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1 Introduction

Biogeme (biogeme.epfl.ch) is designed to estimate the parameters of discrete choice models.
Although originally built around maximum likelihood estimation, Biogeme (since version 3.3.2)
also supports Bayesian estimation based on Markov chain Monte Carlo (MCMC), producing
draws from the posterior distribution rather than a single point estimate.

This user guide assumes that the reader is familiar with discrete choice models and has
successfully installed Biogeme. It focuses on how to run Bayesian estimation in Biogeme,
how to specify models appropriately, and how to interpret the output. Methodological back-
ground (MCMC, HMC, NUTS) is intentionally kept to a minimum. A companion docu-
ment (Bierlaire, 2025) provides an informal introduction to the methodological foundations
of Bayesian estimation for discrete choice models.

Bayesian estimation is particularly useful for:

e mixture models and random coefficients, where classical maximum likelihood requires
Monte-Carlo integration;

e latent variable models and complex hierarchical structures;

e applications where full uncertainty propagation is needed (credible intervals, predictive
distributions, Bayesian simulation).

Although maximum likelihood (ML) and Bayesian estimation rely on the same underlying
behavioral model, they differ in interpretation, numerical treatment, and diagnostics. Table [II
summarizes the practical differences from a Biogeme user’s perspective.

Table 1: Comparison of maximum likelihood and Bayesian estimation in Biogeme

Maximum likelihood (ML)

Bayesian estimation

Unknown parameters
Main output
Uncertainty interpre-
tation

Estimation algorithm

Random coefficients

Convergence diagnos-
tics
Model comparison

Fixed but unknown constants
Point estimate (MLE) and
asymptotic covariance
Asymptotic (large-sample) ap-
proximation

Deterministic optimization
(BFGS, Newton, etc.)

Require Monte-Carlo integra-
tion

Gradient norm, Hessian eigen-
values

Likelihood ratio tests,
BIC

AIC,

Random variables with prior
distributions
Posterior distribution (draws)

Finite-sample uncertainty
(conditional on priors)
Stochastic simulation (MCMC
via NUTS)

Treated as latent variables (no
explicit integration)

ﬁ, ESS, divergences, trace
plots

WAIC, LOO, posterior predic-
tive fit

2  Quickstart

This section provides the minimal steps to run a Bayesian estimation in Biogeme and explains
key configuration options in biogeme.toml. We assume that the model is already specified in
Python using standard Biogeme expressions.



2.1 Minimal workflow

Bayesian estimation in Biogeme follows the same high-level workflow as maximum likelihood
estimation:

1. specify the model (utilities, likelihood or log-likelihood expression, parameters);
2. configure the estimation algorithm in biogeme.toml;
3. run the estimation script;

4. interpret the HTML report and inspect the .nc file containing posterior (and optional
prior) draws.

Model specification details (priors and mixture models) are discussed in Section Bl

In the Bayesian case, Biogeme relies on MCMC sampling (NUTS) to approximate the
posterior distribution. The estimation therefore produces draws from the posterior distribution
rather than a single point estimate. Reported summaries (means, medians, HDIs, diagnostics,
information criteria) are computed from these draws.

2.2 Bayesian configuration in biogeme.toml

Biogeme reads Bayesian settings from the [Bayesian] section of biogeme.toml. The most
important options control: (i) which sampler backend is used (PyMC vs NumPyro/JAX),
(ii) the amount of MCMC computation (warm-up, draws, chains), and (iii) which additional
diagnostics and criteria are computed.

Sampler backend and sampling strategy. The option mcmc_sampling strategy controls
how sampling is performed:

e "automatic": Biogeme selects a suitable strategy depending on available hardware and
installed libraries.

e "pymc": use the standard PyMC NUTS sampler on CPU.

e "numpyro-parallel": use NumPyro/JAX and run one chain per device (multiple CPU
devices, GPUs, or TPUs).

e "numpyro-vectorized": use NumPyro/JAX and run all chains vectorized on a single
device.

When JAX is available, NumPyro-based strategies can be significantly faster, especially on ac-
celerators or when multiple devices can be used. For most users, meme_sampling_strategy="automatic"
is recommended.

