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Abstract

This document presents the multiple discrete-continuous extreme value (MD-

CEV) model as implemented in Biogeme. We outline the mathematical foun-

dations of the various model variants available in the package. Additionally, we

discuss the procedures for parameter estimation and the application of the model

for forecasting. A step-by-step walkthrough of a concrete example is also pro-

vided to illustrate the model’s practical use.

1 The MDCEV model

The multiple discrete-continuous extreme value model (MDCEV) is a choice

model where the choice of multiple alternatives can occur simultaneously. It has

been introduced by Bhat (2005), building on the Karush-Kuhn-Tucker multiple

discrete-continuous economic model proposed by Wales and Woodland (1983).

In this document, we introduce a generalization of the model, where the deriva-

tion is performed for a generic utility function. This is motivated by the need to

obtain an implementation that is easily extendible to new models in the future.

Consider an individual, denoted as n, who is presented with a distinct set of

items, represented as Cn, containing Jn items in total. Given a total budget of En,

this individual decides on purchasing a quantity yin of each item. This decision

must verify the following budget constraint:

∑

i∈Cn

ein =
∑

i∈Cn

pinyin = En,

where:

• pin > 0 is the price per unit of item i for the individual n.

• ein = pinyin represents the total expenditure by individual n on item i.

There is no upper bound on what can be consumed for each item or, if there is,

it is beyond the total budget En, so that it does not generate any binding con-

straint. Note that it is mathematically equivalent to write the problem in terms of

expenditures e or in terms of quantities y. We adopt the former.

Each item i is associated with a utility Uin(xin, ein, εin; θ), where xin are ex-

planatory variables, ein is the expenditure of individual n for alternative i, εin is

an error term independent from xin and ein, and θ is a vector of parameters, to

be estimated from data. The error terms εin are assumed to be independent and

identically distributed, following an extreme value distribution. It is also assumed
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that there exists an order preserving function φ such that the random utility can

be expressed in additive form, that is such that

φ

(
∂Uin

∂ein

)
= Vin + εin, (1)

where Vin is the deterministic part, and εin is the error term. On top of this, the

specification of the utility functions should be associated with specific behavioral

assumptions. This aspect is not discussed in this document, in order to keep the

model as general as possible.

The expenditure decisions e1n, . . . , eJn,n are assumed to be the solution of the

following optimization problem:

max
en

∑

i∈Cn

Uin(xin, ein, εin; θ) (2)

subject to
∑

i∈Cn

ein = En, (3)

ein ≥ 0. (4)

The optimality conditions can be derived from the Lagrangian of the problem.

We introduce a Lagrange multiplier λ ∈ R associated with constraint (3) and a

Lagrange multiplier ηi ≥ 0 for each constraint (4). The Lagrangian is defined as

L(en; λn, ηn) = −
∑

i∈Cn

Uin + λn

(
∑

i∈Cn

ein − En

)
−
∑

i∈Cn

ηinein. (5)

The first order optimality conditions state that

∂L

∂ein
= −

∂Uin

∂ein
+ λn − ηin = 0, and ηinein = 0, ∀i ∈ Cn. (6)

Note that we assume that the second order optimality conditions are also verified.

This is the case if the utility functions are concave, for instance.

At least one item is consumed. We assume without loss of generality that it is

item 1. Therefore e1n > 0 and η1n = 0. Consequently, (6) can be written

λn =
∂U1n

∂e1n
. (7)

Consider a chosen alternative i 6= 1 such that ein > 0. Using the same argu-

ment, we can write
∂Uin

∂ein
= λn =

∂U1n

∂e1n
. (8)
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Therefore, if the dual variable λn is known, the optimal expenditure for a

chosen alternative i can be obtained by solving Equation (8), analytically, or nu-

merically. This quantity is denoted

ein(xin; λn, θ), (9)

and is such that
∂Uin

∂ein
(ein(xin; λn, θ)) = λn.

Consider an alternative i such that ein = 0. In this case, ηin = λn − ∂Uin

∂ein
≥ 0

and
∂Uin

∂ein
≤ λn =

∂U1n

∂e1n
. (10)

Note that we can transform the utility functions Uin with any order preserving

function φ without changing the solution of the problem. An order preserving

function is a strictly increasing function φ of one variable such that φ ′(u) > 0.

In that case,

φ

(
∂Uin

∂ein

)
≤ φ

(
∂U1n

∂e1

)
⇐⇒

∂Uin

∂ei
≤

∂U1n

∂e1
. (11)

As the analyst is not able to observe the actual utility function, we assume that

the utility function is a random variable. More specifically, we assume that there

exists an order preserving transform φ of the utility functions such that

φ

(
∂Uin

∂ei

)
= Vin + εin, (12)

where Vin is the deterministic part, and εin is a random disturbance. Therefore,

the optimality conditions can be written as

Vin + εin = V1n + ε1n, if ein > 0, (13)

Vin + εin ≤ V1n + ε1n, if ein = 0. (14)

We assume that the utility functions are defined in such a way that (13) defines a

bijective relationship between ein and εin, for all i ∈ Cn.

The above model is typically used in two modalities. For the estimation of the

unknown parameters, the analyst needs the distribution of the expenditures given

by the model in order to calculate the log-likelihood function for the observed

expenditures. This distribution and the corresponding log-likelihood function are

derived in Section 2. For the application of the model, the parameters are known,

and the expenditures must be forecast. The procedure to calculate this forecast is

described in Section 3.
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2 Estimation of unknown parameters

We assume that we have observed a sample of individuals. For each individual

n, we have access to the explanatory variables and the expenditures for each al-

ternative: xi, ein, for i ∈ Cn. The objective is to infer the value of the unknown

parameters θ from this sample. In the following, we drop the index n of the

decision-maker for notational convenience.

In order to calculate the (log)-likelihood of observed expenditures, we are in-

terested in the distribution of the vector en provided by the model. We have estab-

lished that it is a function of the vector of disturbances ε: e = H(ε). Consequently,

if we assume a distribution for ε, characterized by a probability density function

(pdf) fε and a cumulative distribution function (CDF) Fε, we can characterize the

distribution of e.

