Estimating MEV models with samples of
alternatives

Michel Bierlaire Evangelos Paschalidis
December 25, 2023

Report TRANSP-OR 231225
Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne
transp-or.epfl.ch

SERIES ON BIOGEME

The package Biogeme (biogeme.epfl.ch) is designed to estimate the pa-
rameters of various models using maximum likelihood estimation. It is par-
ticularly designed for discrete choice models.

This document describes how to use Biogeme to estimate Multivariate
Extreme Value (MEV) models using only a sample of alternatives.

We assume that the reader is already familiar with discrete choice mod-
els, and has successfully installed the package. Biogeme is a Python package
written in Python and C++4, that relies on the Pandas library for the man-
agement of the data. This document has been written using Biogeme 3.2.13.

In the rest of the document, we walk the reader through a concrete ex-
ample. The theoretical background is available in the Appendix.

1 The context

The example that we are considering is the development of a restaurant
choice model.

1.1 Data: the alternatives

We have a list of 100 restaurants, which constitutes our full choice set C. For
each restaurant, we know:

e its rating, on a scale from 1 to 5,
e its price level, on a scale from 1 (cheap) to 4 (very expensive),

e its category, which is one element of the following list: Chinese, Japanese,
Korean, Indian, French, Mexican, Lebanese, or Ethiopian,

e its exact location, in an arbitrary coordinate system, where the “lati-
tudes” and “longitudes” range from 0 to 100.

We consider also two other variables:

e a dummy variable that is 1 if the restaurant is Asian, that is, if it is
Chinese, Japanese, Korean or Indian,

e a dummy variable that is 1 if the restaurant is located “downtown”,
which means at a distance less or equal than 80 from the location (0,0),
as illustrated in Figure 1.

The data is stored in the file restaurants.dat and the column labels are:

100 |

80 |

60 |

res_lon

40 |

20 |

O,,

20 0 20 40 60 80 100 120
res_lat

Figure 1: Location of the restaurants

ID, rating, price, category_Chinese, category_Japanese,
category_Korean, category_Indian, category_French,
category_Mexican, category_Lebanese, category_Ethiopian,
Asian, rest_lat, rest_lon, distance, downtown

1.2 Data: observed choices

We have access to a sample of 10’000 individuals. For each of them we know
e her location in the same coordinate system as the restaurants,
e the chosen restaurant.

The “observed” choice is synthetic. It has been generated by simulation
using a postulated ground truth. The utility function of each alternative
contains the following variables, each associated with a coefficient:

e the rating of the restaurant,

the price of the restaurant,

a dummy variable that is 1 if the restaurant is Chinese,

a dummy variable that is 1 if the restaurant is Japanese,

a dummy variable that is 1 if the restaurant is Korean,

a dummy variable that is 1 if the restaurant is Indian,

a dummy variable that is 1 if the restaurant is French,

a dummy variable that is 1 if the restaurant is Mexican,

a dummy variable that is 1 if the restaurant is Lebanese,

a dummy variable that is 1 if the restaurant is Ethiopian,

the log of the distance between the decision maker and the restaurant.
We have postulated three different models to generate the synthetic choices:
1. a logit model,

2. a nested logit model where all the Asian alternatives are grouped in a
nest, while each other alternative is alone in a nest;

3. a cross-nested logit model where all the Asian alternatives are grouped
in a nest, and all the restaurant located downtown are grouped in a
nest, while each other alternative is alone in a nest.

The assumed value of the parameters are reported in Table 1.

Brating 0.75
Bprice —0.4
Bchinese 0.75
Bjapanese 1.25
Bkorean 0.75
Bindian 1.0
Bfrench 0.75
Bmexican 1.25
Blebanese 0.75
Bethiopian 0.5
Blogdist —0.6
Hasian 2.0
Hdowntown 2.0

Table 1: " True” values of the parameters

For each model, 5 synthetic choices have been generated. The data is
stored in the file obs_choice.dat and the column labels are

user_lat, user_lon,

logit_0, logit_1, logit_2, logit_3, logit_4,
nested_0, nested_1, nested_2, nested_3, nested_4,
cnl_0, cnl_1, cnl_2, cnl_3, cnl_4

2 Sets of alternatives

The script alternatives.py (see Section E.1) provides sets of alternatives from

the data file, and defines partitions for the sampling. In the example that

we are considering, there are 100 alternatives, numbered from 0 to 99.
Among them, they are 33 Asian restaurants:

o, 1, 3, 13, 15, 17, 18, 27, 31, 33, 34, 37, 40, 45, 47, 50,
51, 55, 57, 68, 70, 72, 76, 78, 79, 80, 81, 87, 89, 91, 92,
94, 98

They are 44 restaurants located downtown:

e, 7, 9, 11, 13, 14, 15, 17, 18, 20, 22, 24, 30, 32, 33, 36,
37, 38, 45, 46, 47, 48, 49, 50, 54, 55, 56, 60, 61, 63, 70,
74, 75, 77, 80, 81, 83, 84, 86, 87, 88, 90, 93, 97, 98, 99

In addition to those two sets, the script defines the following sets:

all_alternatives
Set of Asian restaurants in downtown
asian_and_downtown = asian & downtown

Set of Asian restaurants, and of restaurants in downtown
asian_or_downtown = asian | downtown

Set of Asian restaurants not in downtown
only_asian = asian - asian_and_downtown

Set of non Asian restaurants in downtown
only_downtown = downtown - asian_and_downtown

Set of restaurants that are neither Asian nor in downtown
others = all_alternatives - asian_or_downtown

The script also defines partitions, using the Partition class, that can be
imported as follows:

from biogeme.partition import Partition

A partition is defined by a list of sets of alternatives, and by the complete
set of all alternatives. Five partitions are defined in the script:

e A partition of the full choice set into Asian and non-Asian restaurants:

4

partition_asian = Partition([asian, complement(asian)],
full_set=all_alternatives)

Note the use of the complement function here, that basically returns

all_alternatives - asian.

e A partition of the full choice set into downtown and non-downtown
restaurants:
partition_downtown = Partition(

[downtown, complement(downtown)],
full_set=all_alternatives

)

e A “partition” of the full choice set containing only one segment with
all alternatives:

partition_uniform = Partition([all_alternatives],
full_set=all_alternatives)

This is designed to perform a uniform sampling.

e For the nested logit model, we have a partition of the set of Asian
restaurants, with only one segment in order to perform a uniform sam-
pling:

partition_uniform_asian = Partition([asian], full_set=asian)

e For the cross-nested logit model, we have a partition of the set of restau-
rants that are either Asian or downtown, with only one segment in order
to perform a uniform sampling:

partition_uniform_asian_or_downtown = Partition(
[asian_or_downtown], full_set=asian_or_downtown

)

Those partitions are gathered into a dictionary so that they can be obtained
from their name.

