probability that the de-
vice is at (multimodal) position xk at time tk given the last observed
measurement ŷk−1, and can be derived by:

Pr(xk|ŷk−1, tk, p) =

∫

xk−1∈p
Pr(xk|xk−1, t̂k−1, tk, p) Pr(xk−1|ŷk−1, p)dxk−1,

(8)
where Pr(xk−1|ŷk−1, p) is the posterior distribution of xk−1 from last
iteration,

Pr(xk−1|ŷk−1, p) =
Pr(ŷk−1|xk−1)∫

xk−1∈p Pr(ŷk−1|xk−1)dxk−1

. (9)

Putting everything together, we have

Pr(ŷk|ŷk−1, t̂k−1, tk, p)

=

∫
xk∈p

∫
xk−1∈p Pr(ŷk−1|xk−1) Pr(xk|xk−1, t̂k−1, tk, p) Pr(ŷk|xk)dxk−1

dxk∫
xk−1∈p Pr(ŷk−1|xk−1)dxk−1

.

(10)
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There are two kinds of essential components in this equation. One is
the sensor measurement models, Pr(ŷ1|x1), Pr(ŷk−1|xk−1) and Pr(ŷk|xk),
which are already described in Section 3; the other is the travel model
Pr(xk|xk−1, t̂k−1, tk, p), which we define next.

4.2 Travel model
The travel model with the form

Pr(xk|xk−1, tk−1, tk, p) (11)

essentially predicts the position xk = (xk,mk) at time tk, given that
the state at time tk−1 is xk−1 = (xk−1,mk−1), and the smartphone
user is traveling along path p. There are several ways of implementing
the travel model, for instance, via a traffic simulator or real-time traffic
information. In this paper, we extend the empirical model proposed
by Bierlaire et al. (2010) to multimodal context. It is based on the
speed distribution for each transport mode.

4.2.1 Speed distributions

Researchers have been using speed profiles to infer transport modes
(e.g. Liao, Patterson, Fox & Kautz 2007, Zheng et al. 2008, Reddy
et al. 2009, Bohte & Maat 2009). Studies have also been performed
on estimating the speed profiles of transport modes (e.g. Knoblauch,
Pietrucha & Nitzburg 1996, Thompson, Rebolledo, Thompson, Kauf-
man & Rivara 1997).

A speed distribution for car has been estimated by Bierlaire et al.
(2010). The distribution is assumed to be a mixture of a negative
exponential and a log-normal. The first is designed to capture the
period when the traveler is stopped, or traveling at low speed before
or after that stop. The second is designed to capture the traveler
moving at regular speed. In this paper, this method is adapted to
estimate a speed distribution fv(v|m) for each transport mode. Speed
measurements from dataset A are used for the estimation. And the
probability density function for mode m is written as:

fv(v|m) = wmλme
−λmv + (1− wm)

1

v
√

2πτ2
m

e
− (ln v−µm)2

2τ2m . (12)

Our data analysis shows that a mixture of negative exponential and
normal fits better for walk. The distribution for walk is therefore

fv(v|walk) = wwalkλwalke
−λwalkv + (1− wwalk)

1√
2πτ2

walk

e
− (v−µwalk)

2

2τ2walk .

(13)
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The parameters to be estimated are: wm, the weight for the mix-
ture; λm, the scale parameter of the negative exponential distribution;
µm, the location parameter of the normal and log-normal distributions
respectively; τm the scale parameter of the normal and log-normal dis-
tributions respectively. Figure 4 shows the normalized histograms of
the recorded speed data and the estimated speed distributions for all
modes. Table 4 reports the parameters estimated by maximum likeli-
hood, as well as the amount of data that is used for the estimation. The
standard error for each parameter estimate is given in parentheses.

4.2.2 Derivation of the travel model

A multimodal path differs from a unimodal path in that there are pos-
sible mode changes along a path. Therefore, there are two situations
that need to be considered in deriving the travel model: the presence
or absence of a virtual mode transfer arc between xk−1 and xk along
p.