We start by assuming that e1, the consumed quantity of item 1 is known and

non zero. Consequently, the value of ε1 is known as well. In order to derive

the pdf evaluated at e, we split the vector e into its positive entries e+ and its

zero entries e0, alternative 1 being excluded. In an analogous way, we denote

C+ = {2, . . . , J+ + 1} and C0 = {J+ + 2, . . . , J} the corresponding sets of indices,

of size J+ and J0, respectively, so that J = J+ + J0 + 1.

For each i ∈ C+, we can use (13) to define a function H−1 : RJ+−1 → R
J+−1 as

εi = H−1
i (e) = V1(e1) − Vi(ei) + ε1. (15)

Therefore, the density function can be written as

fe(e
+, e0|ε1) = fε(ε

+, ε0|ε1) det

(
∂H−1

∂e

)
,

= fε(V1 − V2 + ε1, . . . , V1 − VJ++1 + ε1, εJ++2, . . . , εJ|ε1) det

(
∂H−1

∂e

)
.

Therefore, we can write the conditional likelihood function as

fe(e
+, e0 = 0|ε1) = det

(
∂H−1

∂e

)

∫V1−VJ++2+ε1

εJ++2

. . .

∫V1−VJ+ε1

εJ

fε(ε1, V1 − V2 + ε1, . . . , V1 − VJ++1 + ε1, εJ++2, . . . , εJ)

dεJ . . . dεJ++2
.
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From (15), we can calculate the entries of the Jacobian ∂H−1/∂e. Indeed,

∂H−1
i (e)

∂ek
=

∂V1

∂e1

∂e1

∂ek
if k 6= i+ 1,

=
∂V1

∂e1

∂e1

∂ek
−

∂Vi+1

∂ei+1

if k = i+ 1.

From (3), we have

e1 = E−
∑

j6=1

ej,

so that
∂e1

∂ek
= −1.

Consequently,

∂H−1
i (e)

∂ek
= −

∂V1n

∂e1
if k 6= i+ 1,

= −
∂V1n

∂e1
−

∂Vi+1,n

∂ei+1

if k = i+ 1.

If we denote

ci = −
∂Vin

∂ei
, (16)

the Jacobian has the following structure:

∂H−1/∂e =




c1 + c2 c1 · · · c1
c1 c1 + c3 · · · c1

...

c1 c1 · · · c1 + cJn


 .

Therefore, the determinant is equal to

det(∂H−1/∂e) =

(
J+∏

i=1

ci

)(
J+∑

i=1

1

ci

)
.

Note that this determinant depends only on the utility function, not on the distri-

bution of the εn.
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Therefore, the (unconditional) likelihood function is given by

fe(e
+, e0 = 0) =

(
J+∏

i=1

ci

)(
J+∑

i=1

1

ci

)

∫

ε1

∫V1−VJ++2+ε1

εJ++2

. . .

∫V1−VJ+ε1

εJ++2

fε(ε1, V1 − V2 + ε1, . . . , V1 − VJ++1 + ε1, εJ++2, . . . , εJ)

dεJ . . . dεJ++2
dε1.

(17)

Equation (17) corresponds to Equation 11 in Bhat (2008).

If we use the assumption that the εi are extreme value distributed, we obtain

the MDCEV model introduced by Bhat (2005). In that case, the likelihood func-

tion (17) is

fe(e
+, e0 = 0) = µJ+−1

(
J+∏

i=1

ci

)(
J+∑

i=1

1

ci

)( ∏
i∈C+ eµVin

(
∑

i∈Cn
eµVin)J

+

)
(J+−1)!, (18)

where the derivation is available in Bhat (2008). Therefore, the contribution of

observation n to the log likelihood is

ln fe(e
+, e0 = 0) =(J+ − 1) lnµ

+

J+∑

i=1

ln ci

+ ln

(
J+∑

i=1

1

ci

)

+ µ
∑

i∈C+

Vin

− J+ ln
∑

i∈Cn

eµVin

+ ln(J+ − 1)!.

Note that the last term is a constant, and is ignored by Biogeme.

3 Forecasting

We assume that we have a sample of individuals, either directly observed, or com-

ing from a scenario. For each individual n, we have access to the explanatory
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variables for each alternative: xin, for i ∈ Cn. We also assume that an estimation

θ̂ of the unknown parameters θ is available. The objective is to forecast the distri-

bution of expenditures en for each individual n in the sample, given a total budget

En.

This involves generating R draws εri , r = 1, . . . , R, from the error terms εi and,

for each draw r, solving the optimization problem defined in equations (2)–(4):

max
e

∑

i∈C

Ui(xi, ei, ε
r
i ; θ̂)

subject to

∑

i∈C

ei = E,

ei ≥ 0.

For the sake of notational clarity, we have dropped the index n representing the

individual. We denote by e∗r and λ∗
r the optimal values of the expenditures and the

dual variable, respectively. The distribution of e is approximated by the empirical

distribution of e∗r , r = 1, . . . , R. In the rest of this section, we also drop the index r

for notational simplicity. It is sufficient to keep in mind that εi must be interpreted

as a value, a draw from the distribution.

In Biogeme, solving the optimization problem is implemented in two ways.

The “brute force” algorithm uses a generic solver from the package scipy. It

does not exploit any information about the model specification. The second algo-

rithm, the analytical algorithm, is inspired by Pinjari and Bhat (2021), and exploits

some properties of the utility function in order to identify the optimal solution. We

describe it here.

3.1 Properties

We first define Wi as the derivative of the utility of alternative i evaluated at zero

expenditure:

Wi =
∂Ui

∂ei
(ei = 0). (19)

It plays a central role in the algorithm.

Then, we assume that the model verifies the following properties, where C∗ =

{i|e∗i > 0} is the set of alternatives that are chosen at the optimal solution, that is,

all alternatives such that the optimal expenditure is non zero.

Property 1. For each chosen alternative i ∈ C∗, we have

λ∗ < Wi.
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Property 2. For each chosen alternative i ∈ C∗, the optimal expenditure (9) is a

decreasing function of λ:
∂ei

∂λ
< 0.

Property 3. For each chosen alternative i ∈ C∗, there exists a lower bound λℓ
i

such that

λℓ
i ≤ λ∗,

and ein(xin; λ, θ) is well defined, and non negative for each λ such that

λℓ
i ≤ λ ≤ Wi.