3 Model specification

The specification of the utility function, as well as of additional variables, are
available in the script specification.py (Section E.2). In the context of sam-
pling of alternatives, alternatives are unlabeled. Therefore, any alternative
specific constant must be captured by dummy variables. In our example, the
specification of the utility function is

beta_rating = Beta(’beta_rating’, @, None, None, 0)

beta_price = Beta(’beta_price’, @, None, None, 0)
beta_chinese = Beta(’beta_chinese’, @, None, None, 0)
beta_japanese = Beta(’beta_japanese’, @, None, None, 0)
beta_korean = Beta(’beta_korean’, @, None, None, 0)
beta_indian = Beta(’beta_indian’, @, None, None, 0)
beta_french = Beta(’beta_french’, @, None, None, 0)
beta_mexican = Beta(’beta_mexican’, @, None, None, 0)
beta_lebanese = Beta(’beta_lebanese’, @, None, None, 0)

beta_ethiopian = Beta(’beta_ethiopian’, @, None, None, 0)
beta_log_dist = Beta(’beta_log_dist’, @, None, None, 0)
V= (

beta_rating x Variable(’rating’)

+ beta_price * Variable(’price’)
beta_chinese * Variable(’category_Chinese’)
beta_japanese * Variable(’category_Japanese’)
beta_korean * Variable(’category_Korean’)
beta_indian * Variable(’category_Indian’)
beta_french * Variable(’category_French’)
beta_mexican * Variable(’category_Mexican’)
beta_lebanese * Variable(’category_Lebanese’)
beta_ethiopian * Variable(’category_Ethiopian’)
beta_log_dist * Variable(’log_dist’)

~ 4+ 4+ 4+ + + + + + +

Note that the names of most variables correspond to the names of the
columns in the data frame with alternatives. There is one exception in our
example: the variable log_dist. Indeed, this captures the logarithm of the
distance between each individual and each restaurant. This can be calculated
only after the sampling of alternatives has been performed. We call such
variables “combined variables”. Those are variables that combine attributes
of the alternatives and characteristics of the individuals. Such variables are
defined using a CrossvariableTuple, that can be imported as follows:

from biogeme.sampling_of_alternatives import CrossVariableTuple

It has two entries: the name of the variable, and its expression. In our
example, we have:

CrossVariableTuple (

’log_dist’,
log(
(
(Variable(’user_lat’) - Variable(’rest_lat’))
x% 2
+ (Variable(’user_lon’) - Variable(’rest_lon’))
*% 2
)
*%x 0.5

))
)

Note that a list of such tuples must be provided, even if there is only one.
Therefore, the syntax for our example is

combined_variables = [
CrossVariableTuple(
’log_dist’,
log(
(
(Variable(’user_lat’) - Variable(’rest_lat’))
*%k 2
+ (Variable(’user_lon’) - Variable(’rest_lon’))
*% 2
)
** Q0.5

4 Estimation of a logit model

All the information needed to perform the estimation of the model must be
gathered in an object of type SamplingContext, that involves 12 elements, 3 of
them being necessary only for MEV models:

the_partition: Partition

sample_sizes: Iterable[int]

individuals: pd.DataFrame

choice_column: str

alternatives: pd.DataFrame

id_column: str

biogeme_file_name: str

utility_function: Expression
combined_variables: list[CrossVariableTuplel

mev_partition: Optional[Partition] = None
mev_sample_sizes: Optional[Iterable[int]] = None
cnl_nests: Optional[NestsForCrossNestedLogit] = None

1. the_partition: we first define a partition of the full choice set into K seg-
ments of size Ry: | = ZE:] Ry. To form a partition, the segments must
be mutually exclusive and collectively exhaustive. In other words, each
alternative must be contained in exactly one segment. In this example,
we use the partition ’asian’ defined in the script alternatives.py.

2. sample_sizes: we then define a list of integers that provides the number
of alternatives that must be sampled in each segment of the partition.

It is often useful to use a “balanced” list, that is a list where a similar
number of alternatives is sampled from each segment. This can be
provided by the following statement:

segment_sizes = generate_segment_size (SAMPLE_SIZE,
the_partition.number_of_segments())

where the function generate_segment_size is imported as follows:

from biogeme.sampling_of_alternatives import

generate_segment_size

The function takes two arguments: the total size of the sample, and
the number of segments in the partition. Here are some examples of
what the function generates:

>>> generate_segment_size (10, 3)

[4, 3, 3]
>>> generate_segment_size (11, 3)
[4, 4, 3]
>>> generate_segment_size (12, 3)
[4, 4, 4]
>>> generate_segment_size (13, 3)
[5, 4, 4]
>>> generate_segment_size (14, 3)
[5, 5, 4]
>>> generate_segment_size (15, 3)
[5, 5, 5]

3. individuals: the next entry is the Pandas data frame containing the
list of individuals and their observed choice. In our example, the data
frame is obtained as follows:

OBS_FILE = ’obs_choice.dat’
observations = pd.read_csv(OBS_FILE)

4. choice_column: the next entry identifies the label of the column where
the chosen alternative is reported. In our example, the file contains
several synthetic choices. For example, we can have:

CHOICE_COLUMN = ’logit_4’

5. alternatives: the next entry is the Pandas data frame containing the
list of alternatives and their attributes. In our example, it is available
from the script alternatives.py (see Section E.1):

from alternatives import alternatives

6. id_column: the next entry identifies the label of the column where the
ID of the alternatives is reported. In our example, it happens to be 1D,
and it also available from the script alternatives.py:

from alternatives import ID_COLUMN

7. biogeme_file_name: a data file in Biogeme format is generated for the
model estimation. The name of this file must be provided here. For
instance, logit_asian_10_alt.dat.

8. utility_function: the next entry is the specification of the utility func-
tion. In our example, it is defined in the script specification.py.

9. combined_variables: the next entry is the list of combined variables,
that can be calculated only after the sample has been generated. In
our example, it is defined in the script specification.py.