Number of chains, warm-up, and posterior draws.

chains. Number of independent MCMC chains. A common default is 4. Multiple chains are
essential for convergence diagnostics (e.g. R).

warmup. Number of warm-up iterations per chain. These iterations are used to adapt the
sampler (step size, mass matrix) and are not used for posterior summaries. For difficult
posteriors, increasing warm-up is often more effective than increasing the number of
retained draws.

bayesian_draws. Number of post-warm-up draws per chain retained for inference. Increasing
this number reduces Monte Carlo error (once the chains mix well), but does not fix non-
convergence.



Target acceptance rate. The option target_accept is the target acceptance probability
for NUTS. Typical values are 0.8-0.9; values such as 0.9 or 0.95 often improve robustness for
challenging posteriors (at the cost of smaller step sizes and longer run times). If divergences
occur, increasing target_accept is a common first adjustment.

Saving prior draws (recommended for identification diagnostics). If sample from prior
= "True", Biogeme generates prior draws and saves them alongside posterior draws. This is
useful to diagnose weak identification, because it enables direct comparisons between prior and
posterior dispersion.

Likelihood-based summaries and model comparison criteria.

calculate likelihood. If "True", Biogeme computes likelihood-based statistics derived from
posterior draws.

calculate waic. If "True", Biogeme computes WAIC (see Section [(.3]).
calculate_loo. If "True", Biogeme computes LOO (Pareto-smoothed leave-one-out, see Sec-

tion [.3).

2.3 Recommended starting configuration
A reasonable baseline configuration for many discrete choice models is:

e chains = 4,

e warmup = 1000 to 2000,
e bayesian_draws = 1000 to 2000,

e target_accept = 0.9,

sample from prior = "True" during model development.

2.4 Example [Bayesian] section

[Bayesian]

mcmc_sampling_strategy = "automatic"
sample_from_prior = "True"
bayesian_draws = 2000

warmup = 2000

chains = 4

target_accept = 0.9
calculate_waic = "True"
calculate_loo = "True"
calculate_likelihood = "True"

Practical advice. If you are mainly interested in parameter inference, you may disable WAIC/LOO
initially to reduce computation and storage, as the calculation of these quantities may take a
significant amount of time. When comparing models, enable WAIC and/or LOO and ensure
that pointwise log-likelihood values are available in the output.

3 Model specification

Model specification for Bayesian estimation is very similar to maximum likelihood specifica-
tion, with important differences regarding priors and (for mixtures) the treatment of random
coefficients.



3.1 Prior distributions

In Biogeme, all unknown model parameters that may be estimated from data are represented
by objects of class Beta. In the Bayesian context, a Beta object plays two simultaneous roles:
(i) it defines an unknown quantity appearing in the model expressions (utilities, log-likelihood,
etc.), and (ii) it defines how this quantity is treated by the Bayesian sampler through a prior
distribution and (optionally) bounds.

The Beta constructor. A parameter is created as

b_cost = Beta(
name=’b_cost’,
value=—1.0,
lowerbound=None,
upperbound=None,
status=0,
sigma_prior=5.0,
prior=None,

)

The arguments have the following meaning in Bayesian estimation:
name Identifier of the parameter, used in outputs and as the underlying PyMC variable name.

value Default value. In Bayesian estimation, this value is used as an initial value for the
sampler (via PyMC’s initval) and as the center of the default prior when no user-defined
prior is supplied.

lowerbound, upperbound Optional bounds on the support of the parameter. In Bayesian es-
timation, these bounds determine whether Biogeme uses a truncated default prior.

status [f different from 0, the parameter is fixed to its default value value and is not sampled.
If status=0, the parameter is unknown and is estimated/sampled.

sigma prior Scale used by Biogeme for the default prior when prior=None. It controls how
informative the default Normal (or truncated Normal) prior is. Larger values yield weaker
regularization.

prior User-supplied prior distribution, provided as a prior factory (a Python callable). If
prior=None, Biogeme builds a default prior using value, sigma prior and the bounds.

Default priors constructed by Biogeme. If no user-defined prior is provided (prior=None),
Biogeme constructs:

e an unbounded Normal prior centered at value when both bounds are None;
e a truncated Normal prior whenever at least one bound is specified.

The prior scale is governed by sigma prior. This default behavior is typically appropriate for
most applications and provides mild regularization and numerical stability.

Custom priors via a prior factory. A custom prior is specified by providing a callable
that receives: (i) the PyMC variable name, (ii) the initial value, (iii) the lower bound (if any),
(iv) the upper bound (if any), and returns a valid PyMC distribution object.