Note that property 2 is verified if the utility function is strictly concave. In-

deed, the sign of ∂ei
∂λ

is the same as the sign of ∂λ
∂ei

. And, from the optimality

condition (8),
∂λ

∂ei
=

∂2Uin

∂e2i
.

As discussed later, all models implemented in the current version of Biogeme

have those properties. Therefore, the analytical algorithm can be applied.

We first derive some immediate corollaries of the above properties that are

exploited in the design of the algorithm.

Corollary 1. Consider a chosen alternative i ∈ C∗ and a non chosen alternative

j 6∈ C∗. Then,

Wi > λ∗ ≥ Wj. (20)

Proof. Consider an unchosen alternative j. From the optimality condition (10),

we have

λ∗ ≥
∂Uj

∂ej
(e∗j ) =

∂Uj

∂ej
(ej = 0) = Wj.

The result follows from Property 1.

Corollary 2. The total expenditure

E(λ) =
∑

i∈C∗

ei(λ)

is a decreasing function of λ:
∂E(λ)

∂λ
< 0.

At the optimal value λ∗, the constraints are verified and

E(λ∗) =
∑

i∈C∗

ei(λ
∗) = E. (21)
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In particular, it means that

λ < λ∗ ⇐⇒ E(λ) > E,

and

λ > λ∗ ⇐⇒ E(λ) < E.

Proof. This is an immediate consequence of Property 2.

The next result provides a condition to verify if an alternative is in the optimal

choice set or not.

Lemma 1. Let’s assume that the numbering of the alternatives is organized in

decreasing order of Wi, and that we have already established that alternatives

1, . . . ,M are chosen. We define

λℓ
CM+1

= max
i=1,...,M+1

λℓ
i,

where λℓ
i is the lower bound defined by Property 3, and the set C = {1, . . . ,M+1}.

Then, alternative M + 1 is chosen in the optimal solution if and only if λℓ
CM+1

≤
WM+1 and E(WM+1) < E.

Proof. We consider both possibilities: whether M + 1 is included in the choice

set or not.

• If M+ 1 is chosen in the optimal solution, Property 1 guarantees that

λ∗ < WM+1.

From Corollary 2, it means that

E(WM+1) < E(λ∗) = E.

Also, Property 3 guarantees that λℓ
CM+1

≤ λ∗ (as all alternatives in CM+1 are

chosen), so that

λℓ
CM+1

< WM+1,

thereby confirming the sufficient condition.

• For the necessary condition, we prove the contrapositive: if M + 1 is not

chosen in the optimal solution, than, λℓ
CM+1

> WM+1 or E(WM+1) ≥ E.

If M + 1 is not chosen, then e∗M+1 = 0 is optimal. From the optimality

condition (10),

λ∗ ≥
∂UM+1

∂eM+1

(eM+1 = 0) = WM+1.
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From Corollary 2, it means that

E(WM+1) ≥ E(λ∗) = E,

which is true irrespectively if λℓ
CM+1

> WM+1 is true or not.

Lemma 2. If the utility function is monotonic in one of the expenditures, that is,

if

∃i ∈ Cn such that
∂Uin

∂ein
≥ 0,

then λ∗ ≥ 0.

Proof. Suppose that alternative i is consumed at the optimal solution. In that case

Eq. (8) states that

λ∗ =
∂Uin

∂ein
≥ 0,

and the result holds. Suppose that alternative i is not consumed at the optimal

solution. In that case Eq. (10) states that

λ∗ ≥
∂Uin

∂ein
≥ 0,

and the result holds as well.

3.2 The analytical algorithm

The algorithm consists of two phases:

• First, mathematical properties of the specific MDCEV model are exploited

in order to identify the optimal set of chosen alternatives.

• Once the set of chosen alternatives has been identified, the optimal value of

the dual variable is calculated using a bisection method.

Identification of chosen alternatives

In order to identify the chosen alternatives, Corollary 1 suggests to sort the alter-

natives in decreasing order of Wi. For each alternative in this sequence, we check

whether it is chosen using Lemma 1. If it is, we proceed to the next one; if not,

we have identified all chosen alternatives, and we can terminate the process. It is

described in Algorithm 1:
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Algorithm 1: Identification of the chosen alternatives

Input: E, Wi, i = 1, . . . , J, such that Wj > Wj+1. i = 1, . . . , J− 1.

Output: Optimal choice set C∗.

1 M← 0.

2 λℓ ← −∞.

3 while λℓ ≤ WM+1 and E(WM+1) < E do

4 M←M+ 1,

5 λℓ ← max(λℓ, λ
ℓ
M).

6 C∗ = {1, . . . ,M} if M > 0, ∅ otherwise.

Bisection algorithm

Let C∗ = {1, . . . ,M} be the set of chosen alternatives, where the alternatives are

numbered in decreasing order of Wi, which is assumed not empty, without loss

of generality. The bisection algorithm consists in evaluating the optimal value of

the dual variable λ∗ by updating a lower and an upper bound. The initialization is

based on Property 3 and (20). Indeed, as alternative M is chosen, WM is an upper

bound on λ∗. If all alternatives are chosen, that is, if M = J, we use Property 3

and define

λℓ
C∗ = max

i∈C∗

λℓ
i

as a lower bound. If M < J, (20) suggests also WM+1 as a lower bound. There-

fore, we use the best one:

λℓ =

{
max(λℓ

C∗ ,WM+1) if M < J,

λℓ
C∗ otherwise,

and

λu = WM.

The algorithm then exploits Corollary 2 to update either the lower or the upper

bound. Indeed, if E(̂λ) < E, it means that λ̂ > λ∗, and we have a better upper

bound. Similarly, if E(̂λ) > E, it means that λ̂ < λ∗, and we have a better lower

bound. Once we have a sufficiently precise approximation of λ∗, we use (9) to

obtain the optimal expenditures.

4 Model specifications

The theory above described so far is generic. In order to obtain an operational

model, utility function and the order preserving function φ used in (1) must be
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Algorithm 2: Find Optimal λ∗

Input: E, C∗ = {1, . . . ,M}, δλ, δE.

Output: λ∗.