The context is therefore defined as follows:

context = SamplingContext(
the_partition=the_partition,
sample_sizes=segment_sizes,
individuals=observations,
choice_column=CHOICE_COLUMN,
alternatives=alternatives,
id_column=ID_COLUMN,
biogeme_file_name=FILE_NAME,
utility_function=V,
combined_variables=combined_variables,

Once the context is defined, the process consists of the following steps:

e Generation of the choice sets:

the_data_generation = ChoiceSetsGeneration(context=context)

e Generation of the Biogeme model:

the_model_generation = GenerateModel (context=context)

e Generation of the Biogeme database:

biogeme_database =
the_data_generation.sample_and_merge(recycle=False)

Note that, once the database has been generated, it is dumped in CSV
format in a file, using the provided file name. The content of this file
is described in Section D. Its content can be recycled by changing the
argument of the above function to True.

e We then retrieve the specification of the model itself:

logprob = the_model_generation.get_logit()

e The rest is a standard estimation procedure for Biogeme:

the_biogeme = bio.BIOGEME (biogeme_database, logprob)
the_biogeme.modelName = MODEL_NAME

Calculate the null log likelihood for reporting.
the_biogeme.calculateNullLoglikelihood({i: 1 for i in
range (SAMPLE_SIZE) })

Estimate the parameters

results = the_biogeme.estimate(recycle=False)
print(results.short_summary())

estimated_parameters = results.getEstimatedParameters ()
print(estimated_parameters)

e Finally, in this example, we compare the estimated values of the pa-
rameters with the true values:

df , msg = compare(estimated_parameters)
print (df)
print(msg)

The output generated by the script is the following:

Number of asian restaurants: 33

Size of the choice set: 100

Main partition: 2 segment(s) of size 33, 67
Main sample: 10: 5/33, 5/67

Generating 10 + None alternatives for 10000 observations
Define new variables
File logit_asian_10_alt.dat has been created.

Results saved in file logit_asian_10_alt.html
Results saved in file logit_asian_10_alt.pickle
Results for model logit_asian_10_alt

Nbr of parameters: 11

Sample size: 10000
Excluded data: 0

Null log likelihood: -23025.85

10

Final log likelihood:
Likelihood ratio test (null):

Rho square (null):

Rho bar square (null):
Akaike Information Criterion:
Bayesian Information Criterion:

beta_chinese 0
0.0
beta_ethiopian 0
0.0
beta_french 0
0.0
beta_indian 0
0.0
beta_japanese 1
0.0
beta_korean 0
0.0
beta_lebanese 0
0.0
beta_log_dist -0
0.0
beta_mexican 1
0.0
beta_price -0
0.0
beta_rating 0
0.0
Name

O N O U1 b WN—O

o

10
Parameters not estimated:

beta_rating
beta_price
beta_chinese
beta_japanese
beta_korean
beta_indian
beta_french
beta_mexican
beta_lebanese
beta_ethiopian
beta_log_dist

Value

.587478

.469240

.650104

.914430

.158041

.735705

.679695

.590966

.194666

.415953

.749331

Rob.
p-value

True Value

0.
0.
.75
.25
.75
.00
.75
.25
.75
.50
.60

S

(SIS I S R S S

75
40

0

[’mu_asian’,

11

-18431.26
9189.181
0.2
0.199
36884.52
36963.84
Std err Rob. t-test
.050580 11.614717
.050444 9.302233
.061684 10.539239
.042991 21.270247
.046356 24.981289
.042533 17.297299
.062281 10.913295
.015000 -39.397598
.036449 32.776230
.012768 -32.577617
.015382 48.714011
Estimated Value
0.749331 0
-0.415953 1
0.587478 3
1.158041 1
0.735705 0
0.914430 1
0.650104 1
1.194666 1
0.679695 1
0.469240 0
-0.590966 -0.

Rob .

T-Test

.043496
.249472
.213145
.983737
.336084
.990416
.619472
.518113
.128823
.609783

602255

"mu_downtown’]

The complete specification is available at Section E.3.

5 Estimation of a nested model

We estimate a nested logit model with a nest containing all the Asian restau-
rants.

For the estimation of the nested logit model, we need to define a sampling
protocol for the MEV terms. This is done with the mev_partition and the
mev_sample_sizes arguments of the context object. There are two important
differences for this sampling protocol, compared to the other one, as explained
in Section C. First, the chosen alternative does not play any role in the
sampling procedure. And, second, it is not necessary to partition the full
choice set. Alternatives that are alone in a nest do not contribute to the
calculation of the MEV terms, and can therefore be excluded.

In this case, we sample from Asian alternatives only. We use a partition
with a unique segment to perform a uniform sampling.

Then, the definition of the nests is done in the exact same way as for
regular Biogeme models:
mu_asian = Beta(’mu_asian’, 1.0, 1.0, None, @)
nest_asian = OneNestForNestedLogit(

nest_param=mu_asian, list_of_alternatives=asian,
name=’asian’
)
nests = NestsForNestedlLogit (
choice_set=all_alternatives,
tuple_of_nests=(nest_asian,),

The other difference with the estimation of the logit model is the extrac-
tion of the model itself:

logprob = the_model_generation.get_nested_logit(nests)

The complete specification is available at Section E.4.
The output generated by the script is the following:

Number of asian restaurants: 33

Size of the choice set: 100

Main partition: 2 segment(s) of size 46, 54
Main sample: 20: 10/46, 10/54

Nbr of MEV alternatives: 33

MEV partition: 1 segment(s) of size 33

MEV sample: 33: 33/33

Generating 20 + 33 alternatives for 10000 observations
Define new variables

File nested_downtown_20.dat has been created.

File biogeme.toml has been parsed.

12

Results saved in file nested_downtown_20.html
Results saved in file nested_downtown_20.pickle
Results for model nested_downtown_20

Nbr of parameters:

Sample size:
Excluded data:

Null log likelihood:
Final log likelihood:
Likelihood ratio test (null):

Rho square (null):

Rho bar square (null):
Akaike Information Criterion:
Bayesian Information Criterion:

beta_chinese 0
0.9
beta_ethiopian ©
0.0
beta_french 0
0.9
beta_indian 0
0.9
beta_japanese 1
0.0
beta_korean 0
0.9
beta_lebanese 0
0.0
beta_log_dist -0.
0.0
beta_mexican 1
0.9
beta_price -0
0.0
beta_rating 0
0.9
mu_asian 2
0.9
Name

N o Ol W — S

beta_rating
beta_price
beta_chinese
beta_japanese
beta_korean
beta_indian
beta_french
beta_mexican

Value

.696196

.499692

.725736

.964207

.220851

.689393

.718121

599724

.191239

.400633

.762716

.020386

Rob .
p-value

True Value

0.
-0.

