Assisted specification with Biogeme 3.2.12

Michel Bierlaire Nicola Ortelli

August 16, 2023

This document is an updated version of Bierlaire and Ortelli (2022), adapted to version 3.2.12 of Biogeme.
The package Biogeme (biogeme.epfl.ch) is designed to estimate the parameters of various models using maximum likelihood estimation. It is particularly designed for discrete choice models. It is a Python package written in Python and C++, that relies on the Pandas library for the management of the data.

This document describes how to obtain assistance from Biogeme for the model specification. In particular, it shows how to apply the algorithm described by Ortelli et al. (2021). In a nutshell, an optimization algorithm is used to generate models based on a minimal number of inputs provided by the analyst. These inputs are used to build a space of possible specifications that may contain any form of variable interaction, nonlinear transformation, segmentation of the population and potential choice models; the space is then explored by an algorithm that sequentially introduces small modifications to an initial set of promising specifications.

We assume that the reader is already familiar with discrete choice models and Biogeme. This document has been written using Biogeme 3.2.12.

We use the Swissmetro example throughout the document. The Python scripts are available on GitHub in the biogeme repository, in the directory examples/assisted. They are also reported in the Appendix.
1 Catalogs

The philosophy of the assisted specification is that the analyst may have several specifications in mind, but does not know a priori which one is the most appropriate. Biogeme can then accept as input a “catalog” of different specifications, and estimate all specifications in the catalog, and provide a comparative report of the estimation results. It provides a great flexibility to the analyst who can replace any expression of the model by such a catalog, as illustrated with the examples in this document.

In some cases, the number of possible specifications is so high that an exhaustive enumeration is not feasible. In that case, the algorithm proposed by Ortelli et al. (2021) is applied in order to investigate a subset of potentially promising specifications.

The code used to generate the examples presented in this Section is available in Appendix 3.

Each catalog is associated with a unique name, and a list of different valid expressions, each of them also associated with a name. For instance, suppose that we want to define a catalog that contains both a logit and a nested logit models.

We first define each of the models, like in a regular Biogeme script:

```python
logprob_logit = models.loglogit(V, av, CHOICE)
```

and

```python
logprob_nested = models.lognested(V, av, nests, CHOICE)
```

The catalog can then be defined using the following syntax, that is self-explanatory:

```python
model_catalog = Catalog.from_dict(
    catalog_name='model_catalog',
    dict_of_expressions={
        'logit': logprob_logit,
        'nested': logprob_nested
    },
)
```

Note that the `Catalog` class must first be imported using the following syntax:

```python
from biogeme.catalog import Catalog
```

A catalog is a regular Biogeme expression, that can be used in another expression. At each given point in time, exactly one of the expressions of the catalog is active, and used for the evaluation of the expression. For instance, if we print the catalog above, it corresponds to the logit specification by default:
where the ellipsis is the actual expression of the logit model (which is too long to report in this document). In order to modify the configuration of a catalog, Biogeme uses a controller, that is accessible using the controlled_by attribute of the catalog. For instance, in order to activate the nested logit specification, we need to write

```python
model_catalog.controller.set_name('nested')
```

Now, if we print the catalog again, we obtain

```python
print(model_catalog)
[model_catalog: nested]...
```

where the ellipsis is the actual expression of the nested logit model.

In general, there is no need to explicitly access to the controller, as Biogeme provides high level access to the catalog. The simplest one is an iterator:

```python
for specification in model_catalog:
    print(specification)
```

provides the following output:

```
[model_catalog: nested]...
[model_catalog: logit]...
```

For the sake of this document, instead of listing the expressions themselves (which can be long and complicated), we report the configuration identifiers of the controller, that identifies all possible specifications associated with a catalog. This is usually not needed by regular users. The function used to do that is described in Appendix 2. For the `model_catalog`, it gives the following output:

```python
model_catalog:logit
model_catalog:nested
```

Also, the Biogeme object has a function called `estimate_catalog`, that iterates on all specifications in a catalog (if possible), and estimate the corresponding models. If there are too many specifications to be enumerated, it launches the assisted specification algorithm if not. This function is illustrated in Section 3.

1.1 Synchronized catalogs

A catalog can be used for alternative nonlinear specifications of a variable. Here, we use the example of the train travel time, in the Swissmetro example. Again, we first define each specification separately:
1. the linear specification:
 \[\text{linear_train_tt} = \text{TRAIN_TT} \]

2. the Box-Cox transform:
 \[\text{ell_travel_time} = \text{Beta('lambda_travel_time', 1, -10, 10, 0)} \]
 \[\text{boxcox_train_tt} = \text{boxcox(\text{TRAIN_TT_SCALED}, \text{ell_travel_time})} \]

3. the squared variable:
 \[\text{squared_train_tt} = \text{TRAIN_TT} \times \text{TRAIN_TT} \]

Note that the \texttt{boxcox} function must first be imported as follows:
\[\text{from biogeme.models import boxcox} \]

The catalog can be defined, using the same syntax as above:
\[\text{train_tt_catalog} = \text{Catalog.from_dict(} \]
\[\quad \text{catalog_name='train_tt_catalog',} \]
\[\quad \text{dict_of_expressions={} \]
\[\quad \quad \text{'linear': linear_train_tt,} \]
\[\quad \quad \text{'boxcox': boxcox_train_tt,} \]
\[\quad \quad \text{'squared': squared_train_tt,} \]
\[\quad \}) \]

The catalog can be used as a regular expression in the definition of the utility function, for instance:
\[\text{V_TRAIN} = \text{ASC_TRAIN} + \text{B_TIME} \times \text{train_tt_catalog} + ... \]

Note that, because \text{V_TRAIN} contains a catalog, it is possible to iterate through its specifications as well:
\[\text{for specification in V_TRAIN:} \]
\[\quad \text{print(specification)} \]

generates the following output:
\[\text{(ASC_TRAIN(init=0) + (B_TIME(init=0) \times [train_tt_catalog: boxcox]...)} \]
\[\text{(ASC_TRAIN(init=0) + (B_TIME(init=0) \times [train_tt_catalog: linear]TRAIN_TT))} \]
\[\text{(ASC_TRAIN(init=0) + (B_TIME(init=0) \times [train_tt_catalog: squared](TRAIN_TT \times TRAIN_TT))} \]

where the ellipsis is replaced by the complete specification of the Box-Cox model.

Now, we would like to specify a similar catalog for the car travel time, in the same model. We apply the exact same syntax as above:
CAR_TT = Variable('CAR_TT')
linear_car_tt = CAR_TT
boxcox_car_tt = boxcox(CAR_TT, ell_travel_time)
squared_car_tt = CAR_TT * CAR_TT
car_tt_catalog = Catalog.from_dict(
 catalog_name='car_tt_catalog',
 dict_of_expressions={
 'linear': linear_car_tt,
 'boxcox': boxcox_car_tt,
 'squared': squared_car_tt,
 },
)

In order to illustrate how those catalogs are combined, we build a dummy expression that calculates their sum:
dummy_expression = train_tt_catalog + car_tt_catalog

If we print all possible configurations, we obtain nine combinations (the order in which they appear is irrelevant):
car_tt_catalog:linear; train_tt_catalog:linear
car_tt_catalog:linear; train_tt_catalog:boxcox
car_tt_catalog:linear; train_tt_catalog:squared
car_tt_catalog:boxcox; train_tt_catalog:squared
car_tt_catalog:boxcox; train_tt_catalog:boxcox
car_tt_catalog:squared; train_tt_catalog:linear
car_tt_catalog:squared; train_tt_catalog:boxcox
car_tt_catalog:squared; train_tt_catalog:squared

Indeed, the combination of three configurations for one variable and three configurations for the other one gives nine specifications. However, this is not always the desired effect. It is actually often desirable that the same nonlinear transform is applied to both variables. In that case, we need to synchronize the two catalogs. It means that they must be controlled by the same controller. This is achieved by constructing the second catalog as follows:
car_tt_catalog = Catalog.from_dict(
 catalog_name='car_tt_catalog',
 dict_of_expressions={
 'linear': linear_car_tt,
 'boxcox': boxcox_car_tt,
 'squared': squared_car_tt,
 },
 controlled_by=train_tt_catalog.controlled_by
)

The controlled_by argument allows to explicitly specify a controller for the catalog. In this case, we provide the controller of the train_tt_catalog. Note
that it is required that synchronized catalogs have exactly the same set of labels to identify their entries. If we now report the specifications of the dummy expression defined above, we obtain only three specifications, where both variables are associated with the same transformation:

```
train_tt_catalog : linear
train_tt_catalog : squared
train_tt_catalog : boxcox
```

Note that only the controller of the train travel time catalog is involved, as it is used also for the car travel time.

1.2 Alternative-specific coefficient

In discrete choice models, it is typical to test a specification where the coefficient of a variable is generic, that is, the same for all alternatives, or alternative-specific. For example, we are considering a catalog containing specifications where the cost coefficient and the time coefficient should be both generic, or both alternative-specific. In order to build such a catalog, we need the function `generic_alt_specific_catalogs` that can be imported as follows:

```
from biogeme.catalog import generic_alt_specific_catalogs
```

The following syntax is used:

```
(B_TIME_catalog_dict, B_COST_catalog_dict) =
    generic_alt_specific_catalogs(
        generic_name='coefficients',
        beta_parameters=[B_TIME, B_COST],
        alternatives=('TRAIN', 'CAR')
    )
```

The function takes three\(^a\) arguments:

1. a generic name that identifies the catalogs,
2. a list of parameters, defined with Beta,
3. a tuple containing the names identifying the alternatives.

It returns a tuple of dictionaries where the keys are the name of the alternatives, and the values are the corresponding catalogs. They are used as follows:

\(^a\)As discussed later, it actually takes five arguments, but two of them have default values.
\[
\begin{align*}
V_{\text{TRAIN}} & = (B_{\text{TIME}}_{\text{catalog dict}}[\text{TRAIN}] \times \text{TRAIN}_{\text{TT}} + \\
& \quad B_{\text{COST}}_{\text{catalog dict}}[\text{TRAIN}] \times \text{TRAIN}_{\text{COST}}) \\
V_{\text{CAR}} & = (B_{\text{TIME}}_{\text{catalog dict}}[\text{CAR}] \times \text{CAR}_{\text{TT}} + \\
& \quad B_{\text{COST}}_{\text{catalog dict}}[\text{CAR}] \times \text{CAR}_{\text{COST}})
\end{align*}
\]

In order to illustrate the catalogs, we build again a dummy expression:

\[
dummy_expression = V_{\text{TRAIN}} + V_{\text{CAR}}
\]

There are two possible configurations for this expression, one where both coefficients are alternative-specific, and one where both are generic.