1 λℓ ← max(λℓ
M,WM+1), where WM+1 = −∞ if M = J.

2 λu ←WM.

3 repeat

4 λ̂ = (λℓ + λu)/2.

5 if E(̂λ) < E then

6 λu ← λ̂,

7 else if E(̂λ) > E then

8 λℓ ← λ̂.

9 until λu − λℓ ≤ δλ or

∣∣∣E(̂λ) − E
∣∣∣ ≤ δE.

10 λ∗ = (λℓ + λu)/2.

specified. In terms of implementation, Biogeme uses the following functions for

the estimation of the parameter:

• a function that generates the Biogeme expression for the transformed utility

Vin, and,

• a function that generates the Biogeme expression for the entries of the Jaco-

bian cin ( actually, one function calculates their logarithm ln cin, and another

one their inverse, 1/cin).

For forecasting, it is needed to first check if each specification comply with Prop-

erties 1–3. If so, the analytical algorithm can be used. It requires the implementa-

tion of the following functions:

• a function calculating the value of the utility function Uin,

• a function calculating the derivatives of the utility functions ∂Uin/∂ei,

• a function calculating the optimal expenditures (9) as a function of the dual

variable.

We now develop these aspects for each model implemented in Biogeme.

4.1 Translated utility function

In the context of a time use model, Bhat (2005) uses the translated utility function

introduced by Kim et al. (2002, Eq. (1)):

Uin(ei) = exp(βTxin + εin)(ei + γi)
αi , (22)
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where 0 < αi < 1 and γi > 0 are parameters to be estimated. If there is an outside

good k, the value of γk is set to zero. Note that there is no price involved in this

specification, as it models time and not goods. It is equivalent to set pi = 1, for all

i in the model described above. Note also that, Kim et al. (2002) and Bhat (2005)

impose the following restriction on αi: 0 < αi ≤ 1. However, in the context of

this implementation, αi = 1 would create a singularity.

In Biogeme, this model is referred to as translated.

First order conditions

We can calculate

∂Uin

∂ei
= exp(βTxin + εin)αi(ei + γi)

αi−1. (23)

Note that these quantities are always positive, so that the utility functions are all

monotonic. Evaluated at zero expenditure, we obtain

Win = exp(βTxin + εin)αiγ
αi−1
i . (24)

For forecasting purposes, as described in Section 3, we need to obtain e∗i (λ),

the solution of the equation

λ =
∂Uin

∂ei
.

Here, we have

e∗i (λ) =

(
λ

exp(βTxin + εin)αi

) 1
αi−1

− γi (25)

Transformed utility

In this context, we use the logarithm as the order preserving function to obtain the

following specification:

φ

(
∂Uin

∂ei

)
= βTxin + εin + lnαi + (αi − 1) ln(ei + γi),

so that

Vin = βTxin + lnαi + (αi − 1) ln(ei + γi),

13



Entries of the Jacobian

We have

cin = −
∂Vin

∂ei
=

1− αi

ei + γi

,

so that

ln cin = ln(1− αi) − ln(ei + γi),

and
1

cin
=

ei + γi

1− αi

.

Properties

1. In order to show that Property 1 is verified, we consider

ln(Win) = βTxin + εin + ln(αi) + (αi − 1) lnγi.

Consider a chosen alternative i. From the optimality KKT conditions, we

have that

ln λ∗ = βTxin + εin + lnαi + (αi − 1) ln(ein + γi)

= βTxin + εin + lnαi + (αi − 1) ln(
ein

γi

+ 1) + (αi − 1) lnγi

= lnWin + (αi − 1) ln(
ein

γi

+ 1),

where λ∗ is the optimal dual variable associated with the budget constraint.

Property 1 follows from the fact that

(αi − 1) ln(
ei

γi

+ 1) < 0.

2. For Property 2, as discussed earlier, it is sufficient to show that the utility

function is strictly concave.

∂2Uin

∂e2i
= exp(βTxin + εin)αi(αi − 1)(ei + γi)

αi−2.

The strict concavity comes from the fact that 0 < αi < 1.

3. Finally, for Property 3, we use

λℓ
i = 0.

It is indeed a lower bound thanks to the monotonicity of the utility function,

and Lemma 2. Moreover, (25) is well defined for any λ ≥ 0. Finally,

e∗i (λ) ≥ 0 if λ ≤ Wi.
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4.2 Generalized translated utility function

Bhat (2008) generalizes the above formulation and introduces the following spec-

ification, where the utility functions Uin are defined as

U1n = exp(βTx1n + ε1n)
1

α1

(
e1

p1

)α1

, (26)

for the “outside good” that is always consumed and, for i > 1,

Uin = exp(βTxin + εin)
γi

αi

[(
ei

piγi

+ 1

)αi

− 1

]
, (27)

where β, 0 < αi < 1 and γi > 0 are parameters to be estimated. Note that this

model introduces prices, so that ei/pi is the quantity consumed.

In Biogeme, this model is referred to as generalized.

First order conditions

We can calculate

∂U1n

∂e1
= exp(βTx1n + ε1n)

1

p1

(
e1

p1

)α1−1

, (28)

and
∂Uin

∂ei
= exp(βTxin + εin)

1

pi

(
ei

piγi

+ 1

)αi−1

. (29)

Note that these quantities are always positive, so that the utility functions are all

monotonic. Evaluated at zero expenditure, we obtain

Win =
1

pi

exp(βTxin + εin).

For forecasting purposes, as described in Section 3, we need to obtain e∗i (λ),

the solution of the equation

λ =
∂Uin

∂ei
.

Here, we have

e∗1(λ) = p1

(
p1λ

exp(βTx1n + ε1n)

) 1
α1−1

, (30)

and

e∗i (λ) = piγi

[(
piλ

exp(βTxin + εin)

) 1
αi−1

− 1

]
. (31)

Note that these expressions correspond to Equations (11) in Pinjari and Bhat

(2021).
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Transformed utility

We use again the logarithm as the order preserving function to obtain the following

specification:

φ

(
∂U1n

∂e1

)
= βTx1n + ε1n + (α1 − 1) ln e1 − α1 lnp1,

and

φ

(
∂Uin

∂ei

)
= βTxin + εin − lnpi + (αi − 1) ln

(
ei

piγi

+ 1

)
,

so that

V1n = βTx1n + (α1 − 1) ln e1 − α1 lnp1,

and

Vin = βTxin − lnpi + (αi − 1) ln

(
ei

piγi

+ 1

)
.