0.
1.25
0.75
1.
0
1

75
40
75

00

.75
.25

0

13

12
10000
(]
-29957.32
-22998.21
13918.22
0.232
0.232
46020.43
46106.95
Std err Rob. t-test
.071740 9.704438
.040332 12.389559
.048952 14.825608
.063969 15.073097
.054594 22.362450
.062379 11.051632
.049852 14.405038
.012922 -46.412163
.029009 41.063987
.012225 -32.771281
.015255 49.999109
.059454 33.982519
Estimated Value
0.762716 -0
-0.400633 0
0.696196 0
1.220851 0
0.689393 0
0.964207 0
0.725736 0
1.191239 2

Rob .

T-Test

.833553
.051812
.749980
.533933
.971587
.559546
.495671
.025583

8 beta_lebanese 0.75 0.718121 0.639477

9 beta_ethiopian 0.50 0.499692 0.007648
10 beta_log_dist -0.60 -0.599724 -0.021395
11 mu_asian 2.00 2.020386 -0.342885

Parameters not estimated: [’mu_downtown’]

The complete specification is available at Section E.4.

6 Estimation of a cross-nested model

We estimate a cross-nested logit model with a nest containing all the Asian
restaurants, and another nest containing all the downtown restaurants. The
procedure is similar to the one of the previous section. Except that the defi-
nition of the nests must be provided in the context object. The reason is that
the membership parameters « are included in the data file. In our example,
all alternatives belonging to both nests are associated with a membership
parameter set to 0.5.
The definition of the nests is done as follows:

mu_downtown = Beta(’mu_downtown’, 1, 1, None, 0)
downtown_alpha_dict = {i: 0.5 for i in asian_and_downtown} | {
i: 1 for i in only_downtown
}
downtown_nest = OneNestForCrossNestedLogit(
nest_param=mu_downtown, dict_of_alpha=downtown_alpha_dict,
name="downtown’
)
mu_asian = Beta(’mu_asian’, 1, 1, None, 0)
asian_alpha_dict = {i: ©.5 for i in asian_and_downtown} | {i:
1.0 for i in only_asian}
asian_nest = OneNestForCrossNestedLogit(
nest_param=mu_asian, dict_of_alpha=asian_alpha_dict,
name=’asian’
)
cnl_nests = NestsForCrossNestedLogit(
choice_set=all_alternatives,
tuple_of_nests=(downtown_nest, asian_nest),
)

And the definition of the context is

context = SamplingContext(
the_partition=the_partition,
sample_sizes=segment_sizes,
individuals=observations,
choice_column=CHOICE_COLUMN,

14

alternatives=alternatives,
id_column=ID_COLUMN,
biogeme_file_name=FILE_NAME,
utility_function=V,
combined_variables=combined_variables,
mev_partition=mev_partition,
mev_sample_sizes=mev_segment_sizes,
cnl_nests=cnl_nests,

The other difference with the estimation of the nested logit model is the
extraction of the model itself:

logprob = the_model_generation.get_cross_nested_logit ()

The complete specification is available at Section E.5. The output generated
by the script is the following:

Number of asian restaurants: 33

Size of the choice set: 100

Main partition: 2 segment(s) of size 46, 54
Main sample: 10: 5/46, 5/54

Nbr of MEV alternatives: 63

MEV partition: 1 segment(s) of size 63

MEV sample: 63: 63/63

Generating 10 + 63 alternatives for 10000 observations
Define new variables

File cnl_10_63.dat has been created.

File biogeme.toml has been parsed.

Results saved in file

cnl_10_63.html
Results saved in file cnl_10_63.pickle
Results for model cnl_10_63
Nbr of parameters: 13
Sample size: 10000
Excluded data: 0
Null log likelihood: -23025.85
Final log likelihood: -14075.7
Likelihood ratio test (null): 17900.29
Rho square (null): 0.389
Rho bar square (null): 0.388
Akaike Information Criterion: 28177 .41
Bayesian Information Criterion: 28271.14
Value Rob. Std err Rob. t-test Rob.
p-value
beta_chinese 0.773087 0.061077 12.657588
0.0
beta_ethiopian ©.530632 0.041761 12.706267
0.0

15

beta_french Q.

0.0

beta_indian 1.

0.0
beta_japanese 1
0.9

beta_korean Q.

0.0

beta_lebanese Q.

0.0

beta_log_dist -0.

0.0

beta_mexican 1.

0.0

beta_price -0.

0.0

beta_rating 0.

0.0

mu_asian 2.

0.0

mu_downtown 1.

O N O U1l b WN— O

N Co)
N =

0.0

Name
beta_rating
beta_price
beta_chinese
beta_japanese
beta_korean
beta_indian
beta_french
beta_mexican
beta_lebanese
beta_ethiopian
beta_log_dist
mu_asian
mu_downtown

781766

104800

.321261

800695

777865

578576

256891

412996

749742

110265

932841

True Value

M NVNOOOSO)2 O -, & —

0.
-0.
.75
.25
.75
.00
.75
.25
.75
.50
.60
.00
.00

S

75
40

.049737

.052860

.046652

.053581

.049342

.012611

.030219

.012435

.014775

.067011

.030166

15.717875

20.900552

28.321448

14.943756

15.764714

-45.878882

41.592729

-33.212769

50.742764

31.491220

64.072716

Estimated Value

0.
-0.
.773087 -0.
.321261 -1
.800695 -0.
.104800 -1
.781766 -0.
.256891 -0.
.777865 -0.
.530632 -0.
.578576 -1
.110265 -1
.932841 2.

S

- NSO -0 - =

16

749742 0.
412996 1

T-Test
017432

.045136

378002

.527495

946153

.982602

638673
228048
564732
733511

.698804
.645472

226278

References

Ben-Akiva, M. E. and Lerman, S. R. (1985). Discrete Choice Analysis: The-
ory and Application to Travel Demand, MIT Press, Cambridge, Ma.

Bierlaire, M. and Krueger, R. (2020). Sampling and discrete choice, Technical
Report TRANSP-OR 201109, Transport and Mobility Laboratory, Ecole
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Guevara, C. A. and Ben-Akiva, M. E. (2013). Sampling of alternatives in
Multivariate Extreme Value (MEV) models, Transportation Research
Part B 48: 31-52.

A Theoretical background

We denote by C the full choice set, containing | alternatives. We assume,
without loss of generality, that it is the same for all individuals. And we

consider a choice model
Pr(ilC;0),

for which we want to estimate the vector of parameters 0 from data.