- coefficients_gen_altspec:generic
- coefficients_gen_altspec:altspec

If it is not desirable to have both coefficients synchronized, two different calls to the function must be performed:

\[
\begin{align*}
(B_{\text{TIME}}_{\text{catalog dict}},) & = \text{generic_alt_specific_catalogs}(\\
& \quad \text{generic_name='time_coefficient',} \\
& \quad \text{beta_parameters=[B_TIME],} \\
& \quad \text{alternatives=('TRAIN', 'CAR')} \\
(B_{\text{COST}}_{\text{catalog dict}},) & = \text{generic_alt_specific_catalogs}(\\
& \quad \text{generic_name='cost_coefficient',} \\
& \quad \text{beta_parameters=[B_COST],} \\
& \quad \text{alternatives=('TRAIN', 'CAR')}
\end{align*}
\]

Note that the function returns a tuple. And if the tuple contains only one entry (as in this example), a comma must be explicitly mentioned in order to obtain this single entry. An equivalent syntax would be

\[
B_{\text{TIME}}_{\text{catalog dict}}_tuple = \text{generic_alt_specific_catalogs}(\\
& \quad \text{generic_name='time_coefficient',} \\
& \quad \text{beta_parameters=[B_TIME],} \\
& \quad \text{alternatives=('TRAIN', 'CAR')})
\]

\[
B_{\text{TIME}}_{\text{catalog dict}} = B_{\text{TIME}}_{\text{catalog dict}}_tuple[0]
\]

As the two specifications are now independent, iterating on the dummy expression provides four specifications:

- cost_coefficient_gen_altspec:generic;time_coefficient_gen_altspec:generic
- cost_coefficient_gen_altspec:generic;time_coefficient_gen_altspec:altspec
- cost_coefficient_gen_altspec:altspec;time_coefficient_gen_altspec:generic
- cost_coefficient_gen_altspec:altspec;time_coefficient_gen_altspec:altspec
1.3 Segmentations

In order to capture potential taste heterogeneity, specifications where a coefficient takes different values for different segments of the population can be investigated. The population is segmented using discrete socio-economic characteristics. If such a discrete variable takes \(L \) values, they correspond to \(L \) segments in the population. But several such variables can be combined to define a segmentation. If \(K \) socio-economic characteristics are considered, each of them with \(L_k \) discrete values, a total of \(\prod_{k=1}^{K} L_k \) segments can potentially be defined, and a different coefficient associated with each of them. However, the number of segments defined in this way grows exponentially with \(K \). It is statistically impossible to estimate a different coefficient for each segment when \(K \) is high. Therefore, we consider a simplified segmentation method that proceeds as follows:

- Define a reference coefficient \(\beta_{\text{ref}} \).
- For each socio-economic characteristic \(x_k \), select one value that corresponds to the reference. Without loss of generality, assume that it is the first one.
- Introduce a parameter \(\beta_{\ell}^k \) for each other value \(\ell = 2, \ldots, L_k \).
- The value of the coefficient as a function of the socio-economic characteristics is defined as

\[
\beta(x_1, \ldots, x_K) = \beta_{\text{ref}} + \sum_{k=1}^{K} \sum_{\ell=2}^{L_k} \beta_{\ell}^k \mathbb{1}[x_k = \ell],
\]

where \(\mathbb{1}[x_k = \ell] \) is 1 if the condition within the brackets is true, and 0 otherwise.

The number of parameters is therefore \(1 - K + \sum_{k=1}^{K} L_k \), which grows linearly with \(K \).

Let’s take an example with \(K = 2 \), where the first socio-economic characteristic segments the population between individuals who are commuters from those who are not, and the second segments the population into individuals without luggage, those carrying one piece of luggage, and those carrying more than one piece of luggage. Therefore, \(L_1 = 2 \) and \(L_2 = 3 \). This segmentation is associated with \(1 - 2 + 2 + 3 = 4 \) coefficients:

- \(\beta_{\text{ref}} \)
- \(\beta_{1}^{\text{commuters}} \)
\[
\begin{align*}
\beta_2^{\text{one_luggage}}, \\
\beta_2^{\text{several_luggages}},
\end{align*}
\]

where the values “non commuters” and “no luggage” are used as reference for each variable, respectively. Now, note that the number of segments is \(2 \cdot 3 = 6\). The value of the coefficient associated with each of them can be reconstructed from the above coefficients as follows:

<table>
<thead>
<tr>
<th>Commuter</th>
<th>Luggages</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>0</td>
<td>(\beta_{\text{ref}} + \beta_{\text{commuters}}^{1})</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
<td>(\beta_{\text{ref}} + \beta_{\text{commuters}}^{1} + \beta_2^{\text{one_luggage}})</td>
</tr>
<tr>
<td>yes</td>
<td>> 1</td>
<td>(\beta_{\text{ref}} + \beta_{\text{commuters}}^{1} + \beta_2^{\text{several_luggages}})</td>
</tr>
<tr>
<td>no</td>
<td>0</td>
<td>(\beta_{\text{ref}})</td>
</tr>
<tr>
<td>no</td>
<td>1</td>
<td>(\beta_{\text{ref}} + \beta_2^{\text{one_luggage}})</td>
</tr>
<tr>
<td>no</td>
<td>> 1</td>
<td>(\beta_{\text{ref}} + \beta_2^{\text{several_luggages}})</td>
</tr>
</tbody>
</table>

This simplified procedure makes the implicit assumption that the combined effects of two socio-economic characteristics is the sum of two specific effects. This is the price to pay to deal with the curse of dimensionality.

In this context, we would like to construct a catalog that contains the following specifications:

- no segmentation, that is, the same coefficient for the whole population,
- a segmentation with the first variable only, that is \(1 - 1 + 2 = 2\) coefficients: \(\beta_{\text{ref}}\) and \(\beta_{\text{commuters}}^{1}\),
- a segmentation with the second variable only, that is \(1 - 1 + 3 = 3\) coefficients: \(\beta_{\text{ref}}, \beta_2^{\text{one_luggage}}\) and \(\beta_2^{\text{several_luggages}}\),
- a segmentation with both variables, involving 4 coefficients as described above.

And we would like to apply these segmentations to two alternative-specific constants, that must be segmented in the same way. To do that with Biogeme, we first need to define the segmentations, using the following syntax:

```python
segmentation_purpose = database.generate_segmentation(
    variable='COMMUTERS',
    mapping={
        0: 'non_commuters',
        1: 'commuters'
    },
    reference='non_commuters'
)```
segmentation_luggage = database.generate_segmentation(
    variable='LUGGAGE',
    mapping={
        0: 'no_lugg',
        1: 'one_lugg',
        3: 'several_lugg'
    },
    reference='no_lugg'
)

where the function `generate_segmentation` takes the following two arguments:

- the name of the discrete socio-economic characteristic in the database,
- a dictionary mapping the values of the variables in the database, and a name identifying what they mean,
- the name of the reference level.

Note that the name of the reference level can be omitted. One of the levels will then be arbitrarily chosen as the reference. We can now create the catalogs themselves:

```python
ASC_TRAIN_catalog, ASC_CAR_catalog = segmentation_catalogs(
 generic_name='ASC',
 beta_parameters=[ASC_TRAIN, ASC_CAR],
 potential_segmentations=(
 segmentation_purpose,
 segmentation_luggage,
),
 maximum_number=2,
)
```

where the function `segmentation_catalogs` can be imported using the following statement

```python
from biogeme.catalog import segmentation_catalogs
```

It takes four arguments:

1. a generic name that applies to all specifications,
2. a list of parameters to be segmented,
3. a list of potential segmentations,
4. the maximum number of segmentations that can be activated at the same time.
If we report the configurations of the dummy expression defined as the sum of the two catalogs, we obtain the following four configurations:

- **ASC**: no_seg
- **ASC**: LUGGAGE
- **ASC**: COMMUTERS
- **ASC**: COMMUTERS - LUGGAGE

If we call the same function with the parameter `maximum_number` set to 1, we obtain

- **ASC**: no_seg
- **ASC**: LUGGAGE
- **ASC**: COMMUTERS

as the interaction with both variables is not allowed anymore.

### 1.4 Alternative-specific and segmented coefficients

It is also possible to segment alternative-specific coefficients, and generate catalogs that provide specifications with or without segmentation, and with generic or alternative-specific coefficients. This is done using the following syntax:

```python
(B_TIME_catalog_dict,) = generic_alt_specific_catalogs(
 generic_name='B_TIME',
 beta_parameters=[B_TIME],
 alternatives=['TRAIN', 'CAR'],
 potential_segmentations=(
 segmentation_purpose,
 segmentation_luggage,
),
 maximum_number=1,
)
```

where the function `generic_alt_specific_catalogs` is the same as in Section 1.2, and can be imported as follows:

```python
from biogeme.catalog import generic_alt_specific_catalogs
```

The function takes five arguments:

1. a generic name that identifies the catalogs,
2. a list of parameters, defined with `Beta`,
3. a tuple containing the names identifying the alternatives,
4. a list of potential segmentations (set to `None` by default),

```
```
5. the maximum number of segmentations that can be activated at the same time (set to 5 by default).

This function creates a dictionary with two catalogs `B_TIME_catalog['TRAIN']` and `B_TIME_catalog['CAR']`, synchronized, and therefore controlled by the same controller. There are six possible configurations:

<table>
<thead>
<tr>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_TIME: no_seg; B_TIME_gen_altspec: generic</td>
</tr>
<tr>
<td>B_TIME: no_seg; B_TIME_gen_altspec: altspec</td>
</tr>
<tr>
<td>B_TIME: LUGGAGE; B_TIME_gen_altspec: generic</td>
</tr>
<tr>
<td>B_TIME: LUGGAGE; B_TIME_gen_altspec: altspec</td>
</tr>
<tr>
<td>B_TIME: COMMUTERS; B_TIME_gen_altspec: generic</td>
</tr>
<tr>
<td>B_TIME: COMMUTERS; B_TIME_gen_altspec: altspec</td>
</tr>
</tbody>
</table>

If we allow to segment the population with two socio-economic characteristics instead of just one, we obtain a total of eight configurations, as the double segmentation can be considered with generic or alternative-specific coefficients:

<table>
<thead>
<tr>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_TIME: no_seg; B_TIME_gen_altspec: generic</td>
</tr>
<tr>
<td>B_TIME: no_seg; B_TIME_gen_altspec: altspec</td>
</tr>
<tr>
<td>B_TIME: LUGGAGE; B_TIME_gen_altspec: generic</td>
</tr>
<tr>
<td>B_TIME: LUGGAGE; B_TIME_gen_altspec: altspec</td>
</tr>
<tr>
<td>B_TIME: COMMUTERS; B_TIME_gen_altspec: generic</td>
</tr>
<tr>
<td>B_TIME: COMMUTERS; B_TIME_gen_altspec: altspec</td>
</tr>
<tr>
<td>B_TIME: COMMUTERS - LUGGAGE; B_TIME_gen_altspec: generic</td>
</tr>
<tr>
<td>B_TIME: COMMUTERS - LUGGAGE; B_TIME_gen_altspec: altspec</td>
</tr>
</tbody>
</table>

2 Comparing models

The use of catalogs generates a great deal of potential specifications. And we would like to focus of the best ones. One possibility would be to focus on one criterion, such as the Akaike Information Criterion (AIC), and decide that the best model is the one with the lowest AIC. While it is a valid idea, the outcome of the estimation will be exactly one model. And if, for some reasons, that model happens not to be acceptable, no other model will be proposed to the analyst. Instead, we would like to combine several indicators to identify good models. In particular, we would like to keep models that fit the data well (that is, associated with a high log likelihood), and models that are parsimonious (that is, with a low number of parameters). If we consider those two indicators simultaneously, we need to use the concept of dominance and Pareto optimality (formally defined in Appendix 1). Consider a model $M_1$ with $K_1$ parameters and final log likelihood $L_1$, and $M_2$ with $K_2$ parameters and final log likelihood $L_2$. We say that $M_1$ dominates $M_2$ if
it is no worse than $M_2$ in any objective, and strictly better in at least one objective, that is:

$$L_1 \geq L_2 \text{ and } K_1 < K_2,$$

or

$$L_1 > L_2 \text{ and } K_1 \leq K_2.$$  

In this context, we will keep only models that are not dominated. Such models are said to be Pareto optimal.

3 Estimating parameters using catalogs

We illustrate the concept of catalogs by estimating several specifications. We build on the examples from Section 1 on page 2.

3.1 Various choice models

We consider first a catalog that includes a logit and two nested logit models, each with a different nest definition. The catalog is constructed as described above:

```python
model_catalog = Catalog.from_dict(
 catalog_name='model_catalog',
 dict_of_expressions={
 'logit': logprob_logit,
 'nested existing': logprob_nested_existing,
 'nested public': logprob_nested_public,
 },
)
```

and is provided to the Biogeme object:

```python
the_biogeme = bio.BIOGEME(database, model_catalog)
```

The various specifications can be estimated using the `estimate_catalog` function:

```python
dict_of_results = the_biogeme.estimate_catalog()
```

The complete code is available in Appendix 6. The output of estimation is a dictionary, where each key is the name of a model, and each value is an object containing the estimation results. In this document, we process this dictionary using the code presented in Appendix 5. The output of the script contains two parts. The first part contains the complete set of results (see Figure 1). Each column is associated with a model name, each name being associated with a specification below:
<table>
<thead>
<tr>
<th>Model</th>
<th>model_catalog:</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model_000000</td>
<td>model_catalog:nested</td>
<td>public</td>
</tr>
<tr>
<td>Model_000001</td>
<td>model_catalog:nested</td>
<td>existing</td>
</tr>
<tr>
<td>Model_000002</td>
<td>model_catalog:logit</td>
<td></td>
</tr>
</tbody>
</table>
A total of 3 models have been estimated

--- Estimation results ---

<table>
<thead>
<tr>
<th></th>
<th>Model_000000</th>
<th>Model_000001</th>
<th>Model_000002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of estimated parameters</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Sample size</td>
<td>6768</td>
<td>6768</td>
<td>6768</td>
</tr>
<tr>
<td>Final log likelihood</td>
<td>-5331.252007</td>
<td>-5236.900014</td>
<td>-5331.252007</td>
</tr>
<tr>
<td>AIAKKE Information Criterion</td>
<td>10672.504014</td>
<td>10483.800028</td>
<td>10670.504014</td>
</tr>
<tr>
<td>Bayesian Information Criterion</td>
<td>10706.603818</td>
<td>10517.899832</td>
<td>10697.783857</td>
</tr>
<tr>
<td>ASC_CAR (t-test)</td>
<td>-0.155 (-2.03)</td>
<td>-0.167 (-3.07)</td>
<td>-0.155 (-2.66)</td>
</tr>
<tr>
<td>ASC_TRAIN (t-test)</td>
<td>-0.701 (-5.22)</td>
<td>-0.512 (-6.47)</td>
<td>-0.701 (-8.49)</td>
</tr>
<tr>
<td>B_COST (t-test)</td>
<td>-1.08 (-14.4)</td>
<td>-0.857 (-14.3)</td>
<td>-1.08 (-15.9)</td>
</tr>
<tr>
<td>B_TIME (t-test)</td>
<td>-1.28 (-10.5)</td>
<td>-0.899 (-8.39)</td>
<td>-1.28 (-12.3)</td>
</tr>
<tr>
<td>MU_public (t-test)</td>
<td>1 (8.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MU_existing (t-test)</td>
<td></td>
<td>2.05 (12.5)</td>
<td></td>
</tr>
</tbody>
</table>

Model_000000  model_catalog: nested public
Model_000001  model_catalog: nested existing
Model_000002  model_catalog: logit

Figure 1: Different choice models: complete estimation report
It can be seen that the models `model_catalog:nested public` and `model_catalog:logit` achieve the same final log likelihood. The nest parameter of the nested logit model is actually 1. Therefore, model `model_catalog:nested public` is dominated by model `model_catalog:logit`, and should be rejected. This is how the second part of the output is generated, keeping only non dominated models, as reported in Figure 2 on the next page. Note that the logit model is better in terms of parsimony, and the nested logit model is better in terms of fit.
<table>
<thead>
<tr>
<th></th>
<th>Model_000000</th>
<th>Model_000001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of estimated parameters</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Sample size</td>
<td>6768</td>
<td>6768</td>
</tr>
<tr>
<td>Final log likelihood</td>
<td>-5236.900014</td>
<td>-5331.252007</td>
</tr>
<tr>
<td>Akaike Information Criterion</td>
<td>10483.800028</td>
<td>10670.504014</td>
</tr>
<tr>
<td>Bayesian Information Criterion</td>
<td>10517.899832</td>
<td>10697.783857</td>
</tr>
<tr>
<td>ASC_CAR (t-test)</td>
<td>-0.167 (-3.07)</td>
<td>-0.155 (-2.66)</td>
</tr>
<tr>
<td>ASC_TRAIN (t-test)</td>
<td>-0.512 (-6.47)</td>
<td>-0.701 (-8.49)</td>
</tr>
<tr>
<td>B_COST (t-test)</td>
<td>-0.857 (-14.3)</td>
<td>-1.08 (-15.9)</td>
</tr>
<tr>
<td>B_TIME (t-test)</td>
<td>-0.899 (-8.39)</td>
<td>-1.28 (-12.3)</td>
</tr>
<tr>
<td>MU_existing (t-test)</td>
<td>2.05 (12.5)</td>
<td></td>
</tr>
</tbody>
</table>

Model_000000 model_catalog: nested existing
Model_000001 model_catalog: logit

Figure 2: Different choice models: Pareto optimal models
3.2 Nonlinear specifications

We consider a catalog that includes various specifications for the travel time variables:

- a linear specification,
- a Box-Cox transform,
- a power series of degree 3.

If $x_t$ is the travel time variable, the catalog contains the following specifications:

$$x_t, \frac{x_t^\lambda - 1}{\lambda}, \text{ and } x_t + \beta_{\text{square}}x_t^2 + \beta_{\text{cube}}x_t^3.$$ 

It can be seen that some of these specifications involve additional parameters, some not. We use synchronized catalogs, so that the travel time variable is involved in the same way in all alternatives. The full specification is available in Appendix 7. The results associated with each of the three specifications are reported in Figure 3 on the following page. It is interesting to note that none of these model is dominated by another one.
A total of 3 models have been estimated

<table>
<thead>
<tr>
<th>Model_000000</th>
<th>Model_000001</th>
<th>Model_000002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of estimated parameters</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Sample size</td>
<td>6768</td>
<td>6768</td>
</tr>
<tr>
<td>Final log likelihood</td>
<td>-5331.252007</td>
<td>-5292.095411</td>
</tr>
<tr>
<td>Akaike Information Criterion</td>
<td>10670.504014</td>
<td>10594.190822</td>
</tr>
<tr>
<td>Bayesian Information Criterion</td>
<td>10697.783857</td>
<td>10628.290626</td>
</tr>
<tr>
<td>ASC_CAR (t-test)</td>
<td>-0.155 (-2.66)</td>
<td>-0.00462 (-0.0963)</td>
</tr>
<tr>
<td>ASC_TRAIN (t-test)</td>
<td>-0.701 (-8.49)</td>
<td>-0.485 (-7.53)</td>
</tr>
<tr>
<td>B_COST (t-test)</td>
<td>-1.08 (-15.9)</td>
<td>-1.08 (-15.9)</td>
</tr>
<tr>
<td>B_TIME (t-test)</td>
<td>-1.28 (-12.3)</td>
<td>-1.67 (-21.9)</td>
</tr>
<tr>
<td>lambda_travel_time (t-test)</td>
<td>0.51 (6.6)</td>
<td>0.000193 (7.38)</td>
</tr>
<tr>
<td>cube_tt_coef (t-test)</td>
<td></td>
<td>0.105 (-21.2)</td>
</tr>
<tr>
<td>square_tt_coef (t-test)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model_000000 train_tt_catalog: linear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model_000001 train_tt_catalog: boxcox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model_000002 train_tt_catalog: power</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Nonlinear specifications: complete estimation report
3.3 Alternative-specific coefficients

We consider a catalog that considers both generic and alternative-specific specifications for both the cost coefficient and the travel time coefficient. The full specification is available in Appendix 8. The results associated with each of the four specifications are reported in Figure 4 on the next page. Note that the model where the cost coefficient is generic and the time coefficient is alternative-specific is dominated by the model where the cost coefficient is alternative-specific and the time coefficient is generic. Indeed, both models involve 6 parameters, that the latter has a better fit.
A total of 4 models have been estimated

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of estimated parameters</th>
<th>Sample size</th>
<th>Final log likelihood</th>
<th>Akaike Information Criterion</th>
<th>Bayesian Information Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model_000000</td>
<td>6</td>
<td>6768</td>
<td>-5312.894223</td>
<td>10637.788446</td>
<td>10678.708211</td>
</tr>
<tr>
<td>Model_000001</td>
<td>8</td>
<td>6768</td>
<td>-5075.704346</td>
<td>10167.408692</td>
<td>10221.968379</td>
</tr>
<tr>
<td>Model_000002</td>
<td>6</td>
<td>6768</td>
<td>-5083.499937</td>
<td>10178.999875</td>
<td>10219.91964</td>
</tr>
<tr>
<td>Model_000003</td>
<td>4</td>
<td>6768</td>
<td>-5331.252007</td>
<td>10670.504014</td>
<td>10697.783857</td>
</tr>
</tbody>
</table>

ASC CAR (t-test) : -0.271 (-2.29) -0.367 (-3.32) -0.427 (-5.55) -0.155 (-2.66)
ASC TRAIN (t-test) : -0.202 (-1.82) -0.0754 (-0.712) 0.189 (2.06) -0.701 (-8.49)
B COST (t-test) : -1.07 (-16) -1.12 (-10.3) -1.17 (-6.42) -1.57 (-14.4) -1.12 (-14.2) -3.08 (-16)
B TIME (t-test) : -1.12 (-9.3) -1.17 (-6.42) -1.57 (-14.4) -1.12 (-14.2) -3.08 (-16)
B COST CAR (t-test) : -0.889 (-7.51) -0.939 (-8.1) -0.889 (-7.51) -0.786 (-5.27) -3.93 (-17.4)
B COST SM (t-test) : -0.701 (-8.49) -0.939 (-8.1) -0.701 (-8.49) -0.939 (-8.1) -3.93 (-17.4)
B COST TRAIN (t-test) : 0.189 (2.06) 0.189 (2.06) -0.701 (-8.49) -0.701 (-8.49) -3.93 (-17.4)

Figure 4: Alternative-specific coefficients: complete estimation report
3.4 Segmentations

We consider a catalog that considers potential segmentations of the parameters. The alternative-specific constants are potentially interacted with the variables GA (identifying if the traveler owns a yearly subscription, with 2 levels) and LUGGAGES (identifying if the traveler is carrying luggages, with 3 levels), or both. The travel time coefficient is potentially interacted with the variables FIRST (identifying if the traveler is traveling first class, with 2 levels) or PURPOSE (identifying if the traveler is a commuter or not, with 2 levels). Maximum one such interaction is allowed.

Therefore, we have 4 specifications for the constants:

- not segmented,
- segmented by GA (yearly subscription to public transport),
- segmented by luggage,
- segmented both by GA and luggage,

and 3 specifications for the time coefficients:

- not segmented,
- segmented with first class,
- segmented with trip purpose,

so that we obtain a total of 12 specifications.

The full specification is available in Appendix 9. Among the 12 estimated models, 5 are Pareto optimal. The estimation results are reported in Figure 5 on the following page.
### Table: Estimated Parameters and Log Likelihood

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of estimated parameters</th>
<th>Sample size</th>
<th>Final log likelihood</th>
<th>Akaike Information Criterion</th>
<th>Bayesian Information Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model000000</td>