Entries of the Jacobian

We have

c1n = −
∂V1n

∂e1
=

1− α1

e1
,

and

cin = −
∂Vin

∂ei
=

1− αi

ei + piγi

.

Therefore,

ln(c1n) = ln(1− α1) − ln(e1),

ln(cin) = ln(1− αi) − ln(ei + piγi),

1/c1n =
e1

1− α1

,

1/cin =
ei + piγi

1− αi

.

Properties

1. In order to show that Property 1 is verified, we consider

lnWin = βTxin + εin − ln(pi).

Consider a chosen alternative i. From the optimality KKT conditions, we

have that

ln λ∗ = lnWin + (αi − 1) ln

(
ein

piγi

+ 1

)
,
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and

lnWin = ln λ∗ + (1− αi) ln

(
ei

piγi

+ 1

)
,

where λ is the dual variable associated with the budget constraint. Prop-

erty 1 follows from the fact that

(1− αi) ln

(
ei

piγi

+ 1

)
≥ 0.

2. For Property 2, it is sufficient to show that the utility is strictly concave. For

the outside good,

∂2U1n

∂e21
= (α1 − 1)

1

p1

exp(βTx1n + ε1n)
1

p1

(
e1

p1

)α1−2

,

∂2Uin

∂e2i
= (αi − 1)

1

piγi

exp(βTxin + εin)
1

pi

(
ei

piγi

+ 1

)αi−2

The strict concavity comes from the fact that 0 < αi < 1.

3. Finally, for Property 3, we use

λℓ
i = 0.

It is indeed a lower bound thanks to the monotonicity of the utility function,

and Lemma 2. Moreover, (30) and (31) are well defined for any λ ≥ 0.

Finally, if i > 1, e∗i (λ) ≥ 0 if λ ≤ Wi.

4.3 The γ-profile

If αi → 0, (27) collapses to the linear expenditure system (LES) form, defined as

follows:

U1n(e1) = exp(βTx1n + ε1n) ln

(
e1

p1

)
, (32)

and

Uin(ei) = exp(βTxin + εin)γi ln

(
ei

piγi

+ 1

)
, (33)

where β, γi > 0 is a parameter to be estimated.

In Biogeme, this model is referred to as gamma_profile.
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First order conditions

We have
∂U1n

∂e1
= exp(βTx1n + ε1n)

1

e1
,

and
∂Uin

∂ei
= exp(βTxin + εin)

γi

ei + piγi

.

Note that these quantities are always positive, so that the utility functions are all

monotonic. Evaluated at zero expenditure, we obtain

Win =
1

pi

exp(βTxin + εin),

except for the outside good, where we define

W1n = +∞.

For forecasting purposes, as described in Section 3, we need to obtain ei(λ),

the solution of the equation

λ =
∂Uin

∂ei
.

Here, we have

e1(λ) = exp(βTx1n + ε1n)
1

λ
, (34)

and

ei(λ) = exp(βTxin + εin)
γi

λ
− piγi. (35)

Transformed utility

Taking again the logarithm as the order preserving function, we have

φ

(
∂U1n

∂e1

)
= βTx1n + ε1n − ln e1,

and

φ

(
∂Uin

∂ei

)
= βTxin + εin + lnγi − ln(ei + piγi),

so that

V1n = βTx1n − ln ei,

and

Vin = βTxin + lnγi − ln(ei + piγi).
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Entries of the Jacobian

Finally, we have

c1n =
1

e1
,

and

cin =
1

ei + piγi

,

so that

ln(c1n) = − ln(e1),

ln(cin) = − ln(ei + piγi),

1/c1n = e1,

1/cin = ei + piγi.

Properties

1. In order to show that Property 1 is verified, we consider

lnWin = βTxin + εin − ln(pi).

Consider a chosen alternative i. From the optimality KKT conditions, we

have that

ln λ = βTxin+εin+lnγi−ln(ei+piγi) = lnWin+ln(pi)+lnγi−ln(ei+piγi)

and

lnWin = ln λ− ln(pi) − lnγi + ln(ei + piγi) = ln λ+ ln

(
ei

piγi

+ 1

)
,

where λ is the dual variable associated with the budget constraint. Prop-

erty 1 follows from the fact that

ln

(
ei

piγi

+ 1

)
> 0.

2. For Property 2, it is sufficient to show that the utility is strictly concave. We

have
∂2U1n

∂e21
= − exp(βTx1n + ε1n)e

−2
1 ,

and
∂2Uin

∂e2i
= − exp(βTxin + εin)γi(ei + piγi)

−2,

and the strict concavity is verified as γi > 0.
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3. Finally, for Property 3, we use

λℓ
i = 0.

It is indeed a lower bound thanks to the monotonicity of the utility function,

and Lemma 2. Moreover, (34) and (35) are well defined for any λ > 0.

Finally, if i > 1, e∗i (λ) ≥ 0 if λ ≤ Wi.

4.4 The non-monotonic model

Wang and Ye (2024) and Wang et al. (2024) introduce the following specification

in order to accommodate non-monotonic preferences, motivated in the context of

time consumption. With our notations, the specification is

U1n(e1) =
1

α1

eβ
Txineα1

1 + (θTzin + εin)e1.

for the outside good, and

Uin(ei) =
γi

αi

eβ
Txin

[(
ei

γi

+ 1

)αi

− 1

]
+ (θTzin + εin)ei.

where β, θ, 0 < αi < 1, and γi > 0 are parameters to be estimated.

In Biogeme, this model is referred to as non_monotonic. Note that the prices

must all be the same, so that the model is homoscedastic.

First order conditions

We have
∂U1n

∂e1
= eβ

Tx1neα1−1
1 + θTz1n + ε1n,

and
∂Uin

∂ei
= eβ

Txin

(
ei

γi

+ 1

)αi−1

+ θTzin + εin.

Note that the sign of the derivatives cannot be predetermined, meaning that the

utility functions are not necessarily monotonic, like for the other models. Evalu-

ated at zero expenditure, we obtain

Win = eβ
Txin + θTzin + εin.