The example below defines a prior factory that constructs a Student-t distribution and
truncates it so that the parameter can only take negative values:



import pymc as pm
from pytensor.tensor import TensorVariable

def negative_student_prior (
name: str,
initial_value: float
lower_bound: float | None,
upper_bound: float | None,
) — TensorVariable:
base = pm.StudentT . dist (mu=0.0, sigma=10.0, nu=5.0)
# Enforce mnegativity through an upper bound at 0.
upper = 0.0 if upper_bound is None else min (0.0, upper_bound)
return pm. Truncated (
name=name ,
dist=base,

upper=upper ,
initval=initial_value ,

)

The prior is then passed to a Biogeme parameter as follows:

b_cost = Beta(
’b_cost’,
value=—1.0,
lowerbound=None,
upperbound=None,
status=0,
prior=negative_student_prior ,

Note that, in this case, the values supplied for value, lowerbound, and upperbound are
forwarded to the prior factory, which determines how they are interpreted. In this example,
the lowerbound argument is not used by the factory and, therefore, ignored.

Practical recommendations.

e Avoid uniform priors with NUTS. Flat densities provide little curvature and can
lead to poor exploration, divergences, and slow or unstable convergence.

e Use bounds to encode identification constraints. In particular, scale parameters
(standard deviations) should be constrained to be positive (e.g. lowerbound=1e-6) to
avoid artificial sign symmetry and spurious bimodal posteriors.

e Tune informativeness via sigma_prior. When using the default priors, sigma_prior
controls the degree of regularization.

3.2 Random coefficients and mixtures

A major practical advantage of Bayesian estimation in Biogeme is that mixture models do not
require explicit numerical integration over random parameters. Random coefficients are treated
as latent variables and are sampled jointly with structural parameters.

Because random coefficients are sampled jointly with the other unknowns, the analyst spec-
ifies only the conditional log-likelihood given a realization of the random coefficients (typically
the log of a logit probability). There is no need to write an explicit mixture likelihood or to
implement any separate numerical averaging scheme over the mixing distribution.

In many applications, it is useful to retain simulated draws of random coefficients in the
estimation output (heterogeneity analysis, post-estimation simulation, etc.). The following
statement tells Biogeme to store the draws of a random coefficient:

b_time_rnd = DistributedParameter (’b_time_rnd’, b_time + b_time_s % b_time_eps)



Here, b_timernd is the individual-specific realization of the time coefficient, stored for later
inspection.

3.3 Scale parameters and identification constraints

In mixture models, scale parameters (e.g. standard deviations of normally distributed random
coefficients) must be constrained to avoid artificial sign ambiguities. Without a positivity
constraint, the sampler may explore both positive and negative regions that correspond to the
same model, producing a spurious bimodal posterior and poor mixing.

In Biogeme, enforce positivity by specifying a small positive lower bound, for example
lowerbound = le-6, when defining the corresponding Beta parameter.

3.4 Mixtures with panel data

With panel data, Biogeme assumes that random parameters are drawn per individual, not per
observation, so all observations belonging to the same person share the same realization of the
random coefficients.

From the user’s perspective, the model is specified at the observation level. Conditional on
random parameters, the contribution of a single observation is simply the logit kernel:

log_probability _one_observation = loglogit (v, av, CHOICE)

Biogeme automatically aggregates contributions over the observations belonging to the same
panel and handles sampling of random coefficients internally.

4 Running Bayesian estimation

In the Bayesian case, once the model is specified and the [Bayesian] settings are defined in
biogeme.toml (Section[2.2), you run exactly the same Python estimation script as for maximum
likelihood. Biogeme then produces an HTML report and a .nc file with posterior draws. The
next section explains how to interpret these outputs.

5 Interpreting the output

Biogeme performs Bayesian estimation by relying internally on PyMC (and optionally NumPy-
ro/JAX). The output mirrors standard PyMC and ArviZ diagnostics and is reported in a
unified HTML report. This section explains how to interpret the main numerical summaries,
diagnostics, and graphical outputs. R

As a rule, interpret posterior summaries only after convergence diagnostics (R, ESS, diver-
gences) and basic graphical checks (trace and energy plots) are satisfactory.

We refer the reader to the online documentation of PyMC and ArviZ, as well as Vehtari
et al. (2016) and Watanabe (2010), for additional background.

5.1 General information about the estimation

Sample size. Number of observations used in the estimation.