<td>6</td>
<td>6768</td>
<td>-5050.677696</td>
<td>10113.355391</td>
<td>10154.275157</td>
</tr>
<tr>
<td>Model000001</td>
<td>7</td>
<td>6768</td>
<td>-4976.118641</td>
<td>9966.237282</td>
<td>10013.977009</td>
</tr>
<tr>
<td>Model000002</td>
<td>11</td>
<td>6768</td>
<td>-4952.546476</td>
<td>9927.092951</td>
<td>9992.092751</td>
</tr>
<tr>
<td>Model000003</td>
<td>5</td>
<td>6768</td>
<td>-5234.708233</td>
<td>10479.416466</td>
<td>10513.51627</td>
</tr>
<tr>
<td>Model000004</td>
<td>4</td>
<td>6768</td>
<td>-5331.252007</td>
<td>10670.504014</td>
<td>10697.783857</td>
</tr>
</tbody>
</table>

### Table: Segmentation

<table>
<thead>
<tr>
<th>Model</th>
<th>Segmentation</th>
<th>Time Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model000000</td>
<td>ASC:GA; B_TIME : no_seg</td>
<td></td>
</tr>
<tr>
<td>Model000001</td>
<td>ASC:GA; B_TIME : FIRST</td>
<td></td>
</tr>
<tr>
<td>Model000002</td>
<td>ASC:GA-LUGGAGE; B_TIME : FIRST</td>
<td></td>
</tr>
<tr>
<td>Model000003</td>
<td>ASC: no_seg ; B_TIME : FIRST</td>
<td></td>
</tr>
<tr>
<td>Model000004</td>
<td>ASC: no_seg ; B_TIME : no_seg</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Segmentation: Pareto optimal models

<table>
<thead>
<tr>
<th>Model</th>
<th>Segmentation</th>
<th>Time Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model000000</td>
<td>ASC:GA; B_TIME : no_seg</td>
<td></td>
</tr>
<tr>
<td>Model000001</td>
<td>ASC:GA; B_TIME : FIRST</td>
<td></td>
</tr>
<tr>
<td>Model000002</td>
<td>ASC:GA-LUGGAGE; B_TIME : FIRST</td>
<td></td>
</tr>
<tr>
<td>Model000003</td>
<td>ASC: no_seg ; B_TIME : FIRST</td>
<td></td>
</tr>
<tr>
<td>Model000004</td>
<td>ASC: no_seg ; B_TIME : no_seg</td>
<td></td>
</tr>
</tbody>
</table>
3.5 Segmentations and alternative-specific coefficients

We consider a catalog that considers potential segmentations of the parameters as well as alternative-specific coefficients. We consider 4 specifications for the constants:

- not segmented,
- segmented by GA (yearly subscription to public transport),
- segmented by luggage,
- segmented both by GA and luggage.

We consider 6 specifications for the time coefficients:

- generic and not segmented,
- generic and segmented with first class,
- generic and segmented with trip purpose,
- alternative-specific and not segmented,
- alternative-specific and segmented with first class,
- alternative-specific and segmented with trip purpose.

Finally, we consider 2 specifications for the cost coefficients:

- generic,
- alternative-specific.

In total, we obtain 48 specifications. The full specification is available in Appendix 10. Among the 48 estimated models, 8 are Pareto optimal. The estimation results are reported in Figure 6 on the next page and Figure 7 on page 26.
<table>
<thead>
<tr>
<th></th>
<th>Model_000000</th>
<th>Model_000001</th>
<th>Model_000002</th>
<th>Model_000003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of estimated parameters</td>
<td>7</td>
<td>17</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Sample size</td>
<td>6768</td>
<td>6768</td>
<td>6768</td>
<td>6768</td>
</tr>
<tr>
<td>Final log likelihood</td>
<td>-4976.118641</td>
<td>-4865.971435</td>
<td>-5050.677696</td>
<td>-4945.30006</td>
</tr>
<tr>
<td>Akaike Information Criterion</td>
<td>9966.237282</td>
<td>9765.94287</td>
<td>10113.355391</td>
<td>9908.60012</td>
</tr>
<tr>
<td>Bayesian Information Criterion</td>
<td>10013.977009</td>
<td>9881.882206</td>
<td>10154.275157</td>
<td>9969.979768</td>
</tr>
<tr>
<td>ASC_CAR (t-test)</td>
<td>-0.281 (-4.53)</td>
<td>-0.446 (-3.68)</td>
<td>-0.249 (-3.97)</td>
<td>-0.662 (-7.79)</td>
</tr>
<tr>
<td>ASC_CAR,GA (t-test)</td>
<td>-0.231 (-1.19)</td>
<td>-0.145 (-0.739)</td>
<td>-0.301 (-1.56)</td>
<td>-0.0761 (-0.389)</td>
</tr>
<tr>
<td>ASC,TRAIN (t-test)</td>
<td>-1.37 (-14.7)</td>
<td>-1.07 (-6.72)</td>
<td>-1.28 (-14)</td>
<td>-0.938 (-6.76)</td>
</tr>
<tr>
<td>ASC,TRAIN,GA (t-test)</td>
<td>1.91 (21.5)</td>
<td>1.26 (8.67)</td>
<td>1.97 (22.3)</td>
<td>1.52 (11.1)</td>
</tr>
<tr>
<td>B,COST (t-test)</td>
<td>-1.26 (-15.3)</td>
<td>-1.1 (-14.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B,COST,TRAIN (t-test)</td>
<td>-0.621 (-4.46)</td>
<td>-1.18 (-11.3)</td>
<td>-0.69 (-4.56)</td>
<td></td>
</tr>
<tr>
<td>B,COST,1st_class (t-test)</td>
<td>-0.914 (-8.6)</td>
<td></td>
<td>-0.925 (-8.62)</td>
<td></td>
</tr>
<tr>
<td>ASC,CAR,one_lugg (t-test)</td>
<td></td>
<td>0.0264 (0.394)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASC,CAR,several_lugg (t-test)</td>
<td></td>
<td>-0.299 (-1.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASC,TRAIN,one_lugg (t-test)</td>
<td></td>
<td>0.674 (6.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASC,TRAIN,several_lugg (t-test)</td>
<td></td>
<td>0.495 (2.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B,COST,CAR (t-test)</td>
<td>-0.836 (-5.28)</td>
<td>-0.848 (-7.25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B,COST,SM (t-test)</td>
<td>-1.15 (-14)</td>
<td>-1.3 (-16.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B,COST,TRAIN (t-test)</td>
<td>-2.03 (-9.61)</td>
<td>-1.83 (-10.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B,COST,1st_class (t-test)</td>
<td>-1.55 (-11.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B,COST,TRAIN,commuters (t-test)</td>
<td></td>
<td>0.682 (3.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B,COST,SM,commuters (t-test)</td>
<td></td>
<td>-1.73 (-15.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B,COST,SM,TRAIN (t-test)</td>
<td>-1.34 (-12.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B,COST,TRAIN,commuters (t-test)</td>
<td></td>
<td>0.116 (0.84)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6: Segmentation and alternative-specific coefficients: Pareto optimal models (part 1)
### Model 000004
- **Number of estimated parameters:** 4
- **Sample size:** 6768
- **Final log likelihood:** -5331.25
- **Akaike Information Criterion:** 10670.5
- **Bayesian Information Criterion:** 10697.8
- **ASC (t-test):** -0.155 (-2.66)
- **ASC TRAIN (t-test):** -0.170 (-8.49)
- **B TIME (t-test):** -0.28 (-12.3)

### Model 000005
- **Number of estimated parameters:** 5
- **Sample size:** 6768
- **Final log likelihood:** -5234.71
- **Akaike Information Criterion:** 10479.42
- **Bayesian Information Criterion:** 10513.51
- **ASC (t-test):** -0.187 (-3.23)
- **ASC TRAIN (t-test):** -0.814 (-9.45)
- **B TIME (t-test):** -0.647 (-4.69)

### Model 000006
- **Number of estimated parameters:** 11
- **Sample size:** 6768
- **Final log likelihood:** -4928.27
- **Akaike Information Criterion:** 9878.53
- **Bayesian Information Criterion:** 9953.56
- **ASC (t-test):** -0.383 (-2.95)
- **ASC TRAIN (t-test):** -0.965 (-7.29)
- **B TIME (t-test):** -1.02 (-9.87)

### Model 000007
- **Number of estimated parameters:** 13
- **Sample size:** 6768
- **Final log likelihood:** -4890.82
- **Akaike Information Criterion:** 9807.63
- **Bayesian Information Criterion:** 9896.29
- **ASC (t-test):** -0.434 (-3.72)
- **ASC TRAIN (t-test):** -0.593 (-4.28)
- **B TIME (t-test):** -1.02 (-9.87)

---

**Figure 7:** Segmentation and alternative-specific coefficients: Pareto optimal models (part 2)
3.6 Combining several specifications

We consider now a combination of the various specifications considered so far:

- 3 models:
  - logit,
  - nested logit with two nests: public and private transportation,
  - nested logit with two nests existing and future modes,

- 3 functional forms for the travel time variables:
  - linear specification,
  - Box-Cox transform,
  - power series,

- 2 specifications for the cost coefficients:
  - generic,
  - alternative-specific,

- 2 specification for the travel time coefficients:
  - generic,
  - alternative-specific,

- 4 segmentations for the constants:
  - not segmented,
  - segmented by GA (yearly subscription to public transport),
  - segmented by luggage,
  - segmented both by GA and luggage,

- 3 segmentations for the time coefficients:
  - not segmented,
  - segmented with first class,
  - segmented with trip purpose.

This leads to a total of 432 specifications. The script with the specification is available in Appendix 11. If it is attempted to estimate all specifications of this catalog, the following exception will be raised:
There are too many [432] different specifications for the log likelihood function. This is above the maximum number: 100. Simplify the specification, change the value of the parameter maximum_number_catalog_expressions, or consider using the AssistedSpecification object in the "biogeme.assisted" module.

4 Assisted specification

When the systematic estimation of all possible specifications is infeasible, it is possible to rely on the assisted specification algorithm, inspired by the work of Ortelli et al. (2021).

This is done by first creating the object, using the following syntax:

```python
assisted_specification = AssistedSpecification(
 biogeme_object=the_biogeme,
 multi_objectives=loglikelihood_dimension,
 pareto_file_name=PARETO_FILE_NAME,
)
```

where the class AssistedSpecification must be imported as follows:

```python
from biogeme.assisted import AssistedSpecification
```

Its constructor takes three arguments:

1. the biogeme object,
2. a function providing all the indicators used to exclude dominated models,
3. the name of a file that will collect all the models that have been estimated,
4. a function verifying the validity of the results (optional).

The biogeme object is constructed as before, from the database and the catalog:

```python
the_biogeme = bio.BIOGEME(database, model_catalog)
```

The function must take the estimation results as argument, and return a list of indicators. The convention is that, the lower the value of the indicator, the better the model. Here is an example of such a function:

```python
def loglikelihood_dimension(results):
 """Function returning the negative log likelihood and the number
    ```
of parameters, designed for multi-objective optimization

```python
:param results : estimation results
:type results : biogeme.results.bioResults

return [-results.data.logLike, results.data.nparam]
```

The two indicators in this case are

- the opposite of the final log likelihood (opposite, because of the above mentioned convention),
- the number of estimated parameters.

