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AbstractRoute hoie models are diÆult to design and to estimate for var-ious reasons. In this paper we fous on issues related to data. Indeed,real data in its original format are not related to the network used bythe modeler and do therefore not orrespond to path de�nitions. Typ-ial examples are data olleted with the Global Positioning System(GPS) or respondents desribing hosen itineraries to interviewers.Data manipulation is then neessary in order to obtain network om-pliant paths. We argue that suh manipulations introdue bias anderrors and should be avoided. We propose a general modeling frame-work that reonile network-free data with a network based modelwithout data manipulations. The onept that bridges the gap be-tween the data and the model is alled Domain of Data Relevaneand orresponds to a physial area in the network where a given pieeof data is relevant.We illustrate the framework on simple examples for two di�erenttypes of data (GPS data and reported trips). Moreover, we presentestimation results of Path Size Logit and Subnetwork models basedon a dataset of reported trips olleted in Switzerland. The networkis to our knowledge the largest one used in the literature for routehoie analysis based on revealed preferenes data.
1 IntroductionRoute hoie models play a ruial role in many transport appliations, forexample traÆ assignment and transport planning. Given a transportationnetwork and an origin-destination (OD) pair s = (so, sd) a route hoiemodel predits the probability that any given path between origin so anddestination sd is seleted to perform a trip. They are diÆult to designand to estimate for various reasons, suh as the large size of the hoieset and the omplex orrelation struture (see the disussion by Ben-Akivaand Bierlaire, 2003).In the paper we fous on the issues assoiated with data. The onept ofpath, whih is the ore of a route hoie model, is usually too abstrat for areliable data olletion proess. Real data, in their original format, do not2



orrespond to path de�nitions. A typial example is GPS data, whih aremore and more available (Murakami and Wagner, 1999, Jan et al., 2000,Sh�onfelder et al., 2002, Axhausen et al., 2003, Frejinger, 2004, amongmany). As GPS devies do not expliitly use the transportation network,the oordinates of data points annot be diretly used, and data proess-ing is required in order to reonstrut paths. In the literature, suh dataproessing involves map mathing, trip end identi�ation and assumptionson missing data. Reently, Marhal et al. (2005) proposed a map mathingalgorithm for large hoie sets. They evaluate the performane in terms ofomputation time and underline the diÆulty of evaluating auray sinethe \true" hosen routes are unknown (see Quddus et al., 2003, for anoverview of map mathing algorithms). Du and Aultman-Hall (2007) dis-uss trip end identi�ation algorithms. They manually identi�ed trip endsin a GPS data stream and evaluate the performane of the algorithms.Another ontext is when respondents are asked to desribe a path thatthey have followed during a given trip. They are in general able to iden-tify a sequene of loations that they have traversed, but have diÆultiesdesribing a full path in detail. For instane, Ramming (2001) (see alsoBekhor et al., 2006) estimated route hoie models based on data olletedin Boston. The respondents desribed hosen routes by naming street seg-ments. In ase of inomplete or ambiguous desriptions, the routes werereonstruted by taking the shortest path between known street segments.In this paper, we advoate that the data manipulation required bythe underlying network model introdues biases and errors, and should beavoided. We propose a general modeling sheme that reonile network-freedata (suh as GPS data or partially reported itineraries) with a networkbased model without suh manipulations.After a literature review in the next setion, we introdue in Setion 3the onept of domain of data relevane (DDR) that is designed to bethe missing link between the data and the network model. In Setion 4,we desribe the estimation of a route hoie model using the network-freedata and the DDRs and in Setion 5 we provide simple examples for twodi�erent types of data. The framework is then illustrated on a real asestudy in Setion 6. 3