Sampler. Biogeme selects an appropriate sampling method depending on hardware and in-
stalled libraries. Users can also force a sampling strategy via mcmc_sampling strategy.

Number of chains. Number of independent MCMC chains (typically 4).

Number of draws per chain. Retained post-warm-up draws per chain.



Acceptance rate target. Target acceptance probability for NUTS.

Run time. Total wall-clock time used to obtain the posterior sample.

5.2 Posterior log-likelihood and predictive fit

Log-likelihood at posterior mean. Log-likelihood evaluated at the posterior mean.
Expected log-likelihood. Average of the log-likelihood across posterior draws.

Best-draw log-likelihood. Highest log-likelihood value encountered among posterior draws.

Practical advice. 1f the log-likelihood at posterior mean and expected log-likelihood differ
substantially, the posterior may be wide, skewed, or the model may be sensitive to specific
parameter regions.

5.3 Information criteria for model comparison

Biogeme reports two fully Bayesian criteria for model comparison: the Widely Applicable
Information Criterion (WAIC) and Pareto-smoothed Leave-One-Out cross-validation (LOO).
Both criteria estimate a model’s expected predictive performance on new, unobserved data,
while accounting for model complexity.

Widely Applicable Information Criterion (WAIC)

WAIC is a Bayesian generalization of the Akaike Information Criterion (AIC). It is based on the
pointwise log-likelihood contributions and averages predictive performance over the posterior
distribution rather than evaluating it at a single point estimate.

Let £,(0) = logp(yn | ©) denote the log-likelihood contribution of observation n. Given
posterior draws 0'°), s = 1,....S, define:

N s
1
lppd = Z log<§ Z exp(fn(e(s)))> :
n=1 s=1

the log pointwise predictive density. The effective number of parameters is estimated as

Pwaic = i\/ars (ﬂn(e(s))> 7
n=1

where the variance is taken across posterior draws.
WAIC is then defined as
WAIC = -2 (Ippd — pwaic) -

Lower WAIC values indicate better expected out-of-sample predictive performance. Because
WAIC relies on posterior draws, it is valid for a wide class of models, including hierarchical and
latent-variable models commonly estimated in Biogeme.

Leave-One-Out Cross-Validation (LOO)

LOO estimates predictive performance by repeatedly leaving out one observation and evaluating
how well the model predicts it. Formally, it targets

N
> logp(yn | D),
n=1



where D_,, denotes the data set with observation n removed.

Exact LOO would require refitting the model N times, which is computationally infea-
sible. Biogeme therefore relies on Pareto-smoothed importance sampling (PSIS-LOO), which
approximates leave-one-out predictive densities using the posterior draws from the full data set.

LOO is reported on the deviance scale:

N
LOO =—2) logp(yn | D_n).
n=1

where p denotes the PSIS approximation.

LOO also provides diagnostic measures (Pareto k values) that assess the reliability of the
importance-sampling approximation. Large k values signal influential observations or model
misspecification.

Practical interpretation

e Lower WAIC or LOO values indicate better predictive performance.

e Differences should be interpreted relative to their standard errors. As a rule of thumb,
differences smaller than about twice the standard error are not decisive.

e LOO is generally more robust than WAIC, especially for complex models with latent
variables or weak identification.

In Biogeme, both WAIC and LOO are computed from pointwise log-likelihood values stored
in the estimation output. When available, LOO is typically recommended as the primary
criterion for Bayesian model comparison.

5.4 Posterior parameter summaries
For each parameter, Biogeme reports statistics derived from posterior draws:

Name. Identifier of the parameter.

Value (posterior mean). Expected value under the posterior distribution.

Median. Posterior median (robust measure of central tendency).

Mode. Posterior mode (kernel density estimation), useful for skewed or multimodal posteriors.
Std err. Posterior standard deviation.

z-value. Mean divided by standard deviation.

p-value. Two-sided posterior probability that the parameter has the opposite sign from its
mean.

HDI. Highest Density Interval bounds (typically 95%).

5.5 Convergence diagnostics
R. Values close to 1 indicate good mixing. A common threshold is R < 1.01.

ESS (bulk). Effective sample size for the main mass of the posterior. Values above 400 support
reliable estimation of means and variances.

ESS (tail). Effective sample size for tail behavior. Values above 100 help stabilize extreme
quantiles.