Another example involving three indicators is as follows:

```python
def AIC_BIC_dimension(results):
 """Function returning the AIC, BIC and the number of parameters, designed for multi-objective optimization
 :param results : estimation results
 :type results : biogeme.results.bioResults
 """
 return [results.data.akaike, results.data.bayesian, results.data.nparam]
```

The three indicators are the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC) and the number of estimated parameters. Those two examples can actually be directly imported from biogeme:

```python
from biogeme.multiobjectives import loglikelihood_dimension, AIC_BIC_dimension
```

The “pareto file” is the memory of the process. It stores all models that have been estimated by the algorithm, together with the relevant indicators. It is organized in three sections:

1. The [Pareto] section contains all models that are not dominated.
2. The [Considered] section contains all models that have been estimated.
3. The [Removed] section contains all models that have been Pareto optimal at some point during the algorithm, but that have been rejected by a dominating model.
4. The [Invalid] section contains all models that have been identified as invalid.
If the file exists when the algorithm is started, its content is used to initialize the algorithm. This allows to interrupt the algorithm and to relaunch it without losing what has been found so far.

Like the function calculating the indicators, the function verifying the validity of the results takes also estimation results as argument, as returns a tuple with two values:

1. a boolean that is True if the results are valid, and False otherwise,
2. a string explaining why the results are invalid, or None if they are valid.

Here is an example of such a function, where the results are reported invalid if any coefficient of time or cost is non negative:

```python
def validity(results):
 """Function verifying that the estimation results are valid.

 The results are not valid if any of the time or cost coefficient is non negative.
 """
 for beta in results.data.betas:
 if 'TIME' in beta.name and beta.value >= 0:
 return False, f'{beta.name} = {beta.value}'
 if 'COST' in beta.name and beta.value >= 0:
 return False, f'{beta.name} = {beta.value}'
 return True, None
```

The algorithm is executed using the following statement:

```python
non_dominated_models = assisted_specification.run()
```

Similarly to the estimate_catalog function, it returns a dictionary with all Pareto optimal models. The code is reported in Appendix 12.

Before looking at the results in the next section, we note that the concept of “valid” models can be dealt with in several ways. In particular, the sign of a coefficient can be constrained using the bounds appearing in the definition of the Beta expression. For instance, if the time and cost coefficients are constrained to be non positive, all models will be “valid” by design, and the above function will always return “True”. This may be a good alternative if there is a high rate of rejected invalid models, that may decrease the capability of the algorithm to explore the space of possible specifications.

5 Using the Pareto file

As mentioned above, the Pareto file contains the description of all models that have been estimated by the algorithm, as well as the requested indicators. In
this Section, we describe some post-processing methods that allow to exploit it.

5.1 Selecting one model

Each model in the file is characterized by an ID. For instance:

```plaintext
SPEC_ID = (
 'ASC:GA-LUGGAGE;',
 'B_COST_gen_altspec:generic;',
 'B_TIME:FIRST;',
 'B_TIME_gen_altspec:generic;',
 'model_catalog:logit;',
 'train_tt_catalog:power'
)
```

corresponds to a model where

- the constants are segmented both by GA and luggages,
- the cost coefficient is generic,
- the time coefficient is segmented by first class,
- the time coefficient is generic,
- the model is logit,
- the travel time variable is transformed using a power series.

The Biogeme object corresponding to this specification can be obtained using the following constructor:

```python
the_biogeme = bio.BIOGEME.from_configuration(
 config_id=SPEC_ID,
 expression=model_catalog,
 database=database,
)
```

It can be used, either for re-estimation, or for applications.

5.2 Post processing

The post processing object accepts as input the Biogeme object as well as the Pareto file:

```python
post_processing = ParetoPostProcessing(
 biogeme_object=the_biogeme,
 pareto_file_name=PARETO_FILE_NAME
)
```
where the class itself is imported as follows:

```python
from biogeme.assisted import ParetoPostProcessing
```

The main purpose of this object is to re-estimate all models that are Pareto optimal. This can be done using the statement:

```python
post_processing.reestimate(recycle=True)
```

The option “recycle=True” does not re-estimate a model if the pickle file is already present. Instead, it reads the results from this file. This may be useful when you interrupt the process. The next time you run it, it does not need to re-estimate the models that have already been processed. If you set it to False, the models are re-estimated, irrespectively of the presence of the pickle file. Note that no output file is overwritten. If an HTML file or a pickle file for a model already exist, a version number is inserted in the name of the file. For instance, if `my_model.html` already exists, the results will be saved in the file `my_model~00.html`.

Finally, it is possible to obtain an illustration of the amount of models that have been estimated by the algorithm and saved in the Pareto file. This can be done using the following statements:

```python
_ = post_processing.plot(label_x='Negative log likelihood',
 label_y='Nbr of parameters',
)
plt.show()
```

It generates a figure with two axes, corresponding to two objectives. Each model is represented by a point with coordinates calculated using the corresponding objectives. The shape of the point represents the status of the model:

- A circle represents a Pareto optimal model.
- A cross represents a model that has been Pareto optimal at some point during the course of the algorithm, and later dominated by another model.
- A star represents a model that has been deemed invalid.
- A small dot represents all other models that have been considered.

An example of this illustration is available in Figure 8 on the next page.

Note that, when more than two objectives have been used by the algorithm, the first two are used by default for the plot. But other objectives can be selected using the parameters `objective_x` and `objective_y`. This can
also be used to swap the position of the axes, as illustrated by the following statement, that generates the picture in Figure 9 on the following page:

```python
_ = post_processing.plot(
 label_x='Nbr of parameters',
 label_y='Negative log likelihood',
 objective_x=1,
 objective_y=0,
)
```

6 Conclusion

This report describes several functionalities of Biogeme that happened to be useful to the authors in the context of model development. It is important to emphasize that they are not designed to replace the analyst and the modeler. Instead, they are designed to assist her, in order to facilitate the investigation of many possible specifications.

These features are experimental, and are likely to be improved in the future.
References


Appendix

1 Dominance and Pareto optimality

We consider a vector $x \in \mathbb{R}^n$, which is associated with $P$ indicators: $f_1(x)$, \ldots, $f_P(x)$. Each of these indicators is such that lower values are better than higher values. As there are multiple indicators, it is not necessarily straightforward to decide which between two vectors $x$ and $y$ is better, as one can be better for some indicators, and the other one for other indicators. In order to formalize this, we introduce the concept of dominance.

Consider two vectors $x, y \in \mathbb{R}^n$. We say that $x$ is dominating $y$, and use the notation $x \prec y$, if

1. $x$ is no worse in any objective
   \[ \forall i \in \{1, \ldots, P\}, f_i(x) \leq f_i(y), \]

2. $x$ is strictly better in at least one objective
   \[ \exists i \in \{1, \ldots, P\}, f_i(x) < f_i(y). \]

The dominance relation has the following properties:

- Not reflexive: $x \not\prec x$.
- Not symmetric: $x \prec y \not\Rightarrow y \prec x$.
- Instead: $x \prec y \Rightarrow y \not\prec x$.
- Transitive: $x \prec y$ and $y \prec z \Rightarrow x \prec z$.
- Not complete: $\exists x, y$: $x \not\prec y$ and $y \not\prec x$.

Consider now a set $\mathcal{F} \subseteq \mathbb{R}^n$. The vector $x^* \in \mathcal{F}$ is Pareto optimal if it is not dominated by any solution in $\mathcal{F}$:

\[ \nexists x \in \mathcal{F} \text{ such that } x \prec x^*. \]

Intuitively, $x^*$ is Pareto optimal if no objective can be improved without degrading at least one of the others.

As the relation is not complete, there may be more than one Pareto optimal solution in a set. The Pareto optimal set is defined as

\[ \mathcal{P}^* = \{ x^* \in \mathcal{F} | \nexists x \in \mathcal{F}: x \prec x^* \}. \]
2 Function printing the configurations of an expression

```python
def print_all_configurations(expression: Expression) -> None:
 """Prints all configurations that an expression can take"""
 expression.set_central_controller()
 total = expression.central_controller.number_of_configurations()
 print(f'Total: {total} configurations')
 for config_id in expression.central_controller.all_configurations_ids:
 print(config_id)
```

3 Illustrations of the catalogs

This is the code used to generate the examples in Section 1.

```python
""" File simple_example.py

:author: Michel Bierlaire, EPFL
:date: Sun Aug 6 18:13:18 2023

Example of a catalog

"""
import sys
import numpy as np
import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta, Variable, Expression
from biogeme.models import boxcox
from biogeme.catalog import Catalog,
 generic_alt_specific_catalogs, segmentation_catalogs
from results_analysis import report
from swissmetro_data import (
 database,
 CHOICE,
 SM_AV,
 CAR_AV_SP,
 TRAIN_AV_SP,
 TRAIN_TT_SCALED,
 TRAIN_COST_SCALED,
 SM_TT_SCALED,
 SM_COST_SCALED,
 CAR_TT_SCALED,
```
CAR_CO_SCALED,

def print_all_configurations(expression: Expression) -> None:
    
    expression.set_central_controller()
    total =
    expression.central_controller.number_of_configurations()
    print(f'Total: {total} configurations')
    for config_id in
        expression.central_controller.all_configurations_ids:
            print(config_id)

# Parameters to be estimated
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
B_TIME = Beta('B_TIME', 0, None, None, 0)
B_COST = Beta('B_COST', 0, None, None, 0)

# Definition of the utility functions
V1 = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED
V2 = B_TIME * SM_TT_SCALED + B_COST * SM_COST_SCALED
V3 = ASC_CAR + B_TIME * CAR_TT_SCALED + B_COST * CAR_CO_SCALED

# Associate utility functions with the numbering of alternatives
V = {1: V1, 2: V2, 3: V3}

# Associate the availability conditions with the alternatives
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

# Definition of the model. This is the contribution of each
# observation to the log likelihood function.
logprob_logit = models.loglogit(V, av, CHOICE)

MU = Beta('MU', 1, 1, 10, 0)
existing = MU, [1, 3]
future = 1.0, [2]
nests = existing, future
logprob_nested = models.lognested(V, av, nests, CHOICE)

model_catalog = Catalog.from_dict(
    catalog_name='model_catalog',
    dict_of_expressions={
        'logit': logprob_logit,
        'nested': logprob_nested,
    },
)
```python
print('*** Current status of the catalog ***
print(model_catalog)
print('*** Use the controller to select a different configuration ***
model_catalog.controlled_by.set_name('nested')
print('*** Current status of the catalog ***
print(model_catalog)

print('*** Iterator ***
for specification in model_catalog:
 print(specification)
print_all_configurations(model_catalog)

print('*** Nonlinear specifications ***
TRAIN_TT = Variable('TRAIN_TT')
TRAIN_COST = Variable('TRAIN_COST')
ell_travel_time = Beta('lambda_travel_time', 1, -10, 10, 0)
linear_train_tt = TRAIN_TT
boxcox_train_tt = boxcox(TRAIN_TT, ell_travel_time)
squared_train_tt = TRAIN_TT * TRAIN_TT
train_tt_catalog = Catalog.from_dict(
 catalog_name='train_tt_catalog',
 dict_of_expressions={
 'linear': linear_train_tt,
 'boxcox': boxcox_train_tt,
 'squared': squared_train_tt,
 },
)

ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
B_TIME = Beta('B_TIME', 0, None, 0, 0)
V_TRAIN = ASC_TRAIN + B_TIME * train_tt_catalog
print_all_configurations(V_TRAIN)

print('** Unsynchronized catalogs **
CAR_TT = Variable('CAR_TT')
CAR_COST = Variable('CAR_COST')
linear_car_t = CAR_TT
boxcox_car_t = boxcox(CAR_TT, ell_travel_time)
squared_car_t = CAR_TT * CAR_TT
car_tt_catalog = Catalog.from_dict(
 catalog_name='car_tt_catalog',
 dict_of_expressions={
 'linear': linear_car_t,
 'boxcox': boxcox_car_t,
 },