When the choice set is large, we are using a sample of alternatives. We
consider a sampling protocol, based on importance sampling, that generates
a subset D, from C for each individual n in the sample. Note that the
sampling protocol must be exogenous, in the sense that the probability for
each non chosen alternative to be in the choice set must not depend on the
chosen alternative or the choice model. For estimation purposes, the chosen
alternative must always be included in D,.

The maximum likelihood estimation procedure, using the full choice set,
amounts to solving the following optimization problem:

N
meaXZln Pr(i,IC;0). (1)

n=1

The estimator is consistent and asymptotically efficient, but complicated
for large choice sets. We are considering instead the conditional maximum
likelihood estimator

N
mnglnPr(anmC;G), (2)

n=1

17

which is consistent, but not asymptotically efficient!. In order to be useful,
the terms in the sum must not depend on the full choice set, that is:

Pr(in’DTn C; e) = Pr(inu)n; e)
In order to derive Pr(i,|Dn,C;0), we rely on Bayes’ theorem:
Pr(Dplin) Pr(inlC; 6)
ZjeDn Pr(Dylj) Pr(jIC; 0) ’

where the quantity Pr(D,lj) represents the probability that the sample of
alternatives D,, has been generated, conditional on the fact that alternative
j has been chosen by n.

Pr(in|Dn>C;e) = (3)

A.1 Logit model

If we consider the logit model, we have

C euvin‘n e}lvin,n

Pr(i,|C;0) = =

(n’)) Zjec ep‘vjn ‘Yn)

where v, is the denominator. The point is that y,, cancels out in (3), so that
we obtain

euvin,n+1n(Pr(Dn|in))

. 4
S ep, eWVm P (4)

Pr(inu)n»C;e) = Pr(inlpn;e) -

which does not depend on C anymore. Concretely, it means that we simply
need to estimate a logit model on the sampled set of alternatives, where the
utility functions include the correction term In(Pr(D,[j)).

A.2 MEV model

The derivation is similar for the MEV model, defined as

eViman Gin (evl n ,...,evlﬂ)

. (<
Pl“(ln|C,e) - ec eranGj(evmw»evI") B Yn

Vi, +1n Gy, (evln,...,evln)

where G is the MEV generating function, vy, is the denominator, and G; is
its ith partial derivative. For example, for the nested logit model,

I Gy = I+ (o — 1) Vin + (ui 1 Y exp(unVin)), (5)
m JECM

1One of the implications is that the Rao Cramer bound cannot be used to estimate the
variance-covariance matrix. The robust estimator or bootstrapping must be used instead.

18

where C,, is the nest m. And for the cross-nested logit model,

M nm
Gi=p) o exp((pm —1)Vin) (Z o exp(umvjn)> . (6)
m=1

jec
Again, y,, cancels out in (3), so that we obtain

VinntInGiy (eVin,...e¥In) +In(Pr(Dylin))

Pr(inu)n) C; e) =

(7)

)N VintInG; (eVin,..e¥Tn) +In(Pr(Dnlj))
j€Dn

Contrarily to the logit case, the expression above still involves the full choice
set, which is needed to calculate G;. Guevara and Ben-Akiva (2013) have
proposed to approximate any sum of alternatives in the G; by a sum involving
only sampled alternatives. We therefore need another sample of alternatives.
Note that the chosen alternative does not need to belong to it. We denote by
M, the set of alternatives sampled for this purpose. The index n indicates
that this set varies across individuals. Then, the sums involved in the MEV
terms can be approximated in the following way:

D explumVin) ® D Winexp(imVin), 8)
j€Cm jeCmnM
in (5), or
D ot exp(mVin) & > Winah exp(pm Vin) (9)
jeC jeM
in (6), where
1
Wjn = 5=+ 10
i) (10)

where Pr(j) is the probability that alternative j is integrated in the sample.

We refer the reader to Ben-Akiva and Lerman (1985), Guevara and Ben-
Akiva (2013), Bierlaire and Krueger (2020) for more details about the theo-
retical background.

B Implementation

For the implementation of the MEV models, we need to deal with the fact
that there are two numbering of alternatives:

e the numbering associated with the original choice set,

19

e a specific numbering for each sample.

We refer to the “number” of the alternative in the original choice set as its
“identifier”, or “ID”. We use the letter i to refer to them. We refer to the
number of the alternative in the sampled choice set as its “index”, and we use
the letters j for the main sample, and k for the MEV sample. For observation
n, the identifier of alternative with index j is denoted by 1.

B.1 Nested logit

Consider nest Cy,, with parameter p,,. The calculation of (8) is implemented
as
Ym = Z A(tin € Cn)Win exp(Hm Vi)
keM
where A(iyn, € Cp) is 1 if 4, € Cry and 0 otherwise. Then, the calculation of
the MEV term for alternative j € D is

Gy =Inp+ (n—1)Vin+ D Alijn GCm)(i—l)lnym.

B.2 Cross Nested logit

The difficulty with the cross nested logit model is the handling of the nest
membership parameters «, that are associated with a nest and an alternative
from the original choice set. We assume that the & parameters are fixed and
available in the data set.

The calculation of (9) is implemented as

Ym = Z A(O(km 7é O)Wkncxg eXp(Hmvkn)-
kemM

Note that the factor Aoy, # 0) is redundant from a mathematical point of
view, but is designed to speed up the calculation. Then, the calculation of
the MEV term for alternative j € D is

M
am T
Gy =p) Al #0)agh exp((tm — 1) Vin) Vi

m=1

Finally, we shift each utility by In G;.

20

C Sampling protocol

For the set D,,, the Biogeme implementation assumes the following sampling
procedure:

1. The full choice set is partitioned into K segments of size Ry:] =
S Re.

2. Let 1 be the number of alternatives to be sampled in each segment, so
that the size of D,,: ZE:] Ty.

3. Denote k(1) the segment containing the chosen alternative i.

4. Randomly draw 7y — 1 alternatives among the non chosen ones in
segment k(i), and add i to obtain Dy).

5. Randomly draw 1, alternatives in each segment k, k # k(i) to obtain
Dx.

6. The sample is composed of the chosen alternative and all draws: D =
Uy Dk..

We can therefore calculate:

=2
K
_ Ry H (Ry >
Tk(i) i Tk
1
= Pr(D
ey D)

Note that the quantity Pr(D) is a constant, that cancels out in all the ex-
pressions above. Therefore, instead of using Pr(DJ|i) as a correction term in
(4) and (7), it is equivalent to use

Ry

x Pr(DR), (11)
Tk()

which is the number of alternatives in the segment containing alternative 1,
divided by the number of alternatives sampled from this segment, that is the
inverse of the probability to sample alternative i. We can also write

1
In PI‘(D|1) = m +K=1In Rk(i) —In Tx() + K, (12)

21

where K is a constant independent from i that cancels out in (4) and (7).
The correction term calculated by Biogeme is the opposite of this term:

In PI‘(l) =1In Tx(i) — In Rk(i)- (13)

Note that it is always negative.
For the set M,,, the Biogeme implementation is the same as above, with
two important differences:

1. the chosen alternative does not play any role in the sampling procedure,

2. it is not necessary to partition the full choice set. Alternatives that are
alone in a nest do not contribute to the calculation of the MEV terms,
and can therefore be excluded.

