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1 Introduction
Real-world choice situations are often dynamic - choices made in the present are depen-
dent on choices made in the past and, in turn, will also affect future choices. For the sake
of illustration, consider the simple example of a student who is given a weekly budget to
purchase her lunch in the school canteen. The choice of which option to take for lunch
on any one day is dependent on the student’s remaining budget, which itself is dependent
on the purchases she has made up until that point. Furthermore, the student’s perceptions
of each available option may also be dependent on her previous choices. For example,
the student may learn over time which types of food in the canteen tend to be higher
quality. Finally, the student might include future planning in her decision process. For
example, she may choose a lower cost option one day to ensure she has enough budget
for her favourite (and more-expensive) option which tends to be offered on a later day in
the week.

Dynamic choice models are a family of models that describe sequential choices (such
as those described in the above example) by attempting to capture changes in the deci-
sion process over time. Estimating these models therefore requires panel data, which
provides details of multiple sequential choices of individuals over time. There are many
possible mechanisms for dynamic behaviour, each of which may be included (or not) in
different modelling scenarios. The situation described above presents three; (i) changes in
external factors over time, (ii) habitual behaviour and learning, and (iii) forward-looking
planning.

There are a plethora of other situations where individuals are faced with sequential
choices over extended periods of time. Examples include: car ownership decisions (there
is an extensive literature on this topic, see, Cirillo et al., 2015, for a survey); retirement
planning (Rust & Phelan, 1997); and career decisions (Keane & Wolpin, 1997). Further-
more, certain choice situations that take place over relatively short periods of time can
be naturally formalized as sequential decision-making problems. Route choice is such an
example (Zimmermann & Frejinger, 2020) and we use it for the sake of illustration in the
following.

Consider an individual choosing a path in a network composed of a set of nodes and a
set of arcs. Here we consider the case when the network represents a road network where
each node corresponds to an intersection and each arc to a road segment (Fosgerau et al.,
2013). We note that the network could also be an abstract representation of many differ-
ent choices. Examples include daily transportation mode and activity choices (Västberg
et al., 2019) and location choice (Danalet et al., 2016). An individual’s choice of path be-
tween a given origin-destination pair can be decomposed into a sequence of arc choices,
where, starting at the origin and at each intersection, the individual chooses the next road
segment. While making the choice of road segment, the individual is forward-looking
as she seeks to reach the destination. If she is perfectly forward-looking, then a sequen-
tial choice model can be equivalent to a non-sequential (path-based) one (Fosgerau et al.,
2013). However, the sequential model presents a number of advantages over path-based
approaches, in particular from a computational point of view.

In this chapter, we present a generalised formulation of the dynamic choice problem,
and demonstrate how it encapsulates the three aforementioned mechanisms. This problem
formulation is then used to derive a general parametric dynamic choice model which can
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be estimated from data. Finally, we show how different assumptions on our generalised
parametric model can be used to derive various examples of dynamic choice models from
the literature. This approach allows us to unify the diverse existing dynamic choice mod-
elling approaches in the literature under a unified framework and illustrate the differences
between models through their implied assumptions.

We use the following notation throughout the chapter. An individual n makes choices
within a set C of J alternatives over a time horizon. The latter is discretised in several time
intervals indexed by t “ 0, . . . , T , not necessarily of equal length. The assumption is that
all the variables involved in the process are constant within each time interval, but may
vary from one interval to the next. The number of time intervals (T ` 1) is supposed to
be finite. For the sake of notational simplicity and without loss of generality, the set C
is assumed to be constant over n and t, and contains every possible alternative that can
be chosen by all individuals across all time intervals. The notation in this chapter obeys
the following convention: (i) lower case letters refer to deterministic variables; (ii) upper
case letters refer to random variables; and (iii) Greek letters are used to refer to model
parameters and error terms.

The rest of this chapter is laid out as follows. In the following section, we outline
the dynamic discrete choice problem from the point of view of the decision maker and
introduce the utility maximization problem they solve at each time t. Section 3 then
presents the same problem from the point of view of the analyst and introduces the dy-
namic programming formulation of the optimization problem faced by the decision maker.
In Section 4, we specify a general parametric model and summarise how it can be esti-
mated from historic data. Section 5 then introduces two different approaches to account
for habitual behaviour and learning, based on the Markov assumption. Once the gener-
alised parametric model has been established, Section 6 demonstrates how different types
of dynamic choice models in the literature can be derived through applying specific as-
sumptions on the parameters of the generalised model. Finally, Section 7 summarises the
chapter and presents avenues for future research.

2 The point of view of the decision maker
At time interval t, the individual n chooses a single alternative int in the choice set C. The
availability of each alternative for each individual at each time interval is characterized by
binary variables aint, with value 1 if alternative i is available for individual n at time t,
and 0 otherwise1. The choice made by the individual is based on the knowledge acquired
from the past as well as the anticipation of the impact of the choice on future outcomes.
The decision variables are defined as

yint “

"

1 if i “ int,
0 otherwise. (1)

We denote by ynt “ y1:J,nt the decision vector for individual n at time t and by yn “
yn,0:T the trajectory, that is, the sequence of decisions made by individual n over time. It
is useful to consider the set of the J feasible decisions that any individual can take at any

1The inclusion of availability indicators a allows for a constant choice set C (as specified in Section 1)
without any loss of generality.
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point in time. This is denoted by

Y “ tδi, i P Cu, (2)

where δi is a vector of length J, such that all entries are zero, except entry i that is 1. It
characterizes the choice of alternative i. We can also consider the set of feasible trajecto-
ries, i.e., the set of feasible decisions that an individual can take during the whole horizon.
This is obtained by considering the Cartesian product of Y over time:

T “
T

ą

s“0

Y. (3)

The cardinality of T is pT ` 1qJ, which is usually too large to allow for an explicit enu-
meration of the set.2 We also denote by

Tt “
T

ą

s“t

Y (4)

the set of trajectories starting at time t.
The data that is available to the decision maker at time interval t to perform her choice

is represented by the vector x̃nt. This vector contains all information the decision maker
uses to make her decision, including attributes of each alternative in the choice set (pos-
sibly including their historical values), as well as her previous choices and outcomes (i.e.
utility functions). This allows for habits and learning to be captured, as discussed in Sec-
tion 5. The vector also includes context variables, that may vary over time (e.g., weather),
and the availability indicators aint. Note that the vector x̃nt may contain both discrete and
continuous variables. However, in order to simplify the formulations below, we systemat-
ically use integrals and density functions, as if all explanatory variables were continuous.