```
'squared': squared_car_tt,
}
)
dummy_expression = train_tt_catalog + car_tt_catalog
print_all_configurations(dummy_expression)
print('** Synchronized catalogs **')
CAR_TT = Variable('CAR_TT')
CAR_COST = Variable('CAR_COST')
linear_car_tt = CAR_TT
boxcox_car_tt = boxcox(CAR_TT, ell_travel_time)
squared_car_tt = CAR_TT * CAR_TT
car_tt_catalog = Catalog.from_dict(
    catalog_name='car_tt_catalog',
    dict_of_expressions={
        'linear': linear_car_tt,
        'boxcox': boxcox_car_tt,
        'squared': squared_car_tt,
    },
    controlled_by=train_tt_catalog.controlled_by
)
dummy_expression = train_tt_catalog + car_tt_catalog
print_all_configurations(dummy_expression)

print('*** Alternative specific ***')
(B_TIME_catalog_dict, B_COST_catalog_dict) =
generic_alt_specific_catalogs(
    generic_name='coefficients',
    beta_parameters=[B_TIME, B_COST],
    alternatives=('TRAIN', 'CAR')
)
V_TRAIN = (B_TIME_catalog_dict['TRAIN'] * TRAIN_TT +
B_COST_catalog_dict['TRAIN'] * TRAIN_COST)
V_CAR = (B_TIME_catalog_dict['CAR'] * CAR_TT +
B_COST_catalog_dict['CAR'] * CAR_COST)
dummy_expression = V_TRAIN + V_CAR
print_all_configurations(dummy_expression)

print('*** Alternative specific - not synchronized ***')

(B_TIME_catalog_dict, ) = generic_alt_specific_catalogs(
    generic_name='time_coefficient',
    beta_parameters=[B_TIME],
    alternatives=('TRAIN', 'CAR'))

(B_COST_catalog_dict, ) = generic_alt_specific_catalogs(
    generic_name='cost_coefficient',
    beta_parameters=[B_COST],
    alternatives=('TRAIN', 'CAR'))

V_TRAIN = (B_TIME_catalog_dict['TRAIN'] * TRAIN_T +
            B_COST_catalog_dict['TRAIN'] * TRAIN_COST)

V_CAR = (B_TIME_catalog_dict['CAR'] * CAR_T +
          B_COST_catalog_dict['CAR'] * CAR_COST)

dummy_expression = V_TRAIN + V_CAR

print_all_configurations(dummy_expression)

print('*** Segmentation ***')

# We consider two trip purposes: 'commuters' and anything else.
# We need to define a binary variable first.
database.data['COMMUTERS'] = np.where(database.data['PURPOSE'] == 1, 1, 0)

segmentation_purpose = database.generate_segmentation(
    variable='COMMUTERS',
    mapping={
        0: 'non_commuters',
        1: 'commuters'
    },
    reference='non_commuters'
)

segmentation_luggage = database.generate_segmentation(
    variable='LUGGAGE',
    mapping={
        0: 'no_lugg',
        1: 'lugg'
    })
1: 'one_lugg',
3: 'several_lugg'
},
reference='no_lugg'
)

ASC TRAIN catalog, ASC CAR catalog = segmentation catalogs(
    generic_name='ASC',
    beta_parameters=[ASC TRAIN, ASC CAR],
    potential_segmentations=(
        segmentation purpose,
        segmentation luggage,
    ),
    maximum_number=2,
)

dummy_expression = ASC TRAIN catalog + ASC CAR catalog

print all configurations (dummy_expression)

ASC TRAIN catalog, ASC CAR catalog = segmentation catalogs(
    generic_name='ASC',
    beta_parameters=[ASC TRAIN, ASC CAR],
    potential_segmentations=(
        segmentation purpose,
        segmentation luggage,
    ),
    maximum_number=1,
)

dummy_expression = ASC TRAIN catalog + ASC CAR catalog

print all configurations (dummy_expression)

print ("** Segmentation and alternative specific **")

(B TIME catalog_dict,) = generic_alt specific catalogs(
    generic_name='B TIME',
    beta_parameters=[B TIME],
    alternatives=['TRAIN', 'CAR'],
    potential_segmentations=(
        segmentation purpose,
        segmentation luggage,
    ),
)
maximum_number=1,
)
print_all_configurations(B.TIME_catalog_dict['TRAIN'])
(B.TIME_catalog_dict,) = generic_alt_specific_catalogs(
generic_name='B_TIME',
beta_parameters=[B.TIME],
alternatives=['TRAIN', 'CAR'],
potential_segmentations=(
    segmentation_purpose,
    segmentation_luggage,
),
    maximum_number=2,
)
print_all_configurations(B.TIME_catalog_dict['TRAIN'])

4 Data

"""File swissmetro_data.py
:author: Michel Bierlaire, EPFL
:date: Mon Mar 6 15:17:03 2023

Data preparation for Swissmetro, and definition of the variables
"""
import pandas as pd
import biogeme.database as db
from biogeme.expressions import Variable

# Read the data
df = pd.read_csv('swissmetro.dat', sep='\t')
database = db.Database('swissmetro', df)

GROUP = Variable('GROUP')
SURVEY = Variable('SURVEY')
SP = Variable('SP')
ID = Variable('ID')
PURPOSE = Variable('PURPOSE')
FIRST = Variable('FIRST')
TICKET = Variable('TICKET')
WHO = Variable('WHO')
LUGGAGE = Variable('LUGGAGE')
AGE = Variable('AGE')
MALE = Variable('MALE')
INCOME = Variable('INCOME')
GA = Variable('GA')
ORIGIN = Variable('ORIGIN')
DEST = Variable('DEST')
TRAIN_AV = Variable('TRAIN_AV')
CAR_AV = Variable('CAR_AV')
SM_AV = Variable('SM_AV')
TRAIN_TT = Variable('TRAIN_TT')
TRAIN_CO = Variable('TRAIN_CO')
TRAIN_HE = Variable('TRAIN_HE')
SM_TT = Variable('SM_TT')
SM_CO = Variable('SM_CO')
SM.HE = Variable('SM.HE')
SM.SEATS = Variable('SM.SEATS')
CAR.TT = Variable('CAR.TT')
CAR.CO = Variable('CAR.CO')
CHOICE = Variable('CHOICE')

# Removing some observations can be done directly using pandas.
# remove = ((database.data.PURPOSE != 1) &
#            (database.data.PURPOSE != 3)) |
#            (database.data.CHOICE == 0))
# database.data.drop(database.data[remove].index, inplace=True)
# Here we use the "biogeme" way:
exclude = ((PURPOSE != 1) * (PURPOSE != 3) + (CHOICE == 0)) > 0
database.remove(exclude)

# Definition of new variables
SM.COST = database.DefineVariable('SM.COST', SM.CO * (GA == 0))
TRAIN.COST = database.DefineVariable('TRAIN.COST', TRAIN.CO *
                                     (GA == 0))
CAR.AV_SP = database.DefineVariable('CAR.AV.SP', CAR_AV * (SP
                                          != 0))
TRAIN.AV_SP = database.DefineVariable('TRAIN.AV.SP', TRAIN_AV *
                                          (SP != 0))
TRAIN_TT.SCALED = database.DefineVariable('TRAIN_TT.SCALED',
                                          TRAIN_TT / 100)
TRAIN.COST.SCALED = database.DefineVariable('TRAIN.COST.SCALED',
                                          TRAIN.COST / 100)
SM_TT.SCALED = database.DefineVariable('SM_TT.SCALED', SM_TT / 100)
SM.COST.SCALED = database.DefineVariable('SM.COST.SCALED',
                                          SM.CO / 100)
CAR.TT.SCALED = database.DefineVariable('CAR.TT.SCALED', CAR.TT
                                          / 100)
CAR.CO.SCALED = database.DefineVariable('CAR.CO.SCALED', CAR.CO
                                          / 100)
5 Reporting

"""File results_analysis
:author: Michel Bierlaire, EPFL
:date: Thu Jul 13 16:32:45 2023
"""

Reports the results of the catalog estimation

from biogeme.results import compile_estimation_results, pareto_optimal

def report(dict_of_results):
    """Reports the results of the estimated catalogs"""
    print(f'A total of {len(dict_of_results)} models have been estimated')
    print('== Estimation results ==
    compiled_results, specs = compile_estimation_results(
    dict_of_results, use_short_names=True
    )
    print(compiled_results)
    for short_name, spec in specs.items():
        print(f'{short_name}\t{spec}')
    paretos_results = paretos_optimal(dict_of_results)
    compiled_paretos_results, paretos_specs = compile_estimation_results(
    paretos_results, use_short_names=True
    )
    print(compiled_paretos_results)
    for short_name, spec in paretos_specs.items():
        print(f'{short_name}\t{spec}')

6 Estimation of a catalog with two models

"""File b01model.py
:author: Michel Bierlaire, EPFL
:date: Fri Jul 14 09:47:21 2023
"""

Investigate several choice models:
− logit
− nested logit with two nests: public and private transportation
− nested logit with two nests existing and future modes
for a total of 3 specifications.

```python
import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta
from biogeme.catalog import Catalog
from results_analysis import report
from swissmetro_data import (database,
 CHOICE,
 SM_AV,
 CAR_AV_SP,
 TRAIN_AV_SP,
 TRAIN_TT_SCALED,
 TRAIN_COST_SCALED,
 SM_TT_SCALED,
 SM_COST_SCALED,
 CAR_TT_SCALED,
 CAR_CO_SCALED,
)

Parameters to be estimated
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
B_TIME = Beta('B_TIME', 0, None, None, 0)
B_COST = Beta('B_COST', 0, None, None, 0)

Definition of the utility functions
V1 = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED
V2 = B_TIME * SM_TT_SCALED + B_COST * SM_COST_SCALED
V3 = ASC_CAR + B_TIME * CAR_TT_SCALED + B_COST * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives
V = {1: V1, 2: V2, 3: V3}

Associate the availability conditions with the alternatives
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Definition of the model. This is the contribution of each observation to the log likelihood function.
logprob_logit = models.loglogit(V, av, CHOICE)
MU_existing = Beta('MU_existing', 1, 1, 10, 0)
current = MU_existing, [1, 1]
future = 1.0, [2]
nests_existing = current, future
logprob_nested_existing = models.lognested(V, av,
 MU_existing, [1, 1],
 future = 1.0, [2]
 nests = current, future)
```

45
7 Estimation of a catalog with nonlinear specifications

---

File b02nonlinear.py

:author: Michel Bierlaire, EPFL
:date: Thu Jul 13 21:31:54 2023

Investigate of nonlinear specifications for the travel time variables:
- linear specification,
- Box-Cox transform,
- power series,
for a total of 3 specifications.