5.6 Identification diagnostics

These diagnostics detect non-identification or weak identification. Intuitively, identification
problems arise when some linear combinations of parameters can vary substantially without
affecting the likelihood, leading to very wide posterior directions. Diagnostics use posterior
draws and (when available) prior draws.

Posterior covariance diagnostics.

o Minimum and maximum eigenvalues. Eigenvalues measure posterior variance along or-
thogonal directions. A very large eigenvalue corresponds to a very wide (nearly flat)
direction, indicating weak or non-identification along a linear combination of parameters.
A very small eigenvalue corresponds to a tightly concentrated direction.

e Condition number. Ratio of largest to smallest eigenvalue; measures anisotropy of the
posterior covariance. Large values indicate near-dependencies among parameters. Values
around 10 deserve attention; 10% or more is a strong warning sign.

e FEffective rank. Effective dimensionality of posterior variability (between 0 and the num-
ber of parameters). Values much smaller than the number of parameters suggest that
variability concentrates in a lower-dimensional subspace.

Prior covariance diagnostics. Same diagnostics for the prior. If the prior is well behaved
but the posterior becomes ill-conditioned, the issue typically originates from the likelihood /-
model specification.

Identified by the prior. When prior draws are available, Biogeme reports per-parameter
ratios of posterior standard deviation to prior standard deviation:

e ratios close to 1 suggest weak information in the likelihood (prior dominates);

e ratios well below 1 suggest that the data are informative.

5.7 Simulated quantities (.nc output)

The .nc file stores posterior draws (and optional prior draws) in a PyMC InferenceData
structure. The explicit list is provided in the HTML file. Key groups include:

constant_data. Observed data treated as fixed (indexed by Dimension.0BS).

posterior. Posterior draws of parameters and derived quantities (typically (chain, draw);
observation-level quantities include Dimension.0BS).

prior. Prior draws, if enabled.
log likelihood. Pointwise log-likelihood contributions used for WAIC/LOO.

sample_stats. Sampler diagnostics (acceptance rate, divergences, step size, tree depth, energy,
etc.).

5.8 Graphical diagnostics

Biogeme includes plots such as trace plots, rank plots, energy plots, and autocorrelation plots,
generated by ArviZ. Even when numerical diagnostics look good, graphical inspection may help
detect multimodality, slow transitions, or other issues. If the plots are not visible in the report,
consider using ArviZ directly to regenerate them.



5.9 Troubleshooting common issues

This subsection summarizes common warning signs encountered in Bayesian estimation with
Biogeme and provides guidance on how to address them. It should be read in conjunction with
the convergence, identification, and graphical diagnostics described above.

Chains do not converge (ﬁ > 1.01). Values of R significantly above one indicate that
different chains explore different regions of the posterior distribution.

e Increase the number of warm-up iterations to allow the sampler to adapt more thoroughly.
e Inspect trace plots to detect poorly mixing chains or slow drift.

e Revisit model identification: near-linear dependencies or redundant parameters often
prevent convergence.

e Reparameterize the model by removing redundant constants, centering variables, or
rescaling explanatory variables.

Low effective sample size (ESS). Low ESS values indicate strong autocorrelation in the
simulated draws, even when R is satisfactory. This reduces the precision of posterior summaries.

e Increase the number of posterior draws (bayesian draws).
e Increase target_accept to improve exploration of the posterior geometry.

e Use pair plots to identify strong posterior correlations and consider reparameterization.

Divergent transitions reported. Divergent transitions signal numerical instability in the
simulation of Hamiltonian dynamics and usually indicate problematic posterior geometry. They
should not be ignored.

e Increase target_accept to reduce the integration step size.

e Ensure that all scale parameters are strictly positive and parameterized in a numerically
stable way.

e Inspect pair plots and energy plots to detect funnel-shaped geometries, extreme curvature,
or heavy-tailed behavior induced by diffuse priors.

Very slow sampling or excessive run time. Long run times may result from complex
model specifications, expensive likelihood evaluations, or post-processing computations.

e Simplify the model during development and add complexity incrementally.

e Temporarily disable WAIC and LOO, which require storing and processing pointwise
log-likelihood values.

e When available, use the NumPyro/JAX backend to benefit from just-in-time compilation

and automatic differentiation.

Posterior resembles the prior. When posterior and prior distributions are very similar,
the data provide little additional information about the corresponding parameters.

e Compare posterior and prior dispersion measures