The individual may also anticipate the impact of her decision on the future values
of the explanatory variables. As such, if t is the current time interval, then for a future
interval s ą t, X̃nsptq is a vector of random variables. which represents the individual’s
anticipated values of the explanatory variables at time s, as a consequence of the choice
made in the current time interval t. This anticipation is represented by a probability
density function (pdf):

fX̃nsptqpx|ynt, x̃ntq, t ă s ď T, (5)

where the notation X̃nsptq emphasizes that the anticipation of the values of the variables
at time s may change over time t. This reflects the ability of the individual to update
their expectations of the future variables as time unfolds. Note that the decision maker
has many possible ways to anticipate the future. For example, they may consider hypo-
thetical scenarios based on prior experiences or perceptions, or consult online databases/
information services, etc. These sources of information can be included in x̃nt without
loss of generality.

Assuming the individual n is rational, she evaluates a vector of utility (aka payoff or
reward)

ũnt “ ũpx̃ntq P RJ, (6)
2Note that if C contains alternatives that are not available to all individuals at all times, then T also

contains trajectories that cannot be chosen.
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for each time interval. The function ũ captures the decision maker’s individual prefer-
ences, including how the variables in x̃nt affect her derived utility of each alternative. If t
is the current time interval, ũpX̃nsptqq is the individual’s anticipated future utility at time
s ą t, based on her anticipation of the values of variables considered at time t. The lower
case notation for ũ emphasizes that the only source of randomness in the utility comes
from the anticipated values of the variables.

In the final time interval t “ T , the decision maker simply maximizes the utility at
time T

max
yTPY

yTT ũpx̃nT q, (7)

where yT represents a fixed choice at time T . For all remaining time intervals t ă T ,
the decision maker maximizes the total expected (discounted) utility, that is the utility at
time t, plus the expected utility in future time intervals,

max
yPTt

yTt ũpx̃ntq ` EX̃n,t`1:T ptq

˜

T
ÿ

s“t`1

ρs´tn yTs ũpX̃nsptqq

¸

, t ă T, (8)

where: (i) Tt is the set of all trajectories starting at time t as defined by (4),
(ii) y “ pyt, yt`1, ..., yT q represents a single possible trajectory with a fixed choice yt
and anticipated future choices ys, and (iii) 0 ď ρn ď 1 is a discount factor. Note that
the decision maker does not commit to the anticipated choices ys where s ą t, as they
are based on anticipated information. The trajectory yn “ yn,0:T chosen by the individual
is hence the result of solving (8) at each time t “ 1, . . . , T . The diagram in Figure 1
illustrates the point of view of the decision maker, including the relationships between the
variables introduced in this section.

ũnt

x̃nt

ynt

ũn,t`1

X̃n,t`1ptq

ũn,t´1

x̃n,t´1

yn,t´1

ũnT

Figure 1: Illustration of the variables involved in the decision making process at the cur-
rent time interval t. The shape of a node represents its nature: Circle = latent variable,
square = observed variable. For clarity of the diagram, the dependence of the choice on
future (anticipated) values of the utility are shown as dotted arrows.

The value of the discount factor ρn can reflect different types of behaviour. A value
of ρn “ 0 describes a fully myopic behaviour, where the individual evaluates only the
utility at time t without taking into account the future consequences of their decisions.
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Conversely, a value of ρn “ 1 implies a fully forward-looking behaviour, where the indi-
vidual values equally the utility at time t and the expected utility in future time intervals.
Values 0 ă ρn ă 1 represents limited forward-looking planning, where the individual ac-
counts for the expected utility in future time intervals, but places decreasing importance
on the expected utility as s (and therefore the prediction horizon s´ t) increases.

In the next section we take the point of view of the analyst. We show that the decision-
making problem (8) can be formulated as a dynamic programming problem using Bell-
man’s principle of optimality. Note that, for that purpose, the additive specification (8) of
the utility function of the trajectory is critical.

3 The point of view of the analyst
The objective of the analyst is to specify a model that can accurately predict individuals’
sequences of unobserved choices. In addition, it is often desirable that the models and the
resulting predictions are interpretable. Crucially, the prediction and estimation problems
must be computationally tractable. In this section we describe the individual’s choice
problem introduced in the previous section, acknowledging that the analyst does not have
perfect knowledge of its elements. Furthermore, for computational tractability, we intro-
duce a dynamic programming formulation of the optimization problem (8). Section 4 is
devoted to a parametric formulation and maximum likelihood estimation.

Based on Bellman’s principle of optimality (Bellman, 1952), the idea of dynamic pro-
gramming is to construct the optimal trajectory for (8) piece by piece (see, e.g., Bertsekas,
2017). More precisely, this is achieved by solving a backward recursive formulation of
value functions defined by the Bellman equation.

In this recursive context, we specify the model for the anticipation of the future vari-
ables (5) one time interval at a time. For s ě t, the random variable X̃n,s`1ptq represents
the anticipation of the explanatory variables for time interval s ` 1, performed at time t.
It is characterized by the pdf

fX̃n,s`1ptq
px|yns, X̃nsptqq, t ď s ă T. (9)

This is the analyst’s attempt to approximate (5) in a recursive way. As in (5), the notation
X̃n,s`1ptq emphasizes that the anticipation of the values of the variables at time s` 1 may
change over time t. Note that, if s “ t, the explanatory variables x̃nt are observed and
not anticipated, and

X̃ntptq “ x̃nt. (10)

The analyst does not have access to the true utility functions ũ. Furthermore, they do
not have access to all of the variables considered by the decision-maker, and instead only
have access to a vector of observable variables, which we denote xnt (see Section 4.3).
As such, the values of the utility are modeled using random variables denoted U. The
randomness of the utility functions is motivated by random utility theory (e.g., Manski,
1973, Manski, 1977).