The procedure works as follows:

1. The set of alternatives involved in nests is partitioned into K segments
of size Re: =Y & | Ry.

2. Let 1¢ be the number of alternatives to be sampled in each segment, so
that the size of M,: ZE:] Tk.

3. Randomly draw 1y alternatives in each segment k to obtain M.
4. The sample is composed of all draws: M, = U My.

We can therefore calculate (10) as:

Wi = =, (14)

D Generated data file

We denote
e | the number of sampled alternatives, that is the cardinality of Dy,

e M the number of sampled alternatives for the nest, that is the cardi-
nality of M,

K, the number of columns in the observed choices data file,

K the number of columns in the alternatives data file,

K. the number of combined variables,

22

e [the number of nests in the cross-nested logit model.
The columns of the generated data files are:

e The K, columns of the data file containing the observed choices, copied
as such.

e For j = 0,...] — 1, where j = 0 always corresponds to the chosen
alternative, we have K, + 1 columns, for a total of J(Kq + 1) columns:

— The K, columns of the alternatives data file, where the name of
the column is appended with a suffix _j. For instance, if j = 11,
category_Japanese is labeled category_Japanese_11.

— A column labeled _log_proba_j containing the correction term (13).

e For k = 0,...M — 1, we have K, + L + 1 columns, for a total of
M(Kq+ L+ 1) columns:

— The K, columns of the alternatives data file, where the name of
the column is appended with a prefix MEV_ and a suffix _k. For
instance, if k = 7, price_ is labeled MEV_price_7.

— For each of the L nests of the cross-nested logit model, the alpha
parameter for alternative k. The name of the corresponding col-
umn is the name of the nest, with a prefix MEV_CNL_ and a suffix
_k. For instance, if k = 6, and the nest is asian, the name of the
column is MEV_CNL_asian_6.

— A column labeled MEV__mev_weight_k containing the correction fac-
tor (14).

e For j = 0,...] — 1, where j = 0 always corresponds to the chosen
alternative, we have K. columns, for a total of JK.. The name of each
column is the name of the combined variable with a suffix _j. For
instance, if j =4, we have log_dist_4.

e For k =0,...M — 1, we have K. columns, for a total of MK.. The
name of each column is the name of the combined variable with a prefix
MEV_ and a suffix _k. For instance, if k =4, we have log_dist_4.

The total number of columns in the generated file is therefore

or

Ko +J(Kae+ 1)+ M(Kqg + L+ 1) + JK. + MK,

Ko+ J(Ka + K+ 1)+ M(Kg + K +L+1).

23

© oo N O t - w N =

WoWw W NN NN NN NN N N R R e e e e e
D = O © 0 9 O O A W N = O © 0 N U A W N = O

33
34

For the logit model described in Section 4, we have K, =17,] =10, M = 0,
Ko =16, K. =1, L =0, for a total of 197 columns.

For the nested logit model described in Section 5, we have K, = 17,
] =20, M =33, K, =16, K. =1, L =0, for a total of 971 columns.

For the cross-nested logit model described in Section 6, we have K, = 17,
] =10, M =63, K, =16, K. =1, L =2, for a total of 1457 columns.

E Python codes

E.1 Sets of alternatives

NNy

List of alternatives

Script reading the list of alternatives and identifying subsets

sauthor: Michel Bierlaire
sdate: Mon Oct 9 10:53:03 2023

»

import pandas as pd
from biogeme. partition import Partition

%%
alternatives = pd.read_csv(’restaurants.dat’)
alternatives

%%

ID.COLUMN = ’1ID’

%%

all_alternatives = set(list (alternatives [ID.COLUMN]))

%%

Set of Asian restaurants

asian = set(alternatives[alternatives[’Asian’|] =— 1][ID.COLUMN])

print (f’Number of asian restaurants: {len(asian)}’)

%%
Set of restaurants located in downtown
downtown = set (alternatives[alternatives[’downtown’] =

1] [ID.COLUMN])

%%

24

36
37
38
39
40
41
42
43
44

46
47
48
49

51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67

68
69
70
71
72
73
74

76
77
78

79
80

Set of Asian restaurants in downtown

asian_and_downtown = asian & downtown

%%

Set of Asian restaurants, and of restaurants in downtown
asian_or_downtown = asian | downtown

%%

Set of Asian restaurants not in downtown

only_asian = asian — asian_and_downtown

%%

Set of non Asian restaurants in downtown

only_downtown = downtown — asian_and_downtown

%%

Set of restaurants that are neither Asian nor in downtown
others = all_alternatives — asian_or_downtown

%%

def complement(a_set: set[int]) —> set[int]:
777 Returns the complement of a set”””
return all_alternatives — a_set

%%
Partitions.
partition_asian = Partition ([asian, complement (asian)],
full_set=all_alternatives)
partition_downtown = Partition (
[downtown, complement(downtown)], full_set=all_alternatives
)

partition_uniform = Partition ([all_alternatives],
full_set=all_alternatives)

partition_uniform_asian = Partition ([asian], full_set=asian)

partition_uniform_asian_or_downtown = Partition (
[asian_or_downtown], full_set=asian_or_downtown

)

%%

partitions = {
’uniform’: partition_uniform ,
’asian’: partition_asian ,
’downtown’: partition_.downtown ,
uniform_asian_or_downtown’:

partition_uniform_asian_or_downtown ,

’uniform_asian’: partition_uniform_asian ,

25

© oo ~ o = W [N —

LT T S e S
N R O © 0 N O O A W N = O

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

E.2 Model specification

209

Model specification

Script containing the model specification .