For forecasting purposes, as described in Section 3, we need to obtain ei(λ),

the solution of the equation

λ =
∂Uin

∂ei
.
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Here, we have

e1(λ) =
(
e−βTx1n(λ− θTz1n − ε1n)

) 1
α1−1

, (36)

and

ei(λ) = γi

[(
e−βTxin(λ− θTzin − εin)

) 1
αi−1

− 1

]
. (37)

Note that these formulas are valid is

λ ≥ θTzin + εin.

Note also that e1(λ) ≥ 0, and, for i > 1, ei(λ) ≥ 0 if

λ ≤ Win.

Transformed utility

In this case, no order preserving function is necessary, as the error term appear

directly in the formulation. Therefore,

V1n = eβ
Tx1neα1−1

1 + θTz1n.

and

Vin = eβ
Txin

(
ei

γi

+ 1

)αi−1

+ θTzin.

Entries of the Jacobian

We have

c1n = −
∂V1n

∂e1
= eβ

Tx1n(1− α1)e
α1−2
1 ,

and

cin = −
∂Vin

∂ei
= eβ

Txin
1− αi

γi

(
ei

γi

+ 1

)αi−2

.

For the outside good, we have

ln c1n = βTx1n + ln(1− α1) + (αi − 2) ln e1,

and
1

c1n
= e−βTx1n

1

1− α1

e2−α1

1 .
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For the other goods, we have

ln cin = βTxin + ln(1− αi) − lnγi + (αi − 2) ln

(
ei

γi

+ 1

)
.

and
1

cin
= e−βTxin

γi

1− αi

(
ei

γi

+ 1

)2−αi

.

Properties

1. We consider

Win = exp(βTxin) + θTzin + εin.

Consider a chosen alternative i. From the optimality KKT conditions, we

have that

λ∗ = eβ
Txin

(
ei

γi

+ 1

)αi−1

+ θTzin + εin, (38)

and

λ∗ − θTzin − εin = eβ
Txin

(
ei

γi

+ 1

)αi−1

.

As (
ei

γi

+ 1

)αi−1

< 1,

we have

λ∗ − θTzin − εin < eβ
Txin,

and

λ∗ < Win,

so that Property 1 is verified.

2. For Property 2, it is sufficient to show that the utility is strictly concave. We

have
∂2U1n

∂e21
= (α1 − 1)eβ

Tx1neα1−2
1 ,

and
∂2Uin

∂e2i
= (αi − 1)

1

γi

eβ
Txin

(
ei

γi

+ 1

)αi−2

,

and the strict concavity is verified as 0 < αi < 1.
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3. For Property 3, as commented above, (36) and (37) are well defined if

λ ≥ θTzin + εin.

and, for i > 1, the expenditure is non negative if λ ≤ Wi, which is guaran-

teed by Property 1. Therefore,

λℓ
i = θTzin + εin.

5 Model specification with Biogeme

5.1 Data

We use as data the 2019 American Time Use Survey (ATUS), described in Ap-

pendix A. In terms of implementation, the data preparation is the same as for any

regular Biogeme model. In particular, it involves the following steps.

1. The data is stored in a Pandas data frame, typically read from a file:

df = pd.read_csv(’data.csv’)

2. It is converted into a Biogeme database object:

database = db.Database(’mdcev_example’, df)

3. The name of each column is associated with a Python variable for subse-

quent use:

PersonID = Variable(’PersonID’)

weight = Variable(’weight’)

...

5.2 Baseline utilities

The baseline utilities are defined in the exact same way as for regular Biogeme

models, in the form of a dictionary associating the identifier of each alternative

with the specification of the utility function.

shopping = (

cte_shopping

+ metropolitan_shopping * metro

+ male_shopping * male

+ age_15_40_shopping * age15_40

+ spouse_shopping * spousepr
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+ employed_shopping * employed

)

socializing = (

cte_socializing

+ number_members_socializing * hhsize

+ male_socializing * male

+ age_41_60_socializing * age41_60

+ bachelor_socializing * bachigher

+ sunday_socializing * Sunday

)

recreation = (

cte_recreation

+ number_members_recreation * hhsize

+ male_recreation * male

+ age_15_40_recreation * age15_40

+ spouse_recreation * spousepr

)

personal = (

age_41_60_personal * age41_60

+ bachelor_personal * bachigher

+ white_personal * white

+ sunday_personal * Sunday

)

baseline_utilities = {

1: shopping,

2: socializing,

3: recreation,

4: personal,

}

A key difference with traditional Biogeme models is the dependent variable,

which consists in an observed quantity for each alternative. This is also captured

by a dictionary. In this example, the quantities correspond to an amount of time,

expressed in minutes, and translated into hours.

consumed_quantities = {

1: t1 / 60.0,

2: t2 / 60.0,

3: t3 / 60.0,

4: t4 / 60.0,

}
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5.3 MDCEV model

Each model introduced in Section 4 is associated with an object in Biogeme.

Translated utility function We first import the corresponding Python class:

from biogeme.mdcev import Translated

The parameters are then defined. Note that most of them bust be positive.

There are two ways to impose positivity. The first (adopted in this example)

is to impose a positive lower bound, such as 10−4. For example, the γ

parameters (see Section 4 for their definition) can be defined as follows:

# Gamma parameters. Must be positive.

lowest_positive_value = 0.0001

gamma_shopping = Beta(’gamma_shopping’, 1,

lowest_positive_value, None, 0)

gamma_socializing = Beta(’gamma_socializing’, 1,

lowest_positive_value, None, 0)

gamma_recreation = Beta(’gamma_recreation’, 1,

lowest_positive_value, None, 0)

gamma_personal = Beta(’gamma_personal’, 1,

lowest_positive_value, None, 0)

Another option would be to estimate the logarithm of the parameters, as

follows:

# Gamma parameters. Must be positive.

gamma_shopping = exp(Beta(’log_gamma_shopping’, 0, None,

None, 0))

gamma_socializing = exp(Beta(’log_gamma_socializing’, 0,

None, None, 0))

gamma_recreation = exp(Beta(’log_gamma_recreation’, 0,

None, None, 0))

gamma_personal = exp(Beta(’log_gamma_personal’, 0, None,

None, 0))