If the present time is t, we recursively define, for a considered interval s ě t, a
global utility U 1ipX̃nsptqq for each alternative i, which involves an instantaneous utility
UipX̃nsptqq, and a future utility WipX̃nsptqq. This formulation reflects the fact that the
anticipation of the future variables in (5) and (9) is not constant over time. At the present
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time t, the individual can consider the choice at present or future time interval s, where
t ď s ď T . The anticipated values of the variables at time s are represented by X̃nsptq.
The instantaneous utility Ui represents the utility the individual expects to derive from
choosing alternative i P C, based on the anticipated values of the variables at time s. The
future utilityWi then represents the expected maximum total utility over subsequent time
intervals s ` 1, ..., T , assuming alternative i is chosen at time s, where s ă T . To reflect
this, we also define a value function w˚nsptq, that captures the expected maximum global
utility of choosing alternative i at time s, considered at the current time t. A recursive
definition is the key to unifying the notation of the general dynamic choice model, and
allows us to derive the choice probabilities using Bellman’s equation.

The recursive definition works backwards. At time interval s “ T , the anticipated
utility is simply the instantaneous utility, that is

U 1ipX̃nT ptqq “ UipX̃nT ptqq, t ď T. (11)

The value function is defined as the expected optimal value of the problem (8) solved by
the decision maker:

w˚nT ptq “ w
˚
pX̃nT ptqq “ EUrmax

jPC
U 1jpX̃nT ptqqs, t ď T. (12)

For t ď s ă T , the global utility of alternative i is defined as

U 1ipX̃nsptqq “ UipX̃nsptqq ` ρnWipX̃nsptqq, t ď s ă T, (13)

where: (i) UipX̃nsptqq is the instantaneous utility for time s, as evaluated at time t,
(ii)WipX̃nsptqq is the utility to be obtained in the future if alternative i is chosen at time s,
and (iii) ρn is the individual discount factor introduced in (8). Furthermore, the expected
future utility when choosing i at s is

WipX̃nsptqq “ EX̃n,s`1ptq
rw˚n,s`1ptq|yns “ δis,

“

ż

x

w˚n,s`1pxqfX̃n,s`1ptq
px|δi, X̃nsptqqdx, t ď s ă T,

(14)

where fX̃n,s`1ptq
is the pdf (9) of X̃n,s`1ptq. Then, the value function at time s is defined as

w˚nsptq “ w
˚
pX̃nsptqq “ Ermax

jPC
U 1jpX̃nsptqqs, t ď s ă T. (15)

By substituting (11) into (12) and (13) into (15) we obtain the full form value function at
time t:

w˚nsptq “

$

’

’

’

’

’

&

’

’

’

’

’

%

Ermax
jPC
UjpX̃nsptqq `

ρn

ż

x

w˚n,s`1pxqfX̃n,s`1ptq
px|δj, X̃nsptqqdxs,

s ă T ,

Ermax
jPC

UjpX̃nT ptqqs, s “ T .

(16)

The choice model, that is, the probability of choosing int at time t is

Ppint|x̃nt, Cq “ ProbpU 1ipx̃ntq ě U
1
jpx̃ntq, @j P Cq, (17)
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or, equivalently,

Ppynt|x̃nt, Cq “ ProbpyTntU
1
px̃ntq ě δ

T
jU

1
ntpx̃ntq, @j P Cq. (18)

Thus far, we have not made any distributional assumptions on the random variables
X̃n,s`1ptq andUipX̃nsptqq. In the next section, we propose parametric model specifications
and discuss maximum likelihood estimation.

4 A general parametric model and estimation
We introduce in this section the modelling assumptions that allow the analyst to derive a
likelihood function associated with the data.

4.1 Parametric model
The first assumption of the parametric model is that the distribution (9) of the future
explanatory variables can be modeled with a Markov chain

X̃n,s`1ptq “ hpyns, X̃nsptq; θhq ` α
x
n ` λ

s`1´t
ν νn,s`1, t ď s ă T, (19)

where: (i) θh and λν ě 1 are parameters, (ii) X̃ntptq “ x̃nt, (iii) αxn are i.i.d. across
n with pdf fαxpx; θαxq, and (iv) νn,s`1 are i.i.d. across n and s, with pdf fνpx; θνq, and
independent from t. The first term captures the dynamics of the incremental anticipation,
independently of s ´ t. For instance, it may include the impact of the purchase of item i

on the income available for the next time interval. The second term is an error term
specific to individual n and constant over time3. The third term is an error term defined
such that its variance increases with s being further away in the future3 (i.e., as s ´ t
increases), capturing the fact that the quality of the anticipation decreases with time. Note
that the presence of αxn explicitly captures serial correlation of the error terms, so that the
assumption that νns are independent across s is acceptable4.

Recall from (5) that X̃ns can include both historical values of the attributes of the alter-
natives, as well as sources of information to consult the future, such as online databases.
By including historical values in X̃ns, the Markov chain in (19) can represent any possible
form of the anticipation of the future explanatory variables.

If fν is the pdf of νn,s`1, we have

fX̃n,s`1ptq
px|yns, X̃nsptq, α

x
nq “

1

λs`1´tν

fν

ˆ

x´ hpyns, X̃nsptq; θhq ´ α
x
n

λs`1´tν

; θν

˙

. (20)

Note that fν is not indexed by s, n or t, because of the i.i.d. assumption. The variations
across time and individuals are explicitly captured by the specification (19).

3Note that the two superscripts in (19) have different meanings. The superscript x in αxn indicates that
this error term relates to the explanatory variables (as opposed to αUin introduced in (21) which relates to
the utilities). Conversely, the s` 1´ t in λs`1´t

ν is an exponent which increases the variance of νn,s`1 as
s´ t increases.

4Note that in the presence of very long observation periods, the random parameters in (19) can be
replaced by fixed parameters (see Section 4.2).
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For the utility function, it is convenient to capture the sources of randomness using an
additive specification. We model (13) as

U 1ipX̃nsptqq “ V
1
i pX̃nsptqq ` α

U
in ` λ

s´t
ε εins, t ď s ď T (21)

where the first term is deterministic, conditional on X̃nsptq. It is defined as

V 1i pX̃nsptqq “ VipX̃nsptqq ` ρnWipX̃nsptqq, t ď s ď T. (22)

The error term has two components: αUin, i.i.d. across n and constant over t, with pdf
fαUpx; θαUq, and εins, i.i.d. across n and s, with pdf fεpx; θεq, and independent from
t. Similarly to the specification of the future variables (19), the term αUin captures serial
correlation5, and it is explicitly assumed that the variance of the error term increases by a
factor λε at each time interval6. .