2 Literature ReviewMail and telephone surveys are onventional methods for olleting tripdata. Mahmassani et al. (1993) propose a two-stage data olletion, wherethe seond stage involves more detailed trip desriptions. Abdel-Aty et al.(1995) ombine omputer-aided telephone interviews and GIS apabilitiesspei�ally for route hoie data. Ramming (2001) also ollets route hoiedata, based on reported path segments. Vrti et al. (2006) have performedtelephone interviews where intermediate loations of long distane tripswere reported (see Setion 6).In the past deade many studies presented in the literature omparedata obtained with onventional survey methods with GPS data. There isa onsensus that passive monitoring have several advantages over onven-tional surveys. For instane, multiple days of trip data an be olletedautomatially and are diretly available in eletroni format. However,GPS data also have issues (see Wolf et al., 1999, and Zito et al., 1995, fordetailed disussions). First, onstraints of the tehnology, suh as satel-lite lok errors, reeiver noise errors, seletive availability (intentional er-rors inserted by U.S. Department of Defense) and type of reeiver limitsthe auray of the data. Seond, depending on the number of availablesatellites, atmospheri onditions, and loal environment (high buildings,bridges, tunnels) the GPS reeiver an ompute an inaurate position orfail to ompute the position whih introdues gaps in the data. Wolf et al.(1999) state that an auray level of 10 meters is required in order to mapmath GPS points in urban areas without ambiguity. In their tests, thebest performing reeiver ahieves this level for 63% of the GPS points onaverage. Nielsen (2004) observed that 90% of the trips olleted in theCopenhagen region had missing data. A third issue is that the data arestored in one stream of GPS points and data proessing is required in orderto reonstrut the trips. Suh data proessing involves map mathing, tripend identi�ation and assumptions on missing data (Marhal et al., 2005,Quddus et al., 2003). Du and Aultman-Hall (2007) found that the bestperforming algorithm orretly identi�ed 94% of the trip ends. Finally, wenote that the data proessing is highly dependent on the auray of the4



geographial information system data base that is used.Frejinger and Bierlaire (2007) estimate route hoie models based ona GPS dataset olleted in the Swedish ity of Borl�ange (see Sh�onfelderet al., 2002, for more details on the data). The data proessing was per-formed by the Atlanta based ompany GeoStats. Nielsen (2004) study routehoie behavior based on a large GPS dataset olleted in Copenhagen.Based on the previous disussion, we onlude that network ompliantroute hoie data are never available. This motivates the approah proposedin this paper, where we aknowledge this nature of the data, and model itexpliitly instead of trying to �x it through various manipulations.Some approahes have been proposed in the literature where the linkbetween the onept of path and the data has been loosened, either inorder to simplify the hoie ontext, or beause the observed hoies arebased on underlying, latent hoies. Ben-Akiva et al. (1984) onstrutlatent alternatives in order to simplify the hoie set de�nition in a routehoie model. Instead of modeling hoie of routes where there are manyfeasible alternatives, they model the hoie of labels, suh as, fastest route,most seni route, shortest route et. The exat route hoies are observedand used to estimate the model. Ben-Akiva et al. (2006b) present a generalmethodology for modeling hoie behavior that is based on hoies of plans.These underlying hoies may not be observed. Both the hoie of plan andobserved hoies are expliitly modeled in a multi-dimensional approah.They apply their methodology to freeway lane hanging and merging froman on-ramp (see also Ben-Akiva et al., 2006a).
3 Domain of Data RelevanceThe ommon referene of our modeling sheme is a �nite two-dimensionalregion with an appropriate oordinate system, typially longitude, lati-tude1. In general, it is simply the region of interest suh as a ity, or aountry.1Using a three-dimensional referene is possible and relatively straightforward. How-ever, it would bring an unneessary level of omplexity to this paper.5



We de�ne an observation as a sequene of individual piees of datarelated to an itinerary, suh as a sequene of GPS points, or of reportedloations. For a given piee of data, the domain of data relevane isde�ned as the physial area where the piee of data is relevant. Its exatde�nition depends on the ontext. For example, onsider a GPS reportingoordinates (x, y). Due to the intrinsi tehnologial limitations of thedevie, we an identify a 95% on�dene interval, say, around the point
(x, y). This would be the DDR of this piee of data. An example ofGPS data is shown in Figure 1 where the GPS points are represented bysmall irles and their orresponding DDR with dashed lines. The size ofthe DDR areas vary depending on the auray (e.g. quality of satellitesignals) of eah piee of data.
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Figure 1: Example of GPS dataIn the ontext of reported paths, notions suh as \downtown", \nextto the Ei�el Tower" or \intersetion of Massahusetts Avenue and New-bury Street" an easily be assoiated with a DDR. The size of the DDRis inversely proportional to the fuzziness of the onept. It may be un-ambiguous (suh as the area orresponding to \downtown"), or ambiguousand left to the modeler's judgment (suh as \next to the Ei�el Tower").An example is shown in Figure 2 where the reported loations are \home",\intersetion Main St and Cross St", \ity enter" and \mall". The homeand intersetion orrespond to exat loations in the network and the ar-eas of the assoiated DDRs (dashed lines) are therefore small, they ontain6