If there is no mode change between xk−1 and xk. The
smartphone carrier travels from xk−1 to xk along path p with the
same mode mk = mk−1. Then the probability density function of the
travel model (11) can also be written as

fx(xk|xk−1, tk−1, tk,mk, p), (14)

which predicts the next location xk of the unimodal (mk) travel along
path p since the previous location xk−1. We assume that the travel
speed follows the speed distribution of the transport mode mk being
used in this uni-modal travel segment, then we have the following
model:

fx(xk|xk−1, tk−1, tk,mk, p) = fv(
dp(xk−1, xk)

tk − tk−1
|mk), (15)

where dp(xk−1, xk) calculates the distance from xk−1 to xk on path
p; so that dp(xk−1,xk)

tk−tk−1
calculates the travel speed; and the probability

density function fv is given by Equation (12) or (13).

If there are mode changes between xk−1 and xk. Consid-
ering the fact that the GPS data are recorded every 10 seconds, we
assume that it is not possible to have more than one mode change
in such a short time. The mode change between xk−1 and xk is rep-
resented by a virtual arc on p, associated with coordinates xc. We
denote upstream node of the virtual arc by x−c = (xc,mk−1) and the
downstream node by x+

c = (xc,mk). The time at which the mode
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change happens is unknown and denoted by tc ∈ [tk−1, tk]. Then, we
have the following model:

Pr(xk|xk−1, tk−1, tk, p)

=

∫ tk

tc=tk−1

Pr(tc|xk−1, tk−1, p) Pr(xk|xk−1, tc, tk, p)dtc, (16)

The two probabilities in the RHS of Equation (16) describe the two
unimodal travel segments before and after the mode change. The first
predicts the mode change time tc; the second predicts the position
xk at time tk given the mode change time tc. Following the derivation
of Equation (15), we also assume that the travel speed of each segment
follows the speed distribution of the corresponding transport mode.
Then, they can be re-written as:

• Pr(tc|xk−1, tk−1, p) = fv(
dp(xk−1,xc)
tc−tk−1

|mk−1),

• Pr(xk|xk−1, tc, tk, p) = fv(
dp(xc,xk)
tk−tc |mk).

4.3 Computing integrals
The above formulations involve a lot of integrals along path p with
the form of

∫
x∈p f(x)dx. In order to save computation time, Bierlaire

et al. (2010) define a Domain of Data Relevance (DDR) of each GPS
point as a physical area nearby. Then, the domain of the integral is
truncated to the part of the path that is inside the DDR.

Obviously, this simplification method only works for GPS data,
because other data do not contain location information. In this pa-
per, the domain of integral for BT and ACCEL measurements is il-
lustrated in Figure 5. For each BT or ACCEL measurement ŷk, its
previous and next GPS measurements are denoted as ŷkg− and ŷkg+
(tkg− ≤ tk ≤ tkg+). Since measurements are observed sequentially,
ŷk’s state xk ∈ p has to be downstream of xkg− and upstream of xkg+ .
Then, the domain of integral for xk only includes the domains of inte-
gral for xkg− and xkg+ (part 1&2 in Figure 5), plus the part of p that
connects xkg− and xkg+ (part 3). This definition highly relies on the
two adjacent GPS measurements. If the GPS measurements happen
to have a large time gap, they do not provide reliable location informa-
tion for BT and ACCEL data observed between them. Therefore, as
mentioned in Section 2.3, the BT and ACCEL measurements observed
between them are discarded. For the implementation of the DDR of
GPS measurements and the integral, we refer to Bierlaire et al. (2010)
for more details.
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5 Candidate path generation
The probabilistic measurement model Pr(ŷ1:T |t1:T , p) calculates the
likelihood of observing measurements ŷ1:T on a given path p at time
t1:T . Given a set of candidate paths P, it can be further used to infer
how likely p is to be the true path:

q(p) =
Pr(ŷ1:T |t1:T , p) Pr(p)∑

p′∈P Pr(ŷ1:T |t1:T , p′) Pr(p′)
, (17)

This path probability can be used as a score function in traditional
deterministic map-matching algorithms (e.g. Schuessler & Axhausen
2009b) for determining which path is the true one. Considered as the
prior probability, Pr(p) represents how likely p would be traveled with-
out having the smartphone data. It actually models the smartphone
user’s route choice behavior. If no route choice model is available, the
distribution can be assumed to be uniform for instance.

This section focuses on the generation of P . Note that, because
we assume that the time tags are measured without error, the values
of t1:T are taken directly from the data t̂1:T . We propose a multi-
modal candidate path generation algorithm as an extension of a uni-
modal algorithm developed by Bierlaire et al. (2010). This algorithm
has special features compared to the conventional map-matching and
transport mode inference algorithms:

• The algorithm builds the physical path and the transport modes
simultaneously.

• Smartphone data recorded from a trip are not required to be
preprocessed into several unimodal segments.

• Transport networks also contribute to the inference of the trans-
port mode, especially in differentiating PT and non-PT modes.

Usually, a map-matching algorithm takes two sources of informa-
tion: location data, and transport networks data. In this algorithm,
although BT and ACCEL measurements do not contain significant lo-
cation information for generating path candidates, they are implicitly
used in the process that eliminates paths according to the path prob-
ability (17). The output is a set of candidate multimodal paths. For
each path, the likelihood (3) of observing the smartphone measure-
ments on it, and the probability (17) that it is the true path are also
calculated.

The algorithm iterates over the sequence of GPS measurements
ĝ1:I . At each iteration i, it generates a set of candidate paths Pi that
are matched to the sequence of all measurements (including BT and
ACCEL) up to ĝi. In the next iteration i + 1, each path is extended
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from its end node, and downstream segments are appended in order
to map the new measurements up to the next GPS ĝi+1. In fact,
this iterative method connects the DDR of the GPS points to build
candidate paths. Practically, the number of candidate paths grows
exponentially because each DDR is relatively large with about 100m
radius (Bierlaire et al. 2010). Therefore, heuristics are proposed to
reduce the computational burden. The result from the last iteration
I is the final output of the algorithm. The pseudo-code is briefly
described as Algorithm 1. Detailed explanations of some steps are
given as follows:

9. At iteration i, the path extension process is carried out only when
the GPS point ĝi is far enough away from ĝi′ , where i′ corresponds
to the last iteration when a path extension happened, and 100m
is chosen as the distance threshold. Otherwise, the traveler is
considered to be immobile, and a path extension is not necessary.

15. The path extension from end node n takes place in each uni-
modal network Gm, if n appears in Gm or connects to Gm with a
virtual arc (mode change). A new path candidate pnew is created
by joining the current path candidate p ∈ Pi′ with the newly dis-
covered downstream segment (see line 22). The transport mode
m of the downstream segment is the mode of Gm. It can be dif-
ferent from the mode of the last arc on p. In other words, a mode
change is allowed to happen at the connecting node n, which is
the end node of p.

16. Each transport mode has a speed limit. For example, walk is not
expected to have a speed over 18km/h. If the observed speed v̂i
of the GPS exceeds the maximum speed of a transport mode m,
the corresponding unimodal transport network Gm is neglected.
This is mainly designed to neglect walk and bike networks when
the GPS is in fact observed from higher speed motor modes,
hence to reduce the amount of irrelevant paths as candidates.
The maximum speed for walk and bike is set to be 18km/h and
40km/h respectively, while no constraint is imposed to motor
modes. These values correspond to 99% percentile in the speed
data of dataset A.

18. Shortest path trees are used to link the DDRs of adjacent GPS
points. For the sake of computational efficiency, the shortest
path trees are bounded. The leaf nodes of a bounded shortest
path tree are the first nodes detected by the Dijkstra algorithm
that violates the bound. The bound is the same as in Bierlaire
et al. (2010). It is based on an assumption about the maximum
possible speed of the traveler within the time interval [ti′ , ti].
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Algorithm 1: Path extension procedure in iteration i

Input: The smartphone measurements sequence ŷ1:T with GPS
subsequence ĝ1:I

Input: The underlying multimodal transportation network G with
multiple unimodal networks Gm,
m ∈ {walk, bike, car, bus,metro}.

Result: A set of candidate paths PI .

// Deal with the first GPS point.
1 P1 ← empty set of paths;
2 for each arc a ∈ A do
3 DDR1 ← the DDR of the first GPS measurement;
4 if a intersects DDR1 then
5 include a as a partial path in P1;
6

7 i′ ← 1: the temporary index for processed GPS;

8 for i← 2 to I do
// Iterative path extension process.

9 if ‖x̂i − x̂i′‖ > 100m then
10 i′ ← i;
11 foreach p ∈ Pi′ do
12 if p intersects DDRi then
13 include p in Pi;

14 n← the end node of p;
15 foreach unimodal network Gm do
16 if v̂i ≤ the maximum speed of mode m then
1818 spt← a bounded shortest path tree rooted at n in

Gm ;
19 foreach link a ∈ spt do
20 if a intersects DDRk then
21 sp← shortest path connecting p and a;
22 pnew ← join p, sp and a;
23 include pnew in Pi;

24 limit the size of Pi;
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In our experiments, the bound is defined by 1.5(ti − ti′)v̂max,
where v̂max is the maximum speed value among the observed
GPS speeds v̂i′ and v̂i, and the speed value calculated from the
coordinates: ‖x̂i−x̂i′‖2/(ti−ti′). The factor 1.5 is a safety margin
to minimize the risk of missing a relevant observation.

24. The path elimination procedure is designed to speed up the al-
gorithm by eliminating less relevant branches. It eliminates un-
reasonable paths deterministically according to various criteria.
The deterministic elimination procedure includes:

1. We assume that walk is necessary for mode changes. There-
fore, if a path has a mode change without walk involved, it
is eliminated.

2. A path with loops is considered to be unreasonable, hence
is excluded, unless the loops involve walk.

3. A path might be too long to be consistent with the observed
travel time approximated by tI − t1. The mean travel speed
v̄m for each mode m is taken from the speed data of dataset
A. Then the mean travel time for a path can be calculated
by summing up the mean travel time La

v̄ma
for each arc a,

where ma is the mode of arc a and La is the length of the
arc. We assume the lower bound of a path’s travel time as
half of the mean travel time. If the observed travel time is
lower than the lower bound, the path is considered too long
to be realistic, and removed.

Clearly, more behavioral rules could be considered here, possibly
involving a calibrated behavior model.
In order to control the complexity of the algorithm, the number of
paths generated at each iteration should be reasonably small. For
example, Marchal, Hackney & Axhausen (2005) and Schuessler &
Axhausen (2009b) suggest to maintain 30 paths at each iteration
for unimodal map matching. We use a random sampling proce-
dure to select paths according to the path probability (17). Since
the algorithm is multimodal, we decide to maintain more paths,
but not more than 60 paths in our experiments. The random
selection procedure includes three steps.

1. Randomly draw some paths from Pi according to the path
probability (17). In our experiments, 20 paths are selected.

2. Let P 1
i ⊆ Pi denote the set of paths with the least mode

changes. Then, randomly sample some paths from P 1
i ac-

cording to the path probability (17). Before the random
sampling, the probabilities are normalized such that they
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sum up to one for the paths in P 1
i . In this step, paths with

the least mode changes are favored because they are more
behaviorally reasonable. In our experiments, 10 paths are
selected in this step.

3. The likelihood that the GPS measurement is observed on a
is defined:

Pr(x̂|a) =

∫

x∈a
Pr(x̂|x) Pr(x|a)dx =

1

La

∫

x∈a
Pr(x̂|x)dx.

(18)
Aim is defined as the set of arcs that intersect with DDRi
and have the transport mode m. For each mode m, we sam-
ple some arcs according to the likelihood (18) (as in Step2,
the normalization of the likelihood is required before the ran-
dom sampling). In our experiments, 5 arcs for each mode
are selected. For each sampled arc a, we denote Pia ⊆ Pi
as the set of paths that go via a and have the least mode
changes. We then apply a similar random sampling proce-
dure as in Step 2 on Pia, but only to draw one path. In
this step, the sampled paths go through different arcs with
different modes that intersect with DDRi. Therefore, this
step ensures sufficient variability in the generated paths.

If a trip is unimodal and the mode is known, the algorithm can be
used to only identify the physical path. It is simply accomplished by
supplying the unimodal transport network of the known mode. Since
this technique is essentially unimodal map-matching, it is denoted as
Algorithm-U, while the original multimodal algorithm is denoted as
Algorithm-M. In the next section, the results generated by Algorithm-
U with the correct transport mode will be used as the benchmark when
we analyze the mode inference performance of Algorithm-M.

6 Numerical experiments
The proposed method is implemented as a software package in C++.
It reads smartphone data and OSM network data as inputs, and pro-
duces probabilistic map-matching results. In this section, numerical
experiments are performed with smartphone data collected in different
circumstances. Some examples are first illustrated with map visual-
ization to gain an intuitive impression of the results. Then, numerical
analyses focus on the performance in inferring the modes. The contri-
butions of BT and ACCEL data are also analyzed.
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6.1 Result illustration
Some common trip patterns are chosen for the illustration, including
bike, car, and public transport with changes. Using information from
dataset A, the main transport modes for each trip are known while
the exact path is unknown.

The first example in Figure 7(a) shows a complex multimodal trip
with metro→walk→bus→walk. The total travel time is 20 minutes,
and there are 91 GPS measurements generated, with 8 BT, and 395
ACCEL. The background network is shown in gray lines, while a gen-
erated path is drawn with color. According to the smartphone user
who provided the data, this path resembles the trip that he made.
The graph without background network shows the same path. The
red arrow shows the direction of the trip. There are 43 paths gener-
ated by the multimodal map-matching algorithm (Algorithm-M). The
measurement log likelihood ln(Pr(ŷ1:T |t1:T , p)) for each path is plotted
in Figure 6, and the x-axis shows the id of each path. We notice that
some paths have much higher log likelihood than the others. The path
22 drawn in Figure 7(a) gains the highest log likelihood (−347.9).

The differences of the generated paths show the uncertainty of the
result. On one hand, the uncertainty is due to the imprecision of the
smartphone data and the network. On the other hand, the uncertainty
mainly belongs to the end of the trip, since we notice that the gener-
ated paths mainly differ at the end of them. This can be explained
by the mechanism of the smartphone measurement model. The model
utilizes the dependency between adjacent measurements (see Equa-
tion 4). Each measurement in fact provides information to identify its
upstream trajectory. The end of a trip always gains less information
since it has less (or none) downstream measurements. We focus on the
differences of the paths by showing the end of them in Figure 7(b).
Graph 1 shows path 22’s end; Graph 2 shows path 23’s end, which has
a different destination (log likelihood −348.7); Graph 3 shows path 14,
of which a part is identified as car (log likelihood −384.0); Graph 4
shows path 40 with its end identified as bike (log likelihood −381.9).

The second example in Figure 8 shows a car trip. All the gener-
ated 30 paths are drawn in the figure, and they greatly overlap with
each other. Except for the uncertainty of the trip end, there is also
uncertainty (marked by a circle) due to the data noise and the density
of the network.

The third example in Figure 9 shows a trip with bike as the main
mode. There are 33 paths generated, the left graph draws a path
with the highest log likelihood −117.7. The same path without back-
ground network is drawn in the top right graph. The end of the path
is identified as walk because the smartphone user is entering a park-
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ing place. The bottom right graph shows another representative path,
which gains a little lower log likelihood −118.0. The differences be-
tween two paths are highlighted in circles.

In these examples, the paths with the highest likelihoods are chosen
for illustration purpose only. In practice, we suggest to carry the un-
certainty in the application, together with the associated probability.
For example, in route choice modeling, the probabilistic path obser-
vations from the map-matching results can be used with network-free
method (Bierlaire et al. 2010).

6.2 Performance analysis
In order to gain more systematic understanding of the performance
of the algorithm, analysis with more data is provided. The analysis
focuses on the most important aspects of the method proposed in this
paper: the identification of the modes, and the usage of various kinds
of data. For the sake of convenience, we extract from dataset A data
sequences that are known to have one single mode. 36 data sequences
are used for the analysis. The transport mode, the travel time, the
number of GPS, BT and ACCEL measurements for each data sequence
is given in the left part of Table 5.

Since each data sequence has a known transport mode, Algorithm-
U with the known mode can be applied to generate unimodal paths
that have the correct transport mode. Algorithm-M are then applied,
and the map-matching results (path sets) are denoted as follows:

P 0: Algorithm-U is applied to only GPS data, with known mode.

P 1: Algorithm-M is applied to only GPS data.

P 2: Algorithm-M is applied to GPS and BT data, if BT data are
available.

P 3: Algorithm-M is applied to all data, if ACCEL data are available.

Since P 0 has the correct transport mode, hence it is served as the
benchmark. The performance of Algorithm-M with different data is
evaluated by comparing P 1, P 2, P 3 against P 0. We expect that P 1,
P 2 and P 3 are similar to P 0, if Algorithm-M correctly identifies the
paths and the modes. In order to compare the path sets, we first define
quantitative similarity indicators.
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Similarity indicators

First, the overlapping indicator O(p, P ) is defined to measure how
much a path p overlaps with all the paths in a path set P :

O(p, P ) =
∑

a∈p

La
Lp

∑

p′∈P
q(p′)δap′ , (19)

where δap′ is a dummy variable, valued 1 if path p′ contains arc a, and 0
otherwise; La and Lp are the lengths of arc a and path p respectively;
q(p′) is the path probability (17). This definition is inspired by the
concept of Path Size used in route choice modeling to measure how an
alternative overlaps with other paths in the choice set (see Ben-Akiva
& Bierlaire 2003) . This overlapping indicator is valued between 0 and
1, and can be roughly understood as the average proportion of the
path p overlapping with all paths in P . When p is the same as any
path in P , then the overlap is total and O(p, P ) = 1; when p does not
overlap with any path in P at all, O(p, P ) = 0.

Then S(P ′, P ) is defined to compare another path set P ′ against
P ,

S(P ′, P ) =
∑

p∈P ′
q(p)O(p, P ). (20)

This definition is inspired by the similarity indicator proposed by Bier-
laire et al. (2010). We include here the path probability q(p), which
weights the importance of each path. S is also valued between 0 and
1. When all paths in both P and P ′ are the same, S(P ′, P ) = 1; when
all paths are distinct without any overlap, S(P ′, P ) = 0. If P ′ = P ,
S(P, P ) in fact calculates the similarity of the paths in the same set.
When P is a map-matching result, S(P, P ) indicates the level of the
uncertainty in the result. The higher the similarity, the lower the un-
certainty. For example, S(P, P ) for the first example in Section 6.1 is
0.967, for the second is 0.956, while for the third is lower 0.854 because
more uncertainty is observed.

For the comparison of the different results, we select P 0 as bench-
mark, and analyze the values S0 = S(P 0, P 0), S1 = S(P 1, P 0), S2 =
S(P 2, P 0), S3 = S(P 3, P 0). The uncertainty of the unimodal match-
ing result S0 tells the degree of the data noise and the density of the
network. S1, S2, S3 are expected to have a high value, but not higher
than S0.

Analysis

The similarity indicators for all trips are reported in Table 5. A empty
cell means that the corresponding data is not available, hence no result
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is generated. S2 is empty when BT data are unavailable, S3 is empty
when ACCEL data are unavailable.

We first notice that all S0 have high value with low uncertainty
in the results. The value is 0.921 in average. Since the uncertainty
is mainly due to the error of the GPS data and the density of the
transport network, S0 for walk data is lower because the walk network
is usually denser.

When Algorithm-M is applied with the multimodal network, we
have S1, S2, S3 < S0, because the algorithm is not aware of the true
mode and there is a chance of mis-identifying it. However, in the ma-
jority of the cases, S1 is close to S0, and the average of S1 is 0.757,
which is 82.2% of the average of S0. Considering the complexity of
the multimodal network and the sparsity of the GPS data, Algorithm-
M achieves quite high accuracy in the transport mode inference. We
observe some exceptional cases (case 1, 8, 25, and 28), where S1 has
very low value. There are mainly due to two reasons. First, in case 1,
25 and 28, the GPS data are too sparse, therefore the measurements
do not provide enough information to find out the correct mode. In-
deed, in case 1, there are only 12 GPS measurements observed in 479
seconds. Second, in case 8, the data are observed when the bus was
running slowly in peak hour in the city center. Therefore, the chance
of identifying the mode as bike increases. In these two cases, some
generated paths have very strange mode change behavior, such as,
using both bike and car in 10 minutes. We believe that if an appropri-
ate route choice behavior model is incorporated in the candidate path
generation algorithm, such paths will be less favored by the algorithm.

By comparing S1 among different modes, we observe that non-
PT cases have high values, because people do not follow the PT lines
during the entire trip when they use private mode. Hence the chance
of mis-identifying the mode as public transport (bus and metro) is
low. In this situation, the transport network helps in identifying the
mode. From another perspective, if a route choice behavior model can
consider the fact that private mode travel does not follow PT lines,
the results could further be improved.

In 12 cases where BT data are available, the average of S2 (0.888) is
greater than the average of S1 (0.858). In 22 cases where ACCEL data
are available, the average of S3 (0.826) is greater than the average of
S1 (0.751). Therefore, in general, the additional BT and ACCEL data
contribute to the accuracy of the results. Additional ACCEL data are
particularly helpful when S1 has very low value (case 8, 25 and 28). In
some cases, although there are drops in S3 with additional data, the
values are still acceptable. Still, ACCEL data need to be used more
carefully. We notice that ACCEL data are special when the vehicle
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is traveling at low speed, because the vehicle is usually accelerating
or decelerating then. This information can be used to improve the
ACCEL measurement model in the future.

The numerical experiments with real smartphone data show that
the proposed multimodal map-matching algorithm performs well in
identifying the multimodal paths from the smartphone data. BT and
ACCEL data also contribute to the identification of the transport
mode.

7 Conclusions
This paper proposes a probabilistic method to infer the path and the
modes of a trip from smartphone data. A smartphone measurement
model is derived to calculate the likelihood that a smartphone would
have generated a sequence of measurements while traveling on a mul-
timodal path. It is based on a structural travel model that captures
the dynamic of the smartphone user’s state in the transport network,
and sensor measurement models that capture the sensors’ operation.
This smartphone measurement model synthesizes information avail-
able from various sensors, such as GPS, BT and ACCEL.

An algorithm is developed to generate candidate paths from the
smartphone data. This algorithm identifies the physical path and the
modes of a trip simultaneously. Hence, the transport network infor-
mation is also utilized to identify the transport modes of a trip. Data
recorded from a multimodal trip do not need to be divided into uni-
modal travel segments. The result of the algorithm is a set of candidate
multimodal paths, along with a probability for each being the true one.

The visualized examples show that the results are intuitively rea-
sonable, and the measurement likelihood values are realistic and mean-
ingful. A complex multimodal trip example shows the capability of the
algorithm in dealing with mode changes. Numerical analysis shows
the performance of the algorithm in identifying the transport modes.
Apart from the most useful GPS data, BT and ACCEL also contribute
in identifying the transport mode.

Future works involve more investigations on the usage of BT and
ACCEL data. They need to be used more carefully, because they do
not contain any location information, and highly rely on the adjacent
GPS measurements to have prior information about where they are
observed. More sophisticated BT measurement model can be consid-
ered. In particular, we may want to capture the fact that walk might
happen in a crowded place where BT devices are observed. In this case
the location and time of the day should play roles in the BT measure-
ment model. Also, the measurement variable can be defined as the
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number of nearby devices in order to utilize more information from
the BT data. Apart from the mean, more features of the ACCEL data
can also be used, such as the variation. Traffic model can be more
advanced, and the timetable of public transport can be used when
available. Also, if a route choice model is available in the candidate
path generation algorithm, the results will be further improved. Fi-
nally, the probabilistic map-matching results will be used to estimate
multimodal route choice behavior.
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Tables

Table 1: Acceleration data returned from a reading event
index time stamp x-axis y-axis z-axis
1 1272678293.03 15.0 -15.0 -324.0
2 1272678293.05 21.0 -15.0 -324.0
3 1272678293.09 21.0 -15.0 -329.0
... ... ... ... ...
398 1272678302.91 21.0 -15.0 -324.0
399 1272678302.94 15.0 -10.0 -319.0
400 1272678302.95 15.0 -15.0 -324.0

Table 2: Probability density mass of b̂ for PT and non-PT
Pr(̂b|m) b̂ = 0 b̂ = 1
m ∈ PT 0.81 0.19
m /∈ PT 0.60 0.40

Table 3: Parameter estimates for ACCEL distributions

walk bike motor
4501 11924 11801

J 3 4 4
w1 7.773e− 01 (2.782e− 02) 2.106e− 01 (5.727e− 02) 1.922e− 01 (4.496e− 03)
µ1 3.152e+ 02 (1.202e+ 00) 2.929e+ 02 (3.038e+ 00) 2.647e+ 02 (9.726e− 02)
σ1 2.206e+ 01 (7.589e− 01) 9.907e+ 00 (1.327e+ 00) 3.496e+ 00 (7.860e− 02)
w2 2.151e− 01 (2.814e− 02) 3.217e− 01 (5.676e− 02) 7.537e− 01 (8.748e− 03)
µ2 3.712e+ 02 (2.938e+ 00) 2.766e+ 02 (1.063e+ 00) 3.102e+ 02 (2.324e− 01)
σ2 1.879e+ 01 (1.711e+ 00) 8.039e+ 00 (4.633e− 01) 1.333e+ 01 (2.061e− 01)
w3 7.668e− 03 (3.924e− 03) 2.047e− 01 (2.102e− 02) 4.450e− 02 (4.700e− 03)
µ3 3.983e+ 02 (4.307e+ 01) 3.284e+ 02 (3.289e− 01) 2.864e+ 02 (2.463e− 01)
σ3 1.059e+ 02 (2.843e+ 01) 6.411e+ 00 (4.536e− 01) 2.633e+ 00 (1.872e− 01)
w4 - 2.631e− 01 (4.501e− 02) 9.626e− 03 (5.186e− 03)
µ4 - 3.163e+ 02 (2.055e+ 00) 3.545e+ 02 (1.213e+ 01)
σ4 - 2.075e+ 01 (9.360e− 01) 2.158e+ 01 (5.339e+ 00)
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Table 4: Parameter estimates for speed distributions
mode measurements wm λm µm τm
walk 9350 0.46 (0.01) 0.20 (0.00) 4.41 (0.03) 1.51 (0.03)
bike 11899 0.39 (0.01) 0.09 (0.00) 2.88 (0.00) 0.30 (0.00)
metro 1142 0.52 (0.02) 0.17 (0.01) 3.51 (0.03) 0.43 (0.02)
bus 1669 0.48 (0.07) 0.13 (0.03) 3.16 (0.05) 0.46 (0.02)
car 2069 0.20 (0.03) 0.12 (0.03) 3.76 (0.03) 0.62 (0.02)
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Table 5: Numerical comparisons of results
mode time GPS BT ACCEL S0 S1 S2 S3

1 bus 479 12 0 19 0.99 0.07 - 0.15
2 bus 399 40 0 25 0.98 0.93 - 0.93
3 bus 234 24 1 11 0.96 0.64 0.65 0.93
4 bus 499 47 0 23 0.98 0.81 - 0.98
5 bus 255 24 0 23 0.96 0.96 - 0.97
6 bus 412 42 0 41 0.97 0.94 - 0.86
7 bus 417 39 2 34 0.98 0.98 0.98 0.98
8 bus 479 35 0 7 0.98 0.27 - 0.50
9 car 229 20 0 23 0.97 0.95 - 0.96
10 car 180 16 0 0 0.95 0.87 - -
11 car 241 23 0 23 0.92 0.91 - 0.90
12 car 229 24 0 0 0.93 0.93 - -
13 bike 290 29 0 0 0.91 0.55 - -
14 bike 289 27 0 0 0.80 0.68 - -
15 bike 313 32 0 0 0.93 0.80 - -
16 bike 369 38 1 23 0.83 0.76 0.77 0.76
17 bike 1153 115 0 98 0.96 0.89 - 0.81
18 bike 1021 100 4 73 0.97 0.95 0.95 0.77
19 metro 892 62 1 34 0.99 0.99 0.99 0.97
20 metro 560 34 1 23 0.99 0.77 0.82 0.85
21 metro 259 16 0 0 0.98 0.94 - -
22 metro 409 33 1 23 0.98 0.99 0.98 0.99
23 metro 594 49 2 40 0.99 0.95 0.96 0.96
24 metro 716 38 2 0 0.96 0.80 0.91 -
25 metro 601 16 0 20 0.97 0.13 - 0.89
26 metro 449 39 0 20 0.99 0.98 - 0.99
27 metro 230 22 0 23 0.95 0.76 - 0.94
28 metro 579 7 0 10 0.98 0.08 - 0.48
29 walk 1269 114 0 0 0.88 0.71 - -
30 walk 719 62 0 0 0.65 0.58 - -
31 walk 659 47 0 0 0.76 0.80 - -
32 walk 998 97 5 0 0.93 0.90 0.88 -
33 walk 240 21 0 0 0.72 0.59 - -
34 walk 359 27 1 0 0.80 0.75 0.73 -
35 walk 488 38 0 0 0.85 0.84 - -
36 walk 490 35 2 26 0.83 0.81 0.77 0.61
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Figure Captions

Figure 1. A multimodal network and a multimodal path

Figure 2. Calculate speed and heading

Figure 3. ACCEL distributions for walk, bike, and motor

Figure 4. Speed distributions of 6 transport modes

Figure 5. Integral domain for BT or ACCEL measurement ŷk

Figure 6. Measurement log likelihood for paths

Figure 7. A multimodal trip

Figure 8. A car trip

Figure 9. A bike trip
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Figures

Figure 1: A multimodal network and a multimodal path
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Figure 2: Calculate speed and heading
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Figure 3: ACCEL distributions for walk, bike, and motor
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Figure 4: Speed distributions of 6 transport modes
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Figure 5: Integral domain for BT or ACCEL measurement ŷk
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Figure 6: Measurement log likelihood for paths
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Figure 7: A multimodal trip

(a) Data and a generated path

(b) Trip end uncertainty
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Figure 8: A car trip
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Figure 9: A bike trip
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