sauthor: Michel Bierlaire

:date: Wed Nov 1 17:837:33 2023

2”0

from biogeme.expressions import Beta, Variable, log

from biogeme.sampling_of_alternatives import CrossVariableTuple

%%
Variable combining attributes of the alternatives and
characteristics of the decision—maker
combined_variables = |
CrossVariableTuple (
’log_dist’,
log (
(

(Variable(’user_lat’) — Variable(’rest_lat’))
% 2

+ (Variable(’user_lon’) — Variable(’rest_lon’))
*k 2

)
*x 0.5

)

]
%%

Parameters to estimate.

beta_rating = Beta(’beta_rating’, 0, None, None, 0)
beta_price = Beta(’beta_price’, 0, None, None, 0)
beta_chinese = Beta(’beta_chinese’, 0, None, None, 0)
beta_japanese = Beta(’beta_japanese’, 0, None, None, 0)
beta_korean = Beta(’beta_korean’, 0, None, None, 0)
beta_indian = Beta(’beta_indian’, 0, None, None, 0)
beta_french = Beta(’beta_french’, 0, None, None, 0)
beta_mexican = Beta(’beta_mexican’, 0, None, None, 0)
beta_lebanese = Beta(’beta_lebanese’, 0, None, None, 0)
beta_ethiopian = Beta(’beta_ethiopian’, 0, None, None, 0)
beta_log_dist = Beta(’beta_log_dist’, 0, None, None, 0)

%%
Utility function.

26

47
48
49
50
51
52
53
54
55
56
57
58

IS

© o0 N O t

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

V= (

beta_rating * Variable(’rating’)
beta_price x Variable(’price’)
beta_chinese x Variable(’category_Chinese’)
beta_japanese * Variable(’category_Japanese’)
beta_korean x Variable(’category_Korean’)
beta_indian * Variable(’category_Indian’)
beta_french x Variable(’category_French’)
beta_mexican * Variable(’category_Mexican’)
beta_lebanese * Variable(’category_Lebanese’)
beta_ethiopian * Variable(’category_Ethiopian’)
beta_log_dist * Variable(’log_dist’)

et =

)
E.3 Estimation of the logit model

NNy

Estimation of a logit model using sampling of alternatives.

sauthor: Michel Bierlaire
sdate: Wed Nov 1 17:839:47 2023

»

import pandas as pd
from biogeme.sampling of _alternatives import (
SamplingContext ,
ChoiceSetsGeneration ,
GenerateModel ,
generate_segment_size ,
)
import biogeme.biogeme_logging as blog
import biogeme.biogeme as bio
from compare import compare
from specification import V, combined_variables
from alternatives import (
alternatives ,
ID_COLUMN,
partitions ,

)

%%
logger = blog.get_screen_logger (level=blog.INFO)

%%

The data file contains several columns associated with

27

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79

synthetic
choices. Here we arbitrarily select ‘logit_4 ‘.
CHOICE.COLUMN = ’logit_4"’

%%

SAMPLE_SIZE = 10

PARTITION = ’asian’

MODELNAME = f’logit_{PARTITION}_{SAMPLE_SIZE}_alt’
FILENAME = f’{MODEL_NAME}.dat’

OBS_FILE = ’obs_choice.dat’

%%
the_partition = partitions.get (PARTITION)
if the_partition is None:
raise ValueError (f’Unknown partition: {PARTITION}’)

%%
segment_sizes = generate_segment_size (SAMPLE_SIZE,
the_partition.number_of_segments())

%%

observations = pd.read_csv (OBS_FILE)
%%

context = SamplingContext (

the_partition=the_partition ,
sample_sizes=segment _sizes ,
individuals=observations ,
choice_column=CHOICE.COLUMN,
alternatives=alternatives ,
id_column=ID_COLUMN,
biogeme_file_name=FILE NAME,

utility _function=V,
combined_variables=combined_variables ,

)

%%
logger .info (context.reporting())

%%

the_data_generation = ChoiceSetsGeneration (context=context)

%%

the_model_generation = GenerateModel (context=context)

%%
biogeme_database =
the_data_generation.sample_and merge(recycle=False)

28

80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

o = W S —

10
11
12
13

%%
logprob = the_model_generation.get_logit ()

%%
the_biogeme = bio .BIOGEME(biogeme_database, logprob)
the_biogeme . modelName = MODELNAME

%%

Calculate the null log likelihood for reporting.

the_biogeme. calculateNullLoglikelihood ({i: 1 for i in
range (SAMPLE SIZE) })

%%

FEstimate the parameters

results = the_biogeme.estimate(recycle=False)

%%

print (results.short_summary ())

%%

estimated _parameters = results.getEstimatedParameters ()

estimated_parameters

%%

df , msg = compare(estimated_parameters)

%%
print (df)

%%
print (msg)

E.4 Estimation of the nested logit model

20

Nested logit

Estimation of a nested logit model using sampling of
alternatives .

cauthor: Michel Bierlaire

sdate: Wed Nov 1 18:00:15 2023

import pandas as pd

from biogeme.sampling_of_alternatives import (
SamplingContext ,
ChoiceSetsGeneration ,

29

15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

GenerateModel ,
generate_segment_size ,
)
from biogeme.expressions import Beta
from biogeme.nests import OneNestForNestedLogit ,
NestsForNestedLogit
import biogeme.biogeme_logging as blog
import biogeme.biogeme as bio
from specification import V, combined_variables
from compare import compare
from alternatives import (
alternatives ,

ID_COLUMN,
partitions ,
asian ,
all_alternatives ,
)
%%

logger = blog.get_screen_logger (level=blog .INFO)

%%

SAMPLESIZE = 20 # out of 100

SAMPLE SIZE MEV = 33 # out of 338

CHOICE.COLUMN = ’nested_0’

PARTITION = ’downtown’

MEV_PARTITION = ’uniform_asian’

MODELNAME = f’nested_{PARTITION}_{SAMPLE_SIZE}’
FILENAME = f{’{MODEL_NAME}.dat’

%%
the_partition = partitions.get (PARTITION)
if the_partition is None:
raise ValueError (f’Unknown partition: {PARTITION3}’)

%%
segment_sizes = generate_segment_size (SAMPLE SIZE,
the_partition.number_of_segments())

%%
We use all alternatives in the mnest.
mev_partition = partitions.get (MEV_PARTITION)
if mev_partition is None:
raise ValueError (f’Unknown partition: {MEV_PARTITION}’)
mev_segment_sizes = [SAMPLESIZE MEV]

%%

observations = pd.read_csv(’obs_choice.dat’)