only one node. The two other reported loations are more fuzzy and theareas of the assoiated DDRs are therefore larger, in this ase the DDRsontain two nodes.
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Figure 2: Example of a reported tripIn summary, the DDR is a modeling element whose exat de�nitionis left on the analyst and depends on the data olletion proess and thenetwork topology. We now formally relate the DDR of eah piee of datawith the various network elements (that is, nodes and links). We de�ne anindiator funtion δ(d, e) whih is 1 if network element e is related with theDDR of data d, and 0 otherwise. In general, the de�nition of this indiatorfuntion is straightforward. If e is a node representing an intersetion, itis easy to verify if it lies in the area of the DDR or not. If e is a noderepresenting the entroid of a zone, we simply hek if the zone intersetswith the DDR area. Similarly, if e is a link representing a road segment,we identify if it rosses the DDR area. A node an also be assoiated witha DDR if it is the soure or the sink node of a link rossing the DDR.In pratie, we generate for eah piee of data a list of relevant networkelements, whih bridges the gap between the network-free data and thenetwork model.
7



4 Model EstimationWe aim at estimating the unknown parameters β of the route hoie model
P(p|Cn(s); β) where Cn(s) is the set of paths linking OD pair s and onsid-ered by traveler n, and p is a path in Cn(s).Let S be the set of all OD pairs in the network. For a given observation
i of traveler n, that is a sequene of piees of data (d1, d2, . . . , dk), we�rst identify the set Si of relevant OD pairs, that is OD pairs s suh thatthe observation's origin node is related to the DDR of �rst data and thedestination node is related to the last, that is

Si = {s ∈ S | δ(d1, so)δ(dk, sd) = 1}.At least one relevant OD pair must exist and the set Si must therefore benon empty. If it is empty, the de�nitions of the DDRs must be revised.We derive the probability Pn(i|Si) of reproduing observation i of trav-eler n, given Si. It an be deomposed in the following way
Pn(i|Si) =

∑

s∈Si

Pn(s|Si)
∑

p∈Cn(s)

Pn(i|p)Pn(p|Cn(s); β), (1)where� Pn(s|Si) is the probability that the atual OD pair is s given the setof relevant OD pairs Si,� Pn(i|p) is the measurement equation, giving the probability of ob-serving i if the atual path is p, and� Pn(p|Cn(s); β) is the route hoie model.Sine several paths an orrespond to the same observation, the mea-surement equation plays a key role in this framework. It takes a valuegreater than zero if observation i orresponds to path p that is omposedby links (ℓ1, . . . , ℓP). This is the ase if� there is at least a link in the path related to eah DDR, that is, forany m = 1, . . . , k, there exists q, 1 ≤ q ≤ P, suh that δ(dm, ℓq) = 1,8



� the sequene of reported loations is onsistent with the order of thelinks in the path, that is, for any m1 ≤ m2, if δ(dm1
, ℓq1

) = 1 and
δ(dm2

, ℓq2
) = 1, then q1 ≤ q2.We illustrate the measurement equation using the two data olletion pro-esses mentioned above.In the ontext of reported trips a simple measurement equation an bede�ned sine either the path goes through all reported loation or not. Themeasurement equation therefore takes the value 1 if this is the ase and 0otherwise.For GPS olleted data a more omplex model may be neessary. Forexample, the probability that the observation i is generated by the realpath p may be de�ned as a funtion of the distane between i and p. Thisdistane an be omputed sine, unlike reported trips, eah piee of data

d is a oordinate in the network. We de�ne a funtion ∆(d, ℓ) whih mapsthe eulidean distane from d to the losest point on link ℓ. The distanebetween a piee of data d and a path p is D(d, p) = minℓ∈Apd
∆(d, ℓ) where

Apd is the set of links that are part of path p and are loated within theDDR of data d, Apd = {ℓ ∈ ℓ1, . . . , ℓP | δ(d, ℓ) = 1}. The global distane
D(i, p) between the observation i and the path p an be evaluated in severalways. For example, the sum of D(d, p) for eah piee of data in i or theaverage distane. A distributional assumption on D(i, p) then de�nes themeasurement equation P(i|p). The evaluation of D(i, p) and its distributiondepend on the spei� ontext and should be de�ned on a ase to ase basis.If there is at least one observation i for whih |Si| > 1 then a model for
Pn(s|Si) needs to be de�ned. Di�erent formulations are possible depend-ing on the available information where the most simple one assigns equalprobabilities to all OD pairs, that is