The type of choice model is implied by the assumption on the error terms εnt. For
example, if they are assumed to be i.i.d. Extreme Value distributed with scale parameter µ,
then the value function (15) is

w˚pX̃nsptqq “ EαUn rEεnsrmax
iPC

U 1inspX̃nsptqqss

“ EαUn

«

1

µst
ln
ÿ

iPC
exppµstpV 1intpX̃nsptqq ` α

U
inqq

ff

,
(23)

where
µst “

µ

λs´tε

(24)

is the scale parameter. In this case the choice model (18) is a mixture of logit models,

Ppint|x̃ntq “ EαUn
“

Ppint|x̃nt, α
U
n q
‰

, (25)

where

Ppint|x̃nt, α
U
n q “

exppµstpV 1intpx̃ntq ` α
U
inqq

ř

jPC exppµstpV 1jntpx̃ntq ` α
U
jnqq

. (26)

It is also assumed that the error components αxn, νn,s`1, αUin, and εin are all indepen-
dent from each other.

The unknown parameters are:

• the parameters of the utility functions, that have not yet been introduced, and that
we denote by β,

• the discounting parameters ρn,

• the parameters of the variables anticipation model θh,

• the variance inflation parameters λν and λε,
5As with (19), in the presence of very long observation periods, the random parameters in (21) can be

replaced by fixed parameters (see Section 4.2).
6As with (19), the superscripts in (21) have different meanings: The superscript U in αUin indicates that

this error term relates to the utilities, whilst the s ´ t in λs´t
ε is an exponent which increases the variance

of εins as s´ t increases.
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• the parameters of the distribution of the individual effects (these are commonly
referred to as agent effects), θαx and θαU , and

• the parameters of the pdf of ν, θν.

We denote by θ the vector of all these parameters.

4.2 Agent effects
In the previous section, we introduced the agent effects αUn and αxn as random variables,
which are distributed across the population. This is known as a random-effects model. For
example, the utility agent effects could be distributed according to a normal distribution

αUn „ Np0, Σq. (27)

However, in the presence of very long observation periods where there are many obser-
vations per individual, the agent effects can instead be modelled as fixed. This is known
as a fixed-effects model. Models with fixed effects consider αn as individual-specific vec-
tors of unknown parameters to be estimated from data. For example, in a fixed-effects
model, αUn would contain one parameter for each alternative i P J, with one parameter
normalised to zero, such that for N individuals or homogeneous classes of individuals,
NpJ´ 1q parameters must be calculated.

Whilst dynamic models typically make use of random effects (see Section 6), there
has been extensive investigation of the use of fixed effects for static models with panel
data, where the sequence of choices made by an individual is considered independent
over time. Static models can be considered as a restricted version of the general para-
metric model, where the individual behaves myopically (i.e. ρ “ 0) and the choice made
is independent of previous time periods. For example, consider a stated preference sur-
vey, where each respondent provides their indicated choice for a sequence of independent
hypothetical choice situations. Under certain conditions (assuming in particular that the
effect of survey fatigue is low), each individual’s choice process across the hypothetical
choice situations could be assumed to be constant. However, the inter-individual hetero-
geneity could be significant, and the modeller may wish to estimate the agent effects.
These scenarios can be investigated using static choice models with either fixed or ran-
dom agent effects. For a more detailed overview of the use of fixed and random effects in
static choice models, we direct the reader to Greene (2001).

4.3 Maximum likelihood estimation
It is assumed that the analyst has access to panel data or longitudinal data for a sample
of N individuals in the population. The observation period starts at time tb and ends at
time te, such that 0 ď tb ă te ď T . The number of time intervals in the sample is hence
Ts “ te´tb`1. Note that if tb “ te, data would be available only for one time interval. In
that case, it would be called cross-sectional data that do not provide information about the
time dimension. For simplicity of the notation, we assume that the panel data is complete,
in the sense that data is available for all time intervals between tb and te, and balanced,
meaning that all the explanatory variables for all individuals are available at each time
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interval during the observation period. However, this is not a strict requirement for the
estimation of dynamic choice models.

The analyst uses the panel data to estimate the parameters of the model. For each time
interval t during the observation period, and for each individual n, the analyst has access
to the observed choice, represented by the binary vector ynt and a vector of observed
explanatory variables xnt. As with yn, we use the notation xn “ xn,0:T to denote sequence
of explanatory variables for individual n over time. Note, unlike x̃nt, xnt can only include
variables observable to the analyst, and must be truly exogenous from the model. As such,
xnt is considered separately and distinctly from historic values of observed choices ynt
and utilities Unt.

In order to estimate the parameters from data by maximum likelihood, we derive the
contribution to the likelihood of the observations related to individual n,
ln Probpyn,tb:te , xn,tb:te |θq. We isolate the agent effects, that are constant over time, so
that the contribution of individual n to the conditional likelihood function is

`npθq “ ln Eαx,αUrProbpyn,tb:te , xn,tb:te |α
x, αU, θqs. (28)

We then exploit the recursive definition of the model, and the assumptions of indepen-
dence of the error components over time, such that

Probpyn,tb:te , xn,tb:te |α
x, αU, θq “

Probpyn,tb , xn,tb |α
x, αU, θq

te
ź

t“tb`1

Probpynt, xnt|yn,tb:t´1, xn,tb:t´1, α
x, αU, θq, (29)

where yn,tb:t´1 and xn,tb:t´1 represent the entire history of choices and explanatory vari-
ables respectively from time tb to time t ´ 1. Note that the first observation (at t “ tb)
is the initial condition, which cannot be conditioned on previous data, and so is included
separately in (29). This is discussed in more detail in Section 5.1.