The α parameters are defined similarly, imposing that they lie between 0

and 1.

alpha_shopping = Beta(’alpha_shopping’, 0.5,

lowest_positive_value, 1, 0)

alpha_socializing = Beta(’alpha_socializing’, 0.5,

lowest_positive_value, 1, 0)

alpha_recreation = Beta(’alpha_recreation’, 0.5,

lowest_positive_value, 1, 0)

alpha_personal = Beta(’alpha_personal’, 0.5,

lowest_positive_value, 1, 0)
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Finally, the scale parameter of the error term:

scale_parameter = Beta(’scale’, 1, lowest_positive_value,

None, 0)

Once they have been defined, they need to be associated with the alternative

identifiers.

gamma_parameters = {

1: gamma_shopping,

2: gamma_socializing,

3: gamma_recreation,

4: gamma_personal,

}

alpha_parameters = {

1: alpha_shopping,

2: alpha_socializing,

3: alpha_recreation,

4: alpha_personal,

}

Once all the ingredients have been prepared, the object can be created:

the_translated = Translated(

model_name=’translated’,

baseline_utilities=baseline_utilities,

gamma_parameters=gamma_parameters,

alpha_parameters=alpha_parameters,

scale_parameter=scale_parameter,

weights=weight,

)

Generalized translated utility function The specification of this model is al-

most identical to the previous one.

from biogeme.mdcev import Generalized

lowest_positive_value = 0.0001

gamma_shopping = Beta(’gamma_shopping’, 1,

lowest_positive_value, None, 0)

gamma_socializing = Beta(’gamma_socializing’, 1,

lowest_positive_value, None, 0)

gamma_recreation = Beta(’gamma_recreation’, 1,

lowest_positive_value, None, 0)
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gamma_personal = Beta(’gamma_personal’, 1,

lowest_positive_value, None, 0)

alpha_shopping = Beta(’alpha_shopping’, 0.5,

lowest_positive_value, 1, 0)

alpha_socializing = Beta(’alpha_socializing’, 0.5,

lowest_positive_value, 1, 0)

alpha_recreation = Beta(’alpha_recreation’, 0.5,

lowest_positive_value, 1, 0)

alpha_personal = Beta(’alpha_personal’, 0.5,

lowest_positive_value, 1, 0)

scale_parameter = Beta(’scale’, 1, lowest_positive_value,

None, 0)

gamma_parameters = {

1: gamma_shopping,

2: gamma_socializing,

3: gamma_recreation,

4: gamma_personal,

}

alpha_parameters = {

1: alpha_shopping,

2: alpha_socializing,

3: alpha_recreation,

4: alpha_personal,

}

the_generalized = Generalized(

model_name=’generalized’,

baseline_utilities=baseline_utilities,

gamma_parameters=gamma_parameters,

alpha_parameters=alpha_parameters,

scale_parameter=scale_parameter,

weights=weight,

)

The γ-profile This specification does not involve α parameters.

from biogeme.mdcev import GammaProfile

lowest_positive_value = 0.0001

gamma_shopping = Beta(’gamma_shopping’, 1,

lowest_positive_value, None, 0)

gamma_socializing = Beta(’gamma_socializing’, 1,

lowest_positive_value, None, 0)

gamma_recreation = Beta(’gamma_recreation’, 1,

lowest_positive_value, None, 0)
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gamma_personal = Beta(’gamma_personal’, 1,

lowest_positive_value, None, 0)

scale_parameter = Beta(’scale’, 1, lowest_positive_value,

None, 0)

gamma_parameters = {

1: gamma_shopping,

2: gamma_socializing,

3: gamma_recreation,

4: gamma_personal,

}

the_gamma_profile = GammaProfile(

model_name=’gamma_profile’,

baseline_utilities=baseline_utilities,

gamma_parameters=gamma_parameters,

scale_parameter=scale_parameter,

weights=weight,

)

The non-monotonic model On top of the baseline utilities, the non-monotonic

model involves also another component of utility, called the µ-utilities:

cte_shopping_mu = Beta(’cte_shopping_mu’, 0, None, None, 0)

holiday_shopping_mu = Beta(’holiday_shopping_mu’, 0, None,

None, 0)

cte_social_mu = Beta(’cte_social_mu’, 0, None, None, 0)

metro_social_mu = Beta(’metro_social_mu’, 0, None, None, 0)

cte_recreation_mu = Beta(’cte_recreation_mu’, 0, None,

None, 0)

holiday_recreation_mu = Beta(’holiday_recreation_mu’, 0,

None, None, 0)

age_15_40_personal_mu = Beta(’age_15_40_personal_mu’, 0,

None, None, 0)

male_personal_mu = Beta(’male_personal_mu’, 0, None, None,

0)

shopping_mu = holiday_shopping_mu * holiday

socializing_mu = metro_social_mu * metro

recreation_mu = holiday_recreation_mu * holiday

personal_mu = male_personal_mu * male

mu_utilities = {
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1: shopping_mu,

2: socializing_mu,

3: recreation_mu,

4: personal_mu,

}

All the ingredients can be gathered as follows.

from biogeme.mdcev import NonMonotonic

lowest_positive_value = 0.0001

gamma_shopping = Beta(’gamma_shopping’, 1,

lowest_positive_value, None, 0)

gamma_socializing = Beta(’gamma_socializing’, 1,

lowest_positive_value, None, 0)

gamma_recreation = Beta(’gamma_recreation’, 1,

lowest_positive_value, None, 0)

gamma_personal = Beta(’gamma_personal’, 1,

lowest_positive_value, None, 0)

alpha_shopping = Beta(’alpha_shopping’, 0.5,

lowest_positive_value, 1, 0)

alpha_socializing = Beta(’alpha_socializing’, 0.5,

lowest_positive_value, 1, 0)

alpha_recreation = Beta(’alpha_recreation’, 0.5,

lowest_positive_value, 1, 0)

alpha_personal = Beta(’alpha_personal’, 0.5,

lowest_positive_value, 1, 0)

scale_parameter = Beta(’scale’, 1, lowest_positive_value,

None, 0)

gamma_parameters = {

1: gamma_shopping,

2: gamma_socializing,

3: gamma_recreation,

4: gamma_personal,

}

alpha_parameters = {

1: alpha_shopping,

2: alpha_socializing,

3: alpha_recreation,

4: alpha_personal,

}

the_non_monotonic = NonMonotonic(
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model_name=’non_monotonic’,

baseline_utilities=baseline_utilities,

mu_utilities=baseline_utilities,

gamma_parameters=gamma_parameters,

alpha_parameters=alpha_parameters,

scale_parameter=scale_parameter,

weights=weight,

)