---

import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta
from biogeme.models import boxcox
from biogeme.catalog import Catalog
from results_analysis import report
from swissmetro_data import (database, CHOICE, SM_AV, CAR_AV_SP, TRAIN_AV_SP, TRAIN TT Scaled, TRAIN COST Scaled, SM TT Scaled, SM COST Scaled, CAR TT Scaled, CAR COST Scaled,)

# Parameters to be estimated
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
B_TIME = Beta('B_TIME', 0, None, 0, 0)
B_COST = Beta('B_COST', 0, None, 0, 0)

# Non linear specifications for the travel time
# Parameter of the Box-Cox transform
ell_travel_time = Beta('lambda_travel_time', 1, -10, 10, 0)

# Coefficients of the power series
square_tt_coef = Beta('square_tt_coef', 0, None, None, 0)
cube_tt_coef = Beta('cube_tt_coef', 0, None, None, 0)

def power_series(the_variable):
    """Generate the expression of a polynomial of degree 3
    :param the_variable: variable of the polynomial
    :type the_variable: biogeme.expressions.Expression
    """
    return (the_variable + square_tt_coef * the_variable**2 + cube_tt_coef * the_variable * the_variable**3)

linear_train_tt = TRAIN TT Scaled
boxcox_train_tt = boxcox(TRAIN TT Scaled, ell_travel_time)

power_train_tt = power_series(TRAIN TT Scaled)

train_tt_catalog = Catalog.from_dict(}
catalog_name='train_tt_catalog',
    dict_ofExpressions={
        'linear': linear_train_tt,
        'boxcox': boxcox_train_tt,
        'power': power_train_tt,
    },
)
linear_sm_tt = SM TT SCALED
boxcox_sm_tt = boxcox(SM TT SCALED, ell_travel_time)
power_sm_tt = power_series(SM TT SCALED)
sm_tt_catalog = Catalog.from_dict(
    catalog_name='sm_tt_catalog',
    dict_ofExpressions={
        'linear': linear_sm_tt,
        'boxcox': boxcox_sm_tt,
        'power': power_sm_tt,
    },
    controlled_by=train_tt_catalog.controlled_by,
)
linear_car_tt = CAR TT SCALED
boxcox_car_tt = boxcox(CAR TT SCALED, ell_travel_time)
power_car_tt = power_series(CAR TT SCALED)
car_tt_catalog = Catalog.from_dict(
    catalog_name='car_tt_catalog',
    dict_ofExpressions={
        'linear': linear_car_tt,
        'boxcox': boxcox_car_tt,
        'power': power_car_tt,
    },
    controlled_by=train_tt_catalog.controlled_by,
)
# Definition of the utility functions
V1 = ASC TRAIN + B_TIME * train_tt_catalog + B_COST * TRAIN_COST_SCALED
V2 = B_TIME * sm_tt_catalog + B_COST * SM_COST_SCALED
V3 = ASC CAR + B_TIME * car_tt_catalog + B_COST * CAR_COST_SCALED
# Associate utility functions with the numbering of alternatives
V = {1: V1, 2: V2, 3: V3}
# Associate the availability conditions with the alternatives
av = {1: TRAIN_AV SP, 2: SM_AV, 3: CAR_AV SP}
# Definition of the model. This is the contribution of each observation to the log likelihood function.
```
logprob = models.loglogit(V, av, CHOICE)

Create the Biogeme object
the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme.modelName = 'b02nonlinear'
the_biogeme.generate_html = False
the_biogeme.generate_pickle = False

Estimate the parameters
dict_of_results = the_biogeme.estimate_catalog()
report(dict_of_results)
```

8 Estimation of a catalog with alternative-specific coefficients

""" File b03alt_spec.py
:author: Michel Bierlaire, EPFL
:date: Thu Jul 13 16:18:10 2023

Investigate alternative specific parameters:
- two specifications for the travel time coefficient: generic, and alternative specific,
- two specifications for the travel cost coefficient: generic, and alternative specific,
for a total of 4 specifications.
"""

```
import numpy as np
import biogeme.biogeme as bio
from biogeme.models import
from biogeme.expressions import Beta
from biogeme.catalog import generic_alt_specific_catalogs

from results_analysis import report
don swissmetro_data import (database,
 CHOICE,
 SM_AV,
 CAR_AV_SP,
 TRAIN_AV_SP,
 TRAIN_TT_SCALED,
 TRAIN_COST_SCALED,
 SM_TT_SCALED,
 SM_COST_SCALED,
 CAR_TT_SCALED,
 CAR_CO_SCALED,
)```
Parameters to be estimated

ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
B_TIME = Beta('B_TIME', 0, None, None, 0)
B_COST = Beta('B_COST', 0, None, None, 0)

(B_TIME_catalog_dict,) = generic_alt_specific_catalogs(
 generic_name='B_TIME', beta_parameters=[B_TIME],
 alternatives=('TRAIN', 'SM', 'CAR')
)

(B_COST_catalog_dict,) = generic_alt_specific_catalogs(
 generic_name='B_COST', beta_parameters=[B_COST],
 alternatives=('TRAIN', 'SM', 'CAR')
)

Definition of the utility functions

V1 = (ASC_TRAIN
 + B_TIME_catalog_dict['TRAIN'] * TRAIN_TT_SCALED
 + B_COST_catalog_dict['TRAIN'] * TRAIN_COST_SCALED)

V2 = B_TIME_catalog_dict['SM'] * SM_TT_SCALED +
 B_COST_catalog_dict['SM'] * SM_COST_SCALED

V3 = (ASC_CAR
 + B_TIME_catalog_dict['CAR'] * CAR_TT_SCALED
 + B_COST_catalog_dict['CAR'] * CAR_COST_SCALED)

Associate utility functions with the numbering of alternatives
V = {1: V1, 2: V2, 3: V3}

Associate the availability conditions with the alternatives
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Definition of the model. This is the contribution of each observation to the log likelihood function.
logprob = models.loglogit(V, av, CHOICE)

Create the Biogeme object
the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme.modelName = 'b01alt_spec'
the_biogeme.generate_html = False
the_biogeme.generate_pickle = False

Estimate the parameters
dict_of_results = the_biogeme.estimate_catalog()
9 Estimation of a catalog with segmentations

We investigate the segmentations of parameters.

We consider 4 specifications for the constants:
- Not segmented
- Segmented by GA (yearly subscription to public transport)
- Segmented by luggage
- Segmented both by GA and luggage

We consider 3 specifications for the time coefficients:
- Not Segmented
- Segmented with first class
- Segmented with trip purpose

We obtain a total of 12 specifications.

```python
import numpy as np
import biogeme.biogeme as bio
from biogeme.models import Beta
from biogeme.expressions import segmentation
from results_analysis import report
from swissmetro_data import (database,
                             CHOICE,
                             SM_AV,
                             CAR_AV_SP,
                             TRAIN_AV_SP,
                             TRAIN_TT_SCALED,
                             TRAIN_COST_SCALED,
                             SM_TT_SCALED,
                             SM_COST_SCALED,
                             CAR_TT_SCALED,
                             CAR_COST_SCALED,
)

segmentation_ga = database.generate_segmentation(
    variable='GA', mapping={0: 'noGA', 1: 'GA'})
```
segmentation_luggage = database.generate_segmentation(
 variable='LUGGAGE', mapping={0: 'no_lugg', 1: 'one_lugg', 3: 'several_lugg'}
)

database.data['COMMUTERS'] = np.where(database.data['PURPOSE'] == 1, 1, 0)

Parameters to be estimated
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
B_TIME = Beta('B_TIME', 0, None, None, 0)
B_COST = Beta('B_COST', 0, None, None, 0)

ASC_TRAIN_catalog, ASC_CAR_catalog = segmentation_catalogs(
 generic_name='ASC',
 beta_parameters=[ASC_TRAIN, ASC_CAR],
 maximum_number=2,
)

Note that the function returns a list of catalogs. Here, the list
contains only one of them. This is why there is a comma after
B_TIME_catalog,) = segmentation_catalogs(
 generic_name='B_TIME',
 beta_parameters=[B_TIME],
 segmentation_first, segmentation_purpose,
)

We consider two trip purposes: 'commuters' and anything else.
We need to define a binary variable first

Parameters to be estimated
Definition of the utility functions
V1 = ASC_TRAIN_catalog + B_TIME_catalog * TRAIN_TT_SCALED +
 B_COST * TRAIN_COST_SCALED
V2 = B_TIME_catalog * SM_TT_SCALED + B_COST * SM_COST_SCALED
V3 = ASC_CAR_catalog + B_TIME_catalog * CAR_TT_SCALED + B_COST
 * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives
V = {1: V1, 2: V2, 3: V3}

Associate the availability conditions with the alternatives
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Definition of the model. This is the contribution of each
observation to the log likelihood function.
logprob = models.loglogit(V, av, CHOICE)

Create the Biogeme object
the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme.modelName = 'b04segmentation'
the_biogeme.generate_html = False
the_biogeme.generate_pickle = False

Estimate the parameters
dict_of_results = the_biogeme.estimate_catalog()
report(dict_of_results)

10 Estimation of a catalog with segmentations and alternative-specific coefficients

We consider 6 specifications for the time coefficients:
- Generic and not segmented
- Generic and segmented with first class
- Generic and segmented with trip purpose
- Alternative specific and not segmented
- Alternative specific and segmented with first class
- Alternative specific and segmented with trip purpose

We consider 2 specifications for the cost coefficients:
- Generic
- Alternative specific

We obtain a total of 48 specifications.

```python
import numpy as np
import biogeme.biogeme as bio
from biogeme.models import Beta
from biogeme.expressions import Beta
from biogeme.catalog import segmentation_catalogs,
generic_alt_specific_catalogs
from results_analysis import report
from swissmetro_data import (database, 
    CHOICE, 
    SM_AV, 
    CAR_AV_SP, 
    TRAIN_AV_SP, 
    TRAIN TT_SCALED, 
    TRAIN COST_SCALED, 
    SM TT_SCALED, 
    SM COST_SCALED, 
    CAR TT_SCALED, 
    CAR CO_SCALED, 
)

segmentation_ga = database.generate_segmentation(
    variable='GA', mapping={0: 'noGA', 1: 'GA'}
)

segmentation_luggage = database.generate_segmentation(
    variable='LUGGAGE', mapping={0: 'no_lugg', 1: 'one_lugg', 3: 'several_lugg'}
)

segmentation_first = database.generate_segmentation(
    variable='FIRST', mapping={0: '2nd_class', 1: '1st_class'}
)
```
We consider two trip purposes: 'commuters' and anything else.

We need to define a binary variable first

database.data['COMMUTERS'] = np.where(database.data['PURPOSE']
 == 1, 1, 0)

segmentation_purpose = database.generate_segmentation(
 variable='COMMUTERS', mapping={0: 'non_commuters', 1: 'commuters'}
)

Parameters to be estimated
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
B_TIME = Beta('B_TIME', 0, None, None, 0)
B_COST = Beta('B_COST', 0, None, None, 0)

ASC_TRAIN_catalog, ASC_CAR_catalog = segmentation_catalogs(
 generic_name='ASC',
 beta_parameters=[ASC_TRAIN, ASC_CAR],
 potential_segmentations=(
 segmentation_ga,
 segmentation_luggage,
 maximum_number=2,
)
)

(B_TIME_catalog_dict,) = generic_alt_specific_catalogs(
 generic_name='B_TIME',
 beta_parameters=[B_TIME],
 alternatives=['TRAIN', 'SM', 'CAR'],
 potential_segmentations=(
 segmentation_first,
 segmentation_purpose,
 maximum_number=1,
)
)

(B_COST_catalog_dict,) = generic_alt_specific_catalogs(
 generic_name='B_COST', beta_parameters=[B_COST],
 alternatives=['TRAIN', 'SM', 'CAR'])

Definition of the utility functions
V1 = (
ASC_TRAIN_catalog
+ B.TIME_catalog.dict['TRAIN'] * TRAIN TT SCALED
+ B.COST_catalog.dict['TRAIN'] * TRAIN COST SCALED
)
V2 = B.TIME_catalog.dict['SM'] * SM TT SCALED +
B.COST_catalog.dict['SM'] * SM COST SCALED
V3 = (ASC_CAR_catalog
+ B.TIME_catalog.dict['CAR'] * CAR TT SCALED
+ B.COST_catalog.dict['CAR'] * CAR CO SCALED
)

Associate utility functions with the numbering of alternatives
V = {1: V1, 2: V2, 3: V3}

Associate the availability conditions with the alternatives
av = {1: TRAIN AV SP, 2: SM AV, 3: CAR AV SP}

Definition of the model. This is the contribution of each
observation to the log likelihood function.
logprob = models.loglogit(V, av, CHOICE)

Create the Biogeme object
the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme.modelName = 'b05alt_spec_segmentation'
the_biogeme.generate_html = False
the_biogeme.generate_pickle = False

Estimate the parameters
dict_of_results = the_biogeme.estimate_catalog()
report(dict_of_results)

11 Specification of a catalog with 432 configurations

"""File everything_spec.py
:author: Michel Bierlaire, EPFL
:date: Sat Jul 15 15:40:33 2023

We investigate various specifications:
- 3 models
 - logit
 - nested logit with two nests: public and private transportation
 - nested logit with two nests existing and future modes
- 3 functional forms for the travel time variables"""
linear specification,
- Box–Cox transform,
- power series,

- 2 specifications for the cost coefficients:
 - generic
 - alternative specific

- 2 specifications for the travel time coefficients:
 - generic
 - alternative specific

- 4 segmentations for the constants:
 - not segmented
 - segmented by GA (yearly subscription to public transport)
 - segmented by luggage
 - segmented both by GA and luggage

- 3 segmentations for the time coefficients:
 - not segmented
 - segmented with first class
 - segmented with trip purpose

This leads to a total of 432 specifications.

```python
import numpy as np
from biogeme import models
from biogeme.expressions import Beta
from biogeme.catalog import (Catalog,
    segmentation_catalogs,
    generic_alt_specific_catalogs,
)

from swissmetro_data import (database,
    CHOICE,
    SM_AV,
    CAR_AV_SP,
    TRAIN_AV_SP,
    TRAIN_TT_SCALED,
    TRAIN_COST_SCALED,
    SM_TT_SCALED,
    SM_COST_SCALED,
    CAR_TT_SCALED,
    CAR_CO_SCALED,
)

segmentation_ga = database.generate_segmentation(
    variable='GA', mapping={0: 'noGA', 1: 'GA'}
)

segmentation_luggage = database.generate_segmentation(

```
variable='LUGGAGE', mapping={0: 'no_lugg', 1: 'one_lugg',
3: 'several_lugg'}

segmentation_first = database.generate_segmentation(
 variable='FIRST', mapping={0: '2nd_class', 1: '1st_class'})

We consider two trip purposes: 'commuters' and anything else.
We need to define a binary variable first
database.data['COMMUTERS'] = np.where(database.data['PURPOSE']
 == 1, 1, 0)
segmentation_purpose = database.generate_segmentation(
 variable='COMMUTERS', mapping={0: 'non_commuters', 1:
'commuters'})

Parameters to be estimated
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
B_TIME = Beta('B_TIME', 0, None, None, 0)
B_COST = Beta('B_COST', 0, None, None, 0)

Non linear specifications for the travel time
Parameter of the Box-Cox transform
ell_travel_time = Beta('lambda_travel_time', 1, -10, 10, 0)
Coefficients of the power series
square_tt_coef = Beta('square_tt_coef', 0, None, None, 0)
cube_tt_coef = Beta('cube_tt_coef', 0, None, None, 0)

def power_series(the_variable):
 """Generate the expression of a polynomial of degree 3
 :param the_variable: variable of the polynomial
 :type the_variable: biogeme.expressions.Expression
 """
 return (the_variable
 + square_tt_coef * the_variable**2
 + cube_tt_coef * the_variable**3
)
```python
linear_train_tt = TRAIN_TT_SCALED
boxcox_train_tt = models.boxcox(TRAIN_TT_SCALED,
    ell_travel_time)
power_train_tt = power_series(TRAIN_TT_SCALED)
train_tt_catalog = Catalog.from_dict(
catalog_name='train_tt_catalog',
dict_of_expressions={
    'linear': linear_train_tt,
    'boxcox': boxcox_train_tt,
    'power': power_train_tt,
},
)

linear_sm_tt = SM_TT_SCALED
boxcox_sm_tt = models.boxcox(SM_TT_SCALED, ell_travel_time)
power_sm_tt = power_series(SM_TT_SCALED)
sm_tt_catalog = Catalog.from_dict(
catalog_name='sm_tt_catalog',
dict_of_expressions={
    'linear': linear_sm_tt,
    'boxcox': boxcox_sm_tt,
    'power': power_sm_tt,
},
controlled_by=train_tt_catalog.controlled_by,
)

linear_car_tt = CAR_TT_SCALED
boxcox_car_tt = models.boxcox(CAR_TT_SCALED, ell_travel_time)
power_car_tt = power_series(CAR_TT_SCALED)
car_tt_catalog = Catalog.from_dict(
catalog_name='car_tt_catalog',
dict_of_expressions={
    'linear': linear_car_tt,
    'boxcox': boxcox_car_tt,
    'power': power_car_tt,
},
controlled_by=train_tt_catalog.controlled_by,
)

ASC_TRAIN_catalog, ASC_CAR_catalog = segmentation_catalogs(
generic_name='ASC',
beta_parameters=[ASC_TRAIN, ASC_CAR],
potential_segmentations=(
    segmentation_ga,
    segmentation_luggage,
),

```
maximum_number=2,
)

(B_TIME_catalog_dict,) = generic_alt_specific_catalogs(
 generic_name='B_TIME',
 beta_parameters=[B_TIME],
 alternatives=['TRAIN', 'SM', 'CAR'],
 potential_segmentations=(
 segmentation_first,
 segmentation_purpose,
),
 maximum_number=1,
)

(B_COST_catalog_dict,) = generic_alt_specific_catalogs(
 generic_name='B_COST', beta_parameters=[B_COST],
 alternatives=['TRAIN', 'SM', 'CAR']
)

Definition of the utility functions
V1 = (ASC_TRAIN_catalog + B_TIME_catalog_dict['TRAIN'] * train_tt_catalog + B_COST_catalog_dict['TRAIN'] * TRAIN_COSTSCALED)
V2 = B_TIME_catalog_dict['SM'] * sm_tt_catalog + B_COST_catalog_dict['SM'] * SM_COSTSCALED
V3 = (ASC_CAR_catalog + B_TIME_catalog_dict['CAR'] * car_tt_catalog + B_COST_catalog_dict['CAR'] * CAR_CO_SCALED)

Associate utility functions with the numbering of alternatives
V = {1: V1, 2: V2, 3: V3}

Associate the availability conditions with the alternatives
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Definition of the model. This is the contribution of each
observation to the log likelihood function.
logprob_logit = models.loglogit(V, av, CHOICE)

MU_existing = Beta('MU_existing', 1, 1, 10, 0)
existing = MU_existing, [1, 3]
future = 1.0, [2]

ests_existing = existing, future
logprob_nested_existing = models.lognested(V, av,
12 Assisted Specification of a catalog with 432 configurations
This leads to a total of 432 specifications.
The algorithm implemented in the AssistedSpecification object is used to investigate some of these specifications.

```python
import biogeme.logging as blog
import biogeme.biogeme as bio
from biogeme.assisted import AssistedSpecification
from biogeme.multiobjectives import loglikelihood_dimension
from everything_spec import model_catalog, database
from results_analysis import report

logger = blog.get_screen_logger(level=blog.DEBUG)
logger.info('Example b07everything_assisted')

PARETO_FILE_NAME = 'b07everything_assisted.pareto'

def validity(results):
    """Function verifying that the estimation results are valid.
    The results are not valid if any of the time or cost
    coefficient is non negative."
    for beta in results.data.betas:
        if 'TIME' in beta.name and beta.value >= 0:
            return False, f'{beta.name} = {beta.value}'
        if 'COST' in beta.name and beta.value >= 0:
            return False, f'{beta.name} = {beta.value}'
    return True, None

# Create the Biogeme object
the_biogeme = bio.BIOGEME(database, model_catalog)
the_biogeme.modelName = 'b07everything'
the_biogeme.generate_html = False
the_biogeme.generate_pickle = False

# Estimate the parameters
assisted_specification = AssistedSpecification(
    biogeme_object=the_biogeme,
    multi_objectives=loglikelihood_dimension,
    pareto_file_name=PARETO_FILE_NAME,
    validity=validity,
)
```
non-dominated_models = assisted_specification.run()
report(non-dominated_models)

13 Postprocessing

""" File b09post_processing.py
:author: Michel Bierlaire, EPFL
:date: Thu Jul 20 17:15:37 2023

We consider the model with 432 specifications:
- 3 models
 - logit
 - nested logit with two nests: public and private transportation
 - nested logit with two nests existing and future modes
- 3 functional form for the travel time variables
 - linear specification,
 - Box-Cox transform,
 - power series,
- 2 specification for the cost coefficients:
 - generic
 - alternative specific
- 2 specification for the travel time coefficients:
 - generic
 - alternative specific
- 4 segmentations for the constants:
 - not segmented
 - segmented by GA (yearly subscription to public transport)
 - segmented by luggage
 - segmented both by GA and luggage
- 3 segmentations for the time coefficients:
 - not segmented
 - segmented with first class
 - segmented with trip purpose

This leads to a total of 432 specifications.

After running the assisted specification algorithm, we use post processing to re-estimate all Pareto optimal models, and display some information about the algorithm

""
try:
 import matplotlib.pyplot as plt
can_plot = True
except ModuleNotFoundError:
 can_plot = False
import biogeme.logging as blog
import biogeme.biogeme as bio
from biogeme.assisted import ParetoPostProcessing

from everything_spec import model_catalog, database
logger = blog.getLogger(level=blog.INFO)
logger.info('Example b08selected_specification')
PARETO_FILE_NAME = 'b07everything_assisted.pareto'
the_biogeme = bio.BIOGEME(database, model_catalog)
the_biogeme.modelName = 'b09post_processing'
post_processing = ParetoPostProcessing(
 biogeme_object=the_biogeme,
 pareto_file_name=PARETO_FILE_NAME)

if can_plot:
 _ = post_processing.plot(
 label_x='Nbr of parameters',
 label_y='Negative log likelihood',
 objective_x=1,
 objective_y=0,
)
 plt.savefig('pareto.eps', format='eps', dpi=300)