Pn(s|Si) =
1

|Si|
∀s ∈ Si. (2)If additional information is available, a more sophistiated model an bespei�ed. For instane, high probabilities an be assigned to OD pairs thatinlude home and work loations.As disussed in the previous setion, the role of the DDR is to linkthe network-free data to the network. A problem may our that need9



to be addressed in order to estimate the model. Namely, the DDR of adata d an be empty, that is δ(d, e) = 0 ∀e, meaning that no networkelement orrespond to this piee of data. In this ase, the DDR is notproperly de�ned and a new spei�ation is neessary. A possible solutionis to inrease the size of the DDR so that at least one link rosses the DDR.Finally we note that the route hoie model is only identi�able if atleast one of the routes in Cn(s) orrespond to the observation and at leastone of the routes in Cn(s) does not orrespond to the observation.Models of type (1) an be estimated with BIOGEME (Bierlaire, 2003).
5 Illustrative ExamplesWe illustrate the modeling framework on the two examples used previously.We start with the reported trip shown in Figure 2. The exat origin node isknown (\home" node) but there are two possible destination nodes (8 and 9orresponding to \mall"). The set of relevant OD pairs for this observation
i is therefore Si = {(1, 8), (1, 9)} (referred to as s1 and s2). No additionalinformation is available, so we assume that the OD pairs are equally prob-able, that is P(s1|Si) = P(s2|Si) = 1

2
. There are two routes onneting�rst OD pair, C(s1) = {(1, 2, 4, 5, 7, 8), (1, 2, 4, 6, 7, 8)}, that we denote p1and p2 respetively. Note that we omit the notation for individual n sinewe only have one observation here. The observation orresponds to bothroutes and onsequently P(i|p1) = P(i|p2) = 1. Four routes onnet theseond OD pair C(s2) = {(1, 2, 4, 5, 7, 9), (1, 2, 4, 6, 7, 9), (1, 2, 3, 9), (1, 3, 9)}(denoted p3, . . . , p6, respetively) but the observation only orresponds tothe �rst two, that is P(i|p3) = P(i|p4) = 1 and P(i|p5) = P(i|p6) = 0. Forthis example, Equation 1 is therefore de�ned as

P(i|Si) =
1

2

[

P(p1|C(s1); β) + P(p2|C(s1); β)
]

+

1

2

[

P(p3|C(s2); β) + P(p4|C(s2); β)
]where P(pg|C(sh); β) (g = 1, . . . , 4 and h = 1, 2) is the network based routehoie model to be estimated. 10



We now turn our attention to the example on GPS data shown inFigure 1. There is one relevant origin node but the DDR of the lastpiee of data does not ontain any node. We therefore onsider the sinknode of the link that rosses this DDR. Hene, there is one relevant ODpair for this observation i, Si = {(1, 9)}, that we denote s. Similar tothe example on the reported trip, there are four routes in the hoieset, C(s) = {(1, 2, 4, 5, 7, 9), (1, 2, 4, 6, 7, 9), (1, 2, 3, 9), (1, 3, 9)}, now denoted
p1, . . . , p4. The observation orresponds to the �rst two routes and there-fore P(i|p3) = P(i|p4) = 0. P(i|p1) and P(i|p2) an be de�ned as a funtionof the distanes between the observed loations and the path. In Figure 3we show how the distane between the fourth piee of data and the pathsan be omputed. The �gure shows links (2, 4), (4, 5) and (4, 6) that allross the DDR of d4 (see Figure 1). Sine both p1 and p2 use link (2, 4)and ∆(d4, (4, 5)) = ∆(d4, (4, 6)) > ∆(d4, (2, 4)) the distane between d4 andthe paths p1 and p2 is ∆(d4, (2, 4)). For this example the model given byEquation 1 is

P(i|s) = P(i|p1)P(p1|C(s); β) + P(i|p2)P(p2|C(s); β).
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∆(d4, (2, 4))

∆(d4, (4, 5))

∆(d4, (4, 6))Figure 3: Example of GPS data (ontinued)
6 Case StudyIn this setion we illustrate the modeling framework on a dataset olletedin Switzerland. The data onern long-distane route hoie behavior and11



Figure 4: Example of an observationwere olleted via telephone interviews (Vrti et al., 2006). The respondentswere asked to desribe their last long-distane trip with the names of theorigin and destination ities as well as maximum three intermediate itiesor loations that they passed through. An example is shown in Figure 4where a traveler went from Bellemont-sur-Lausanne to Vandoeuvres passingthrough Morges, Aubonne and Nyon. 940 reported trips are available forroute hoie analysis.In this ontext, the DDR of eah reported loation is de�ned by the or-responding zip ode. When linking the network-free data with the networkthrough the DDRs it is important to make sure that the preision levelof the observations orrespond to the preision level of the network. Wetherefore use a simpli�ed transportation network (Swiss national model,Vrti et al., 2005). This network overs all regions in Switzerland and on-tains 39411 unidiretional links and 14841 nodes (to be ompared with theSwiss TeleAtlas network that ontains approximately 1 million unidire-tional links and half a million nodes). To our knowledge, this is the largestnetwork used for estimation of route hoie models based on revealed pref-erenes data presented in the literature.12



In order to estimate a route hoie model we need to speify P(s|Si)and hoie sets Cn(s) ∀s ∈ S. The observations ontain no informationon relevant OD pairs. Due to the omputationally omplex hoie setgeneration we do not onsider all possible OD pairs for eah observationbut randomly hoose two OD pairs (if more than one is available) and usethe probability model given by Equation (2). For eah OD pair we generatea hoie set of 45 routes using a stohasti hoie set generation approah(Bierlaire and Frejinger, 2007). After the hoie set generation there are
780 observations available for model estimation. 160 observations are notonsidered beause either all or none of the generated routes orrespond tothe observation.We estimate two di�erent types of route hoie models Pn(p|Cn(s); β),one Path Size Logit (PSL) model (Ben-Akiva and Ramming, 1998) andone Subnetwork model (Frejinger and Bierlaire, 2007). With the latter,we expliitly model the orrelation among paths on a Subnetwork usingan Error Component model. Here we reate a subnetwork omposed of allmain freeways. We estimate one ovariane parameter whih is assumedproportional to the length by whih the paths overlap with the subnetwork.The transportation network is shown in Figure 5 where Subnetwork ismarked with bold lines.Finally, we need to speify the deterministi utility funtions. We usethe attributes reported in Table 1. Namely, Path Size, free-ow travel timeand road type attributes. The type of road is de�ned aording to an exist-ing hierarhy of the links. We de�ne four road types; freeway (FW), an-tonal/national (CN), main and small roads. The antonal/national roadsonnet di�erent regions in Switzerland but have a lower apaity and speedlimit than freeways. Main roads refer to fast loal roads in urban or ruralareas and small roads are the remaining ones.Both models have the same linear-in-parameters spei�ations. Morepreisely, a pieewise linear spei�ation for the free-ow travel time (mea-sured in hours) is used in order to apture travelers' sensitivity to hangesin travel time in di�erent ranges of the variable. After systemati testingof di�erent endpoints for the ranges we have de�ned a spei� pieewiselinear approximation of the free-ow travel time for eah of the four road13



Figure 5: Swiss national networkAttribute Min Average MaxPath Size 0.02 0.17 0.96ln(Path Size) -3.74 -1.95 -0.04Proportion of free-ow time on freeway 0.00 0.29 1.00Proportion of free-ow time on CN 0.00 0.27 1.00Proportion of free-ow time on main 0.00 0.23 1.00Proportion of free-ow time on small 0.00 0.21 1.00Free-ow travel time [minutes℄ 8 49.00 523Table 1: Statistis on routes orresponding to observations14



types. The utility funtions also inlude a Path Size attribute and the fourvariables representing the proportion of the total travel time on eah typeof road.
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Figure 6: Pieewise linear spei�ation - PSL modelIn Figure 6 we illustrate the pieewise linear spei�ation of the free-ow travel time by graphially visualizing the estimates for the PSL model.The oeÆient estimates for all the explanatory variables are reported inTable 2. The oeÆients have their expeted signs and are signi�antlydi�erent from zero. We have provided saled oeÆient estimates in orderto failitate the omparison of the two models. The saling is based on the\freeway free-ow time 0-30 min" oeÆient. The magnitude of the saledestimate for this oeÆient is hene the same for both models. The saledestimates have omparable magnitudes for the two models. This is also thease for the robust standard errors and the t-test statistis are thereforesimilar. We onlude that the estimation results are stable for the di�erentmodel strutures.The model �t measures and the oeÆients related to the orrelationstruture are reported in Table 3. The Path Size oeÆient estimates arepositive whih is onsistent with theory (Frejinger and Bierlaire, 2007).Indeed, this results in a negative orretion of the utility for overlappingpaths. 15



The ovariane estimate is signi�antly di�erent from zero whih an beinterpreted as there is a signi�ant orrelation among paths using freeways.Furthermore, the Subnetwork model has a signi�antly better model �tthan the Path Size Logit model (the likelihood ratio test statisti is 6.756to be ompared with χ2
0.05,1 = 3.84) whih is onsistent with the �ndings inFrejinger and Bierlaire (2007).

7 ConclusionLink-by-link desriptions of hosen routes are never diretly available anddata manipulation is neessary in order to obtain network ompliant pathsfor the estimation of route hoie models. We argue that data manipulationintrodues biases and errors and should be avoided. We propose a generalmodeling framework that reonile network-free data (for example partiallyreported trips and GPS data) with a network based model without suhmanipulations. The onept that bridges the gap between the data and themodel is alled Domain of Data Relevane and orresponds to a physialarea in the network where a given piee of data is relevant.In this framework any existing route hoie model an be estimatedbased on observations that are de�ned by sequenes of individual piees ofdata (estimation is available in BIOGEME). We illustrate the frameworkwith simple examples for two di�erent types of data, GPS data and re-ported trips. Moreover, we provide estimation results of Path Size Logitand Subnetwork models based on a real dataset of reported trips. Thenetwork is to our knowledge the largest network used in the literature forroute hoie analysis based on revealed preferenes data.We believe that this approah makes the route hoie modeling resultsmore aurate. Moreover, it makes the estimation of the models easiersine the omplex and time onsuming data manipulation an be avoided.We provide the methodology for estimating models based on GPS data.Sine no GPS dataset in its original form (sequenes of GPS points) is atour disposal, the estimation based on this type of data is left for futureresearh. 16



Coefficient PSL Subnetwork

Freeway free-flow time 0-30 min -7.12 -7.45Saled Estimate -7.12 -7.12(Rob. Std. Error) Rob. T-test (0.877) -8.12 (0.984) -7.57
Freeway free-flow time 30min - 1 hour -1.69 -2.26Saled Estimate -1.69 -2.16(Rob. Std. Error) Rob. T-test (0.875) -1.93 (1.03) -2.19
Freeway free-flow time 1 hour + -4.98 -5.64Saled Estimate -4.98 -5.39(Rob. Std. Error) Rob. T-test (0.772) -6.45 (1.00) -5.61
CN free-flow time 0-30 min -6.03 -6.25Saled Estimate -6.03 -5.97(Rob. Std. Error) Rob. T-test (0.882) -6.84 (0.975) -6.41
CN free-flow time 30 min + -1.87 -2.16Saled Estimate -1.87 -2.06(Rob. Std. Error) Rob. T-test (0.331) -5.64 (0.384) -5.63
Main free-flow travel time 10 min + -2.03 -2.46Saled Estimate -2.03 -2.35(Rob. Std. Error) Rob. T-test (0.502) -4.05 (0.624) -3.95
Small free-flow travel time -2.16 -2.75Saled Estimate -2.16 -2.63(Rob. Std. Error) Rob. T-test (0.685) -3.16 (0.804) -3.42
Proportion of time on freeways -2.20 -2.31Saled Estimate -2.20 -2.21(Rob. Std. Error) Rob. T-test (0.812) -2.71 (0.865) -2.67
Proportion of time on CN 0 fixed 0 fixed

Proportion of time on main -4.43 -4.40Saled Estimate -4.43 -4.21(Rob. Std. Error) Rob. T-test (0.752) -5.88 (0.800) -5.51
Proportion of time on small -6.23 -6.02Saled Estimate -6.23 -5.75(Rob. Std. Error) Rob. T-test (0.992) -6.28 (1.03) -5.83Table 2: Estimation results17



Coefficient PSL Subnetwork

ln(Path Size) based on free-flow time 1.04 1.10Saled Estimate 1.04 1.05(Rob. Std. Error) Rob. T-test (0.134) 7.81 (0.141) 7.78
Covariance 0.217Saled Estimate 0.205(Rob. Std. Error) Rob. T-test (0.0543) 4.00Number of simulation draws - 1000Number of parameters 11 12Final log-likelihood -1164.850 -1161.472Adjusted rho square 0.145 0.147Sample size: 780, Null log-likelihood: -1375.851BIOGEME (Bierlaire, 2003, Bierlaire, 2005) has been used for all modelestimations Table 3: Estimation results (ontinued)
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