The joint probability in (29) can be expressed as the product of the marginal probabil-
ity from the anticipation of the explanatory variables and a conditional choice probability
using Bayes theorem

Probpynt, xnt|yn,tb:t´1, xn,tb:t´1, α
x, αU, θq “

Probpxnt|yn,tb:t´1, xn,tb:t´1, α
x, αU, θq ˆ

Probpynt|xnt, yn,tb:t´1, xn,tb:t´1, α
x, αU, θq. (30)

It is not feasible, neither from a computational nor a data perspective, to estimate
models conditional on the full history of explanatory variables/decisions. In Section 4.1,
we introduced the Markov chain for the anticipation of the explanatory variables, which
models the anticipation based on only the previous time period. Substituting t “ s (so
that the considered time is the current period) followed by s “ t ´ 1 (to shift one time
period back) into (20) gives

Probpxnt|yn,tb:t´1,xn,tb:t´1, α
x, αu, θq

“ Ppxnt|yn,t´1, xn,t´1, α
x, θq

“
1

λν
fν

ˆ

xnt ´ hpyn,t´1, xn,t´1; θhq ´ α
x
n

λν
; θν

˙

.

(31)
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The choice model can be similarly simplified. For example, in the next section we
introduce a choice model which depends only on the current values of xnt as well as the
choice from the previous time interval, so that

Probpynt|xnt, yn,tb:t´1, xn,tb:t´1, α
x, αU, θq “ Ppynt|yn,t´1, xnt, α

U, β, λε, ρq. (32)

Models with ρn ą 0 are particularly challenging to estimate because the choice prob-
abilities depend on the recursively defined expected future utilities. The solutions to the
expected future utilities hence need to be computed when evaluating the likelihood func-
tion. Rust (1987) propose the Nested Fixed Point Estimator (NXFP) that is based on an
outer and an inner algorithm. The former searches over the parameter space maximizing
the likelihood function while the latter solves the value functions. The estimation problem
is hence computationally costly. With the objective to reduce the computational burden,
several alternatives to the NXFP algorithm have been proposed in the literature (e.g., Hotz
and Miller, 1993; Hotz et al., 1994; Imai et al., 2009; Keane and Wolpin, 1994; Su and
Judd, 2012).

5 Habitual behaviour and learning
Panel data provide information about the evolution of choice behaviour over time, and
so present the opportunity to capture the development of learning and the role of habits.
Learning and habits determine how past experiences impact an individual’s decisions.
Capturing learning and habits within a model therefore requires past experiences to be
included in the utility function (21). This presents two key questions:

1. What variables can we use to capture past experiences?

2. How far in the past should we consider?

For the first question, there are many variables that could be used to capture past ex-
perience, including previous choices, explanatory variables, and latent variables or states.
We consider here two possibilities: the previous choices made and previous values of the
utility. For the second question, as discussed in the previous section, an individual’s deci-
sion at time t could be dependent on all of their past experiences from periods 0, ..., t´1.
However, in order to enable a recursive model definition that can be used to predict choice
sequences of arbitrary length, we must instead consider the past experiences from a fixed
number k of lagged time intervals. A higher value of k represents a more flexible model.
However, to estimate a model with k lagged time intervals, the first k observations for
each individual in the data must be assumed as given, and so are not available for model
estimation. This therefore effectively reduces the available data for model estimation. As
such, it is typical, with dynamic choice models to apply the Markov assumption by fixing
k “ 1. It means that, at time interval t, the entire past is modeled using only the previous
time interval t´ 1. There are, however, examples in the literature where values of k ą 1
are used (see Sections 6.2 and 6.3).

When we combine the Markov assumption with the use of the choice to define past
experience, we obtain the Markov model. When we combine it instead with the use of
the latent utility to define past experience, we obtain the hidden Markov model. We first
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present the Markov model, alongside a related econometric issue called the initial condi-
tion problem. We then present the hidden Markov model and introduce a solution algo-
rithm called particle filtering.

5.1 The Markov model and the initial condition problem
For the Markov model, we explicitly include the previous choice as an explanatory vari-
able to the utility function. As in 4, we set s “ t to consider only decisions made in the
current time period. Equation (21) therefore becomes

U 1ipx̃ntq “ V
1
i px̃ntq ` ηiyn,t´1 ` α

U
in ` εint, t ď T. (33)

Note the parallel between the Markov chains in (33) and (19). The Markov chain
in (33) assumes that the utility in the current time interval is dependent on the choice in
the previous time interval, in order to model habitual behaviour and learning. Meanwhile,
the Markov chain in (19) assumes that the anticipated values of the explanatory variables
in the next time interval are dependent on their values (as well as the choice made) in the
current time interval, in order to model forward-planning behaviour.

A major difficulty in modelling the dynamics of choice, and the influence of the past
on current decisions, arises when the observation period does not include the entire history
of the process. In particular, everything that happened between time 0 and time tb is
captured only by the observation of the choice at time tb. This may lead to erroneous
interpretation of the choice.

To demonstrate this, consider two individuals with strong habits, so that their choice
made today is largely explained by their choice made yesterday. For instance, out of two
commuters, one might be a “car lover” and another one a “public transportation lover”.
These commuters would stick to their preferred mode except in rare circumstances, even
if that mode is slower or more expensive than the alternatives. If the observation period
does not include the day when each commuter made their choice for the first time, the
analyst would not have access to the variables explaining that choice. It may therefore
appear that these individuals prefer slower or more expensive alternatives. In turn, this
would impact the estimated coefficients of the model variables. The unobserved vari-
ables explaining the first choice, which explain the differences in taste, actually belong
to the agent effects αxn and αUin. For instance, the “car lover” has a large αUin for the car
alternative, while the “public transportation lover” has a large αUin for the public trans-
portation alternative. Consequently, the analyst cannot assume the same distribution for
all individuals in the population. Doing so would cause an endogeneity issue, as the ran-
dom term αUin would be correlated with the initial choice yntb . This is called the initial
condition problem.

Wooldridge (2005) proposes to model αxn and αUin, conditional on yntb . For instance,
αxn can be represented as

αxn “ axyntb ` b
T
xx
1
n ` ζ

x
n, (34)

where: (i) x 1n are observed socio-economic characteristics of individual n; (ii) ζn is as-
sumed to be normally distributed and independent from yntb:

ζxn „ Np0, Σζq; (35)
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and (iii) ax and bx are unknown parameters to estimate from data. The agent effect αUin
can be modeled in a similar way:

αUin “ aUyntb ` b
T
Ux

1
n ` ζ

U
n . (36)

This specification addresses the initial condition problem presented here, caused by
serial correlation.

Although this issue is commonly considered in the analysis of panel data, it is actually
a more general issue that applies to all models capturing learning, due to the impossibility
to observe the whole history of experiences (Guevara et al., 2018). It also applies to
contexts where each individual is associated with multiple observations, such as stated
preference surveys.

5.2 The hidden Markov model and particle filtering
A second way to model the evolution of learning and habitual behaviours consists in di-
rectly adding the previous utility function (i.e. a continuous latent variable) as an explana-
tory variable to the utility function. More specifically, for s “ t, the utility function (33)
becomes

U 1ipx̃ntq “ Ũint ` εint, (37)

where: (i) the evolution of the vector of utilities Ũnt over time is modeled as

Ũint “ V
1
i px̃ntq ` γiŨn,t´1 ` ηiyn,t´1 ` α

U
in ` ξnt; (38)

(ii) the random vectors ξnt are i.i.d. normal, that is, for all n and t

ξnt “ Σξω; (39)

(iii) Σξ is the Cholesky factor of the variance covariance matrix; and (iv) ω „ Np0, Iq

follows a standard normal distribution. Note that the recursive definition of the vector of
utilities in (38) involves the whole sequence of previous utility functions.

This model is called a hidden Markov model. It is a Markov model where some state
variables are latent, i.e., not observed. In our context, the latent state variables are the
utility functions.

Note that this formulation significantly complicates the calculation of (29). Indeed,
the choice model in (30) now involves the full trajectory of utility functions:

Ppynt|yn,t´1, xnt, α
U
n , β, λε, ρq “ EŨn,tb:t´1rPpynt|Ũn,tb:t´1, xnt, α

U
n , β, λε, ρqs. (40)

The calculation of the expectation involves a multifold integral with t ´ tb dimensions,
which is in general too complicated to handle. In order to simplify it, we again need a
recursive definition of the model.

We present a method called particle filtering, inspired by the work of Kalman (1960),
that is designed to update the estimates at each time interval. We write (38)–(39) as

ωpŨnt, Ũn,t´1q “ Σ
´1
ξ pŨnt ´ V

1
px̃ntq ´ γŨn,t´1 ´ ηyn,t´1 ´ α

U
n q. (41)
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Using this change of variables, we can write the density of Ũnt conditional on Ũn,t´1,
yn,t´1, αUn and x̃nt as

fŨntpu|Ũn,t´1, yn,t´1, α
U
n , x̃ntq “

1

|Σξ|
φpωpu, Ũn,t´1qq, (42)

where: (i)ω is defined by (41), (ii) |Σξ| is the determinant of the matrix Σξ, and (iii) φp¨q
is the pdf of the standard normal distribution:

φpxq “ p2πq
J
2e´

1
2
xTx. (43)

If we integrate out Ũn,t´1, we obtain

fŨntpu|yn,t´1, α
U
n , x̃ntq “

1

|Σξ|

ż

v

φpωpu; vqqfŨn,t´1pv|yn,t´1, yn,t´2, α
U
n , x̃n,t´1qdv, (44)

whereωpu; vq is defined by (41) and the distribution of Ũn,t´1, conditional on the choices
of the two previous time intervals, is defined below. In the particle filtering literature
(Julier & Uhlmann, 1997), (44) is called state prediction. In our context, the (latent) state
is the utility.

The choice model (40) is now written as a mixture model:

Ppynt|yn,t´1, xnt, α
U
n , β, λε, ρq “

ż

u

Ppynt|u, yn,t´1, xnt, α
U
n , β, λε, ρqfŨntpu|yn,t´1, α

U
n , x̃ntqdu, (45)

where:

(i) Ppynt|u, yn,t´1, xnt, αUn , β, λε, ρq “
exppµstuiq

ř

jPC exppµstujq
(46)

is the logit model (26) expressed as a function of u, which is a realization of Ũnt; and
(ii) fŨntpu|yn,t´1, α

U
n , x̃ntq is defined by the state prediction (44).

In order to propagate the filter to the next time interval, we need

fŨntpu|ynt, yn,t´1, α
U
n , x̃ntq (47)

to apply the state prediction (44). It can be obtained by Bayes’ theorem:

fŨntpu|ynt, yn,t´1, α
U
n , x̃ntq “

Probpynt|u, yn,t´1, αUn , x̃ntqfŨntpu|yn,t´1, α
U
n , x̃ntq

Probpynt|yn,t´1, αUn , x̃ntq
, (48)

where the involved quantities are the conditional choice probability (46) and the state
prediction (44) at the numerator, and the choice probability (45) at the denominator.

The particle filtering is initialized with the distribution of the utility function of the
first time internal:

fŨntb
pu|αUn , x̃ntbq. (49)

For each time interval t “ tb ` 1, . . . , te, the procedure is as follows:
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1. We have access to the density of the utility of the previous time interval

fŨn,t´1pu|yn,t´1, α
U
n , x̃n,t´1q. (50)

2. We use the state prediction (44) to calculate

fŨntpu|yn,t´1, α
U
n , x̃ntq. (51)

3. We calculate the mixture of logit models (45) to obtain the contribution of time
interval t to the likelihood.

4. We prepare the density of the utility for the next time interval using (48) to obtain

fŨntpu|ynt, α
U
n , x̃ntq. (52)

The example discussed here includes the previous value of the utility in the utility
function, and shows how particle filtering can be used to address the complexity of es-
timating the model. Particle filtering can be used for any model where a latent variable
that changes over time is included in the utility function. This includes other continuous
latent variables, such as the agent effects αUn , or transitions between discrete latent states
or classes. We present examples from the literature of both in Section 6.3.

6 Links to existing models
The general parametric model introduced in this chapter can be used to derive different
types of dynamic choice models. We start by introducing examples of forward looking
models, followed by Markov and hidden Markov models. In each case, we present how
different assumptions made on the parameters of the general model can be used to derive
different example models from the literature. We then summarise how these models have
been applied in selected relevant studies, and discuss which applications, data, and choice
situations each model is appropriate for.

6.1 Forward looking models
The first notable example of a forward looking dynamic choice model estimated in the
literature is that of Rust (1987), who investigates the sequential choices of a single deci-
sion maker for bus engine replacement timing. Here the decision variable ynt is a binary
variable that represents the decision to replace the engine for bus n in month t or not, and
the only explanatory variable is the mileage xnt since last engine replacement of bus n at
month t. Rust’s model can be obtained by making the following assumptions on (21):

1. the error terms εnt are i.i.d. Extreme Value to give the logit model (as exemplified
in (23)), with constant variance, so that λε “ 1;

2. there is no serial correlation of the utilities to ensure additive separability, i.e., αUn “
0; and
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3. there is no serial correlation of the anticipation of the future variables to ensure
conditional independence, so that αxn “ 0 and λν “ 0.

This gives the following form of the global utility:

U 1ipX̃nsptqq “ VipX̃nsptqq ` ρnWipX̃nsptqq ` εins, t ď s ď T. (53)

For the specific example in the paper, the deterministic portion of the instantaneous
utility of replacing the engine is given by

VpX̃nsptqq “ β0 ` gpxt, βxq (54)

where multiple different functional forms (linear, quadratic, cubic, square root, power,
hyperbolic, mixed, and non-parametric) are tested for gpxt, βxq. Note that as the decision
variable is binary, the i subscript can be dropped as we only need to calculate the utility for
making the engine replacement.7 The anticipation of the mileage since last replacement
at month s` 1 given mileage since last replacement at month s is then defined as

fX̃n,s`1ptq
px|yns, X̃nsptqq “ θe

θpxs`1´p1´ysqxsq t ď s ă T. (55)

Aguirregabiria and Mira (2010) define a more general set of assumptions for Rust’s
model. We give here the equivalent assumptions on (21) within our framework:

• Additive Separability (AS): no serial correlation in individual utilities (αUin “ 0 and
λε “ 1);

• i.i.d. unobservables (IID): random portion of error term (εins) is distributed i.i.d.
(as exemplified in (23)).

• Conditional independence of future x (CI-X): no serial correlation in individual
anticipation, and no variance increase with longer-term prediction (αxn “ 0 and
λν “ 1 in (19));

• Conditional independence of y (CI-Y): in the formulation in this chapter, the payoff
variables are included in x, therefore this assumption is satisfied by the assumptions
for CI-X;

• CLOGIT: random portion of error term (εins) has a Type 1 GEV distribution (as
tested in (23)); and

• Discrete support of x (DIS): observed explanatory variables xnt are finite.

As we highlight in Section 4.3, there is typically a high computational burden as-
sociated with estimating dynamic discrete choice models. Nevertheless, there are many
examples of successful applications in the literature. Some studies use models similar to
that of Rust (1987), while others relax certain of the aforementioned assumptions (e.g.,
Eckstein & Wolpin, 1989; Erdem & Keane, 1996; Keane & Wolpin, 1997).

The focus of the application in Rust (1987) could be viewed as closer to that of inverse
optimization than analyzing and predicting choice behaviour. Indeed, the focus lies on a

7The utility of not making the replacement can be fixed to zero as only differences in utility matter.
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single individual and the optimization problem (bus engine replacement) he solves as
part of his work. Works aimed at analyzing and predicting the choice behaviour of a
population deal with applications in various domains. In the following we briefly describe
a few examples.

Karlstrom et al. (2004) study how the pension system affects the retirement choice
of blue-collar workers in Sweden. Each year between the age of 50 and 70, they model
forward-looking individuals’ choice of retiring or not. It hence corresponds to an optimal
stopping problem, similar to the one of Rust (1987).

Dynamic discrete choice models are well suited to model the choice behaviour of
durable goods. A prominent example is car ownership choice. Gillingham et al. (2015)
propose a model of households’ car buy and sell decisions as well as the car owners’
usage. Equilibrium prices in the used-car market are endogenous to the model which is
estimated based on Danish register data covering all Danish households and cars over
more than a decade.

Another application of dynamic discrete choice models for durable goods is to model
consumer stockpiling. Ching and Osborne (2020) investigate the household purchase
behaviour of laundry detergent across multiple product brands and sizes. The model in-
cludes distributed parameters to account for unobserved heterogeneity in discount factors
and price coefficients.

There are many parallels between structural economics (SE) dynamic discrete choice
models and inverse reinforcement learning (IRL) algorithms (Ng & Russell, 2000). IRL
aims at extracting a reward function from a set of observed optimal trajectories, and is
hence similar to the forward-looking dynamic discrete choice model presented in this
chapter. Despite these parallels, the literature on IRL has to a large extent evolved sep-
arately from that of SE. Iskhakov et al. (2020) discuss contrasts and synergies between
the two fields. The authors note that the methods used in each field are quite different.
Notably, IRL does not pose the problem as one of parameter estimation. This is partly due
to the difference between the intended applications: IRL is focused on prediction while
SE is concerned with inference and counter factual prediction.

6.2 Markov models
The Markov model is typically applied in the literature to describe myopic behaviour,
where the decision maker evaluates only the utility at time t without taking into account
any future consequences from their choice. This can be achieved by fixing the discount
parameter ρn in (22) to zero. The global utilityU 1i in (13) is then equal to the instantaneous
utility Ui (and, by extension, V 1i “ Vi). The utility function for the Markov model (33)
thus becomes:

U 1ipx̃ntq “ Vipx̃ntq ` ηiyn,t´1 ` α
U
in ` εint, t ď T, (56)

where Vi is a deterministic function of the observable explanatory variables xnt.
Wooldridge (2005) uses a probit Markov model to investigate the persistence of work-

ing union membership, where the decision variable ynt is a binary variable that represents
the decision of individual n to be a member of a union in year t or not, and the only time
dependent explanatory variable xnt is a binary variable that represents if the individual n
is married at time t or not. This model can be obtained by applying the following further
assumptions on (33):
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1. the error terms are normally distributed (to give the probit model) with constant
variance σ2ε: εint „ Np0, σ

2
εq; and

2. the agent effects are given by αUin “ aUyn,tb ` b
T
Uxn ` ζ

U
in, where ζUin „ Np0, σ

2
αq.

For the specific example in the paper, the instantaneous utility is given by Vpx̃ntq “
βxx

1
nt ` ct ` β0, where β0 is a single constant and ct is a constant for each time period

in the dataset, to be estimated from the data. Similar to Rust’s model of bus engine
replacement, the i subscript can be dropped as the decision variable is binary. This gives
the final form for the global utility of

U 1px̃ntq “ βxx
1
nt ` ct ` β0 ` ηyn,t´1 ` αUyntb ` b

T
Uxn ` ζ

U
n ` εnt. (57)

Note that the constant term in the agent effects formula in Wooldridge’s model is included
in β0 in this formulation.

There have been several other applications of Markov models to investigate dynamic
choice situations which make use of Wooldridge’s correction method for the initial condi-
tion problem. Muûls and Pisu (2009) estimate models of organisational level import and
export decisions for all Belgian companies over an eight-year period. Separate models are
estimated for export and import. In each case the decision variable represents the binary
decision to export (or import) or not in a given year.

As with forward-looking models, Markov models have also been applied to investigate
car ownership behaviour. Nolan (2010) estimate a dynamic probit model of household car
ownership in Ireland using six-years of longitudinal household survey data. As with the
application of Muûls and Pisu, a binary decision variable is used (whether a household
owns a car during the survey period or not).

Wooldridge’s correction method has also been applied to multiclass problems. For
example, Danalet et al. (2016) estimate a Markov model for a catering location choice
problem on a university campus with 21 alternatives. The model makes use of WiFi
traces to calculate additional explanatory variables, such as the distance from previous
activity locations. Furthermore, the model makes use of multiple separate lagged choices
from the previous period, namely the location choice for morning and lunch periods in
the previous day.

There have been applications of Markov models which relax the Markov assumption,
and allow for higher order lagged variables in the utility specification. For example,
Bogers et al. (2007) model the effect of learning in route choice, and include a weighted
average of the previous 10 choices in the utility specification.

Whilst not covered explicitly in this chapter, Markov models have also been applied
to estimate ordinal models. For example, Contoyannis et al. (2004) estimate an ordered
probit model of self-assessed health status using data from the a household panel survey
from the UK.

6.3 Hidden Markov models
Applications of the hidden Markov model for dynamic choice can be grouped into two
categories. The first category are models which include the change in a continuous au-
toregessive latent variable in the utility specification. The second category of models map
the transitions between a finite number of discrete latent classes, each with a different set

18



of model parameters. We provide first the assumptions needed to derive an example of
the former, and then discuss further examples of both approaches.

Heiss (2008) models the self-reported health status of survey respondents in the USA.
An ordered logit model is used to predict the response within a five-point scale from poor
to excellent. The latent continuous agent effects are allowed to vary over time, dependent
on their previous value. The resulting model is hence a hidden Markov model. It can be
derived from (56) through the following assumptions/modifications:

1. the agent effects/serial correlation αUin are allowed to vary over time according to
the pdf fαUi pα

U
int|x̃nt, α

U
in,t´1q, and

2. the previous choice does not affect the utility, so that ηi “ 0 @ i.

For the specific example in the paper, the pdf fαUi pα
U
int|x̃nt, α

U
in,t´1q is a normal sta-

tionary auto-regressive process of order one, independent of x̃nt

αUint “ κα
U
in,t´1 ` ε

α
int (58)

where κ is a correlation parameter to be estimated from the data and εαint is normally
distributed. Furthermore, the ordered logit model is for only one aspect (health status)
and so the i subscript can be dropped. This gives the following form of the global utility:

U 1px̃ntq “ Vpx̃ntq ` κα
U
n,t´1 ` ε

1
nt, t ď T. (59)

Heiss et al. (2010) build on this work to investigate subscription to basic health in-
surance (Medicare) in the USA using annual health survey data for respondents aged
sixty-five and over. The decision variable is a binary choice of whether to enroll in the
Medicare program in the survey year (or not). Enrollment is assumed to be a permanent
decision, such that once a person has a plan (i.e. if ynt “ 1) they will then keep the plan
for all future time periods. A latent continuous variable which measures the health capital
is included in the utility specification, based on an autoregressive latent robustness. The
value of the health capital is estimated based on its structural relations with the survival
indicator, self-reported health status, and pharmacy bills.

As well as latent continuous variables, the hidden Markov model can be used to model
changes between a finite number of discrete latent classes, each with their own utility
specifications or parameter values. Netzer et al. (2008) model the binary choice of alumni
donating (or not) in a survey year based on the respondent’s latent relationship state with
their alma mater, which is allowed to change over time. Models with different numbers
of states between two and four are tested. This approach has also been used to investigate
multiclass problems. For example, Xiong et al. (2015) investigate an individual mode-
choice problem out of five possible travel modes using panel data over a 10-year period,
based on switching between two latent preference states.

There has also been work to relax the Markov assumption in dynamic choice models
by allowing for higher order lagged variables in the utility specification. Xiong et al.
(2018) investigate the use of second order (t´2) and third order (t´3) lagged variables in
a model of dynamic car ownership. Second and third-order hidden Markov with two latent
classes are compared against first-order models with two/three latent classes. The second-
order model with two latent states was found to have the lowest Bayesian Information
Criteria (BIC).
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7 Conclusion
Dynamic choice models in the literature typically belong to one of two categories:

1. forward-looking models based on dynamic programming formulations using Bell-
man’s principle of optimality, or

2. models to describe habitual behaviour and learning models based on the Markov
assumption that assume myopic behaviour.

In this chapter, we analyse the dynamic choice problem, both from the point of view of
the modeller and of the analyst, to derive a general parametric dynamic choice model
based on first principles. This general model extends the state of practice by (i) unify-
ing forward-looking models and habitual behaviour and learning models under a single
general framework; (ii) specifically discussing the Markov assumption in the anticipation
of future explanatory variables and habitual behaviour and learning; (iii) including agent
effects in both the utility function and the anticipation of future explanatory variables; and
(iv) accounting for variance inflation in the error terms in the future utility and anticipation
of future explanatory variables as the prediction interval (i.e. s´ t) increases.

We use the general model to show how different types of dynamic choice models in
the literature can be derived through simple assumptions on the model parameters. We
derive a specific example for each type of model, and then introduce several further exam-
ples of applications of each model type in the literature. This approach clearly illustrates
the differences between dynamic models used in the literature through their implied as-
sumptions.
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