30

62 # %%

63 context = SamplingContext (

64 the_partition=the_partition ,

65 sample_sizes=segment _sizes ,

66 individuals=observations ,

67 choice_column=CHOICE.COLUMN,

68 alternatives=alternatives ,

69 id_column=ID_COLUMN,

70 biogeme_file_name=FILE NAME,

71 utility function=V,

72 combined_variables=combined_variables ,
73 mev_partition=mev_partition ,

74 mev_sample_sizes=mev_segment_sizes ,
)

76

. # %%

7s logger.info (context.reporting())

79

so # %%

s1 the_data_generation = ChoiceSetsGeneration (context=context)
s2 the_model_generation = GenerateModel (context=context)
83

sa # %%

s5 biogeme_database =
the_data_generation.sample_and_merge(recycle=False)
86

87 # %%

ss # Definition of the nest.

so mu_asian = Beta(’mu_asian’, 1.0, 1.0, None, 0)

90 mnest_asian = OneNestForNestedLogit (

91 nest_param=mu_asian, list_of_alternatives=asian
name=’asian’

92)

93 nests = NestsForNestedLogit (

94 choice_set=all _alternatives ,

95 tuple_of_nests=(nest_asian ,) ,

97

98 # %%

99 logprob = the_model_generation.get_nested_logit (nests)

100

101 # %%

102 the_biogeme = bio.BIOGEME(biogeme_database, logprob)

103 the_biogeme .modelName = MODELNAME

104

105 # %%

106 # Calculate the null log likelihood for reporting.

107 the_biogeme. calculateNullLoglikelihood ({i: 1 for i in
range (context.total_sample_size)})

31

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

o Utk W N

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24

%%

FEstimate the parameters

results = the_biogeme.estimate(recycle=False)

%%

print (results.short_summary ())

%%

estimated _parameters = results.getEstimatedParameters ()

estimated _parameters

%%

df , msg = compare(estimated_parameters)

%%
print (df)

%%
print (msg)

E.5 Estimation of the cross-nested logit model

20

Cross—mested logit

Estimation of a cross—mested logit model using sampling of

alternatives .

cauthor: Michel Bierlaire

:date: Wed Nov 1 18:00:38 2023

import pandas as pd

from biogeme.sampling_of_alternatives import (
SamplingContext ,
ChoiceSetsGeneration ,
GenerateModel ,
generate_segment_size ,

)

from biogeme.expressions import Beta

import biogeme.biogeme_logging as blog

import biogeme.biogeme as bio

from biogeme.nests import OneNestForCrossNestedLogit ,
NestsForCrossNestedLogit

from specification import V, combined_variables

from compare import compare

from alternatives import (

32

25 alternatives ,

26 ID_.COLUMN,

27 partitions ,

28 all_alternatives ,
29 asian_and_downtown ,
30 only_downtown ,

31 only_asian ,

32)

33

34 # %%

35 logger = blog.get_screen_logger (level=blog.INFO)
36

v # %%

3s PARTITION = ’downtown’

39 MEV_PARTITION = ’uniform_asian_or_downtown’

40 SAMPLESIZE = 10 # out of 100 alternatives

21 SAMPLE SIZE MEV = 63 # out of 63 alternatives
42 CHOICE.COLUMN = ’cnl_3’

43 MODELNAME = f’cnl_{SAMPLE_SIZE}_{SAMPLE_SIZE_MEV}’
14 FILENAME = f’{MODEL_NAME}.dat’

45

w6 # %%

a7 the_partition = partitions.get (PARTITION)

48 if the_partition is None:

49 raise ValueError (f’Unknown partition: {PARTITION}’)
50

51 # %%

52 segment_sizes = list (

53 generate_segment_size (SAMPLE_SIZE,

the_partition.number_of_segments())

54)

55

s # %%

57 # We use all alternatives in the nest.

55 mev_partition = partitions.get (MEV_PARTITION)

59 if mev_partition is None:

60 raise ValueError (f’Unknown partition: {MEV_PARTITION}’)
61 mev_segment_sizes = |

62 SAMPLE _SIZE_MEV ,

63]

64

65 # %%

66 # Nests

67

68 # %%

69 # Downtown

70 mu_-downtown = Beta(’mu_downtown’, 1, 1, None, 0)

71 downtown_alpha_dict = {i: 0.5 for i in asian_and_downtown} | {
72 i: 1 for i in only_downtown

33

}

downtown_nest = OneNestForCrossNestedLogit (
nest_param=mu_downtown, dict_of_alpha=downtown_alpha_dict ,
name="downtown’

)

%%

Asian

mu_asian = Beta(’mu_asian’, 1, 1, None, 0)

asian_alpha_dict = {i: 0.5 for i in asian_and_downtown} | {i:

1.0 for i in only_asian}
asian_nest = OneNestForCrossNestedLogit (
nest_param=mu_asian, dict_of_alpha=asian_alpha_dict ,
name=’asian’

84

86
87
88
89
90
91
92
93
94
95
96
97
98
99

101
102
103
104

106
107
108
109
110
111
112
113
114
115
116
117
118

cnl_nests NestsForCrossNestedLogit (
choice_set=all_alternatives ,

tuple_of_nests=(downtown_nest, asian_nest),

observations = pd.read_csv(’obs_choice.dat’)

SamplingContext (
the_partition=the_partition ,
sample_sizes=segment_sizes ,
individuals=observations ,
choice_column=CHOICE.COLUMN,
alternatives=alternatives ,
id_column=ID_COLUMN,
biogeme_file_name=FILE NAME,

utility _function=V,

combined _variables=combined_variables ,
mev_partition=mev_partition ,
mev_sample_sizes=mev_segment_sizes ,
cnl_nests=cnl_nests

logger .info (context.reporting ())

the_data_generation = ChoiceSetsGeneration (context=context)
the_model_generation = GenerateModel (context=context)

biogeme_database

119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149

the_data_generation.sample_and_merge (recycle=False)

%%

logprob = the_model_generation.get_cross_nested_logit ()

%%
the_biogeme = bio.BIOGEME(biogeme_database, logprob)
the_biogeme . modelName = MODELNAME

%%

Calculate the null log likelihood for reporting.

the_biogeme.calculateNullLoglikelihood ({i: 1 for i in
range (context.total_sample_size)})

%%
FEstimate the parameters.
results = the_biogeme.estimate(recycle=False)

%%

print (results.short_summary ())

%%
estimated_parameters = results.getEstimatedParameters ()
estimated_parameters

%%

df , msg = compare(estimated_parameters)

%%
print (df)

%%
print (msg)

35