5.4 Estimation of the parameters

Once the object characterizing the model has been created, the estimation of the

parameters is simply done by calling the function “estimate_parameters”. As

an example, here is the syntax for the γ profile:

results = the_gamma_profile.estimate_parameters(

database=database,

number_of_chosen_alternatives=number_chosen,

consumed_quantities=consumed_quantities,

)

5.5 Forecasting

Finally, the forecasting is performed as follows. Here, we perform the forecast for

two rows of the database.

two_rows_of_database: Database = database.extract_rows([0, 1])

budget_in_hours = 500

number_of_draws = 20000

optimal_consumptions: list[pd.DataFrame] =

the_gamma_profile.forecast(

database=two_rows_of_database,

total_budget=budget_in_hours,

number_of_draws=number_of_draws,

brute_force=False,

)

The result is a list of data frames, one per entry in the database (two, in this

example). Each data frame contains the forecasting results for each realization

of the error term. Note that the parameter brute_force selecting the forecasting

algorithm is optional and set to False by default. It means that the analytical

algorithm is used.
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A Description of the data

The data set is the 2019 American Time Use Survey (ATUS). The description of

the variables is available below, as well as some descriptive statistics in Table 2 on

page 34 (see also Wang and Ye, 2024 for a discussion and analysis of this data).

Variables Description

PERSONID Respondent identifier

WEIGHT Weight variable for each respondent

HHSIZE Number of people living in respondent’s household

CHILDNUM Number of household children <18

FAMINC Family annual income (1:Less than $5,000; 2:$5,000

to $7,499; 3:$7,500 to $9,999; 4:$10,000 to $12,499;

5:$12,500 to $14,999; 6:$15,000 to $19,999; 7:$20,000

to $24,999; 8:$25,000 to $29,999; 9:$30,000 to

$34,999; 10:$35,000 to $39,999; 11:$40,000 to

$49,999; 12:$50,000 to $59,999; 13:$60,000 to $74,999;

14:$75,000 to $99,999; 15:$100,000 to $149,999;

16:$150,000 and over)

FAMINC25K Family annual income <$25,000(0 = no, 1 = yes)

INCOME Median value of the corresponding segment of variable

FAMINC

EMPLOYED Whether the respondent is employed (0 = no, 1 = yes)

FULLTIME Whether the respondent is full time employed (0 = no, 1

= yes)

SPOUSEPR Whether the respondent has spouse or unmarried partner

in the household (0 = no, 1 = yes)

SPOUSEMP Whether the respondent has employed spouse or unmar-

ried partner in the household (0 = no, 1 = yes)

MALE Whether the respondent is male (0 = no, 1 = yes)

MARRIED Whether the respondent is married (0 = no, 1 = yes)

AGE Age of the respondent

AGE2 Age squared of the respondent

AGE15_40 Whether the age of the respondent is in [15, 40] (0 = no,

1 = yes)

AGE41_60 Whether the age of the respondent is in [41, 60] (0 = no,

1 = yes)

AGE61_85 Whether the age of the respondent is in [61, 85] (0 = no,

1 = yes)

BACHIGHER Whether the highest degree of the respondent is a bache-

lor’s or above (0 = no, 1 = yes)
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Variables Description

WHITE Whether the respondent is white (0 = no, 1 = yes)

METRO Whether the respondent is from metropolitan area (0 =

no, 1 = yes)

DIARYDAY Day of the week of diary day (1 = Sunday, 7 = Saturday)

SUNDAY Whether the diary day is Sunday (0 = no, 1 = yes)

HOLIDAY Whether the diary day is Holiday (0 = no, 1 = yes)

WEEKEARN Weekly earnings at main job (-1 = not available)

WEEKWORDUR Weekly work hours at main job (-1 = not available)

HHCHILD Presence of household children < 18 (0 = no, 1 = yes)

OHHCHILD Presence of own household children < 18 (0 = no, 1 =

yes)

t1 Time consumption of shopping activities (min)

t2 Time consumption of socializing activities (min)

t3 Time consumption of recreational activities (min)

t4 Time consumption of personal and household affairs ac-

tivities (min)
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Variable Min Max Mean St.Dev.

WEIGHT 0.08 3.72 0.56 0.39

HHSIZE 1 10 2.61 1.49

CHILDNUM 0 7 0.71 1.08

FAMINC 1 16 11.54 3.90

FAMINC25K 0 1 0.18 0.39

INCOME 2.50 150.00 72.34 47.08

EMPLOYED 0 1 0.62 0.49

FULLTIME 0 1 0.49 0.50

SPOUSEPR 0 1 0.54 0.50

SPOUSEMP 0 1 0.37 0.48

MALE 0 1 0.45 0.50

MARRIED 0 1 0.50 0.50

AGE 15 85 50.54 18.25

AGE2 225 7225 2887.74 1873.69

AGE15_40 0 1 0.34 0.47

AGE41_60 0 1 0.33 0.47

AGE61_85 0 1 0.34 0.47

BACHIGHER 0 1 0.40 0.49

WHITE 0 1 0.81 0.39

METRO 0 1 0.84 0.36

DIARYDAY 1 7 3.87 2.997

SUNDAY 0 1 0.52 0.50

HOLIDAY 0 1 0.01 0.11

WEEKEARN -1 2884.61 604.64 783.26

WEEKWORDUR -1 144 22.74 22.61

HHCHILD 0 1 0.38 0.49

OHHCHILD 0 1 0.30 0.46

t1 0 640 30.03 54.66

t2 0 905 114.67 139.76

t3 0 900 51.11 108.96

t4 0 773 58.22 61.05

Table 2: Descriptive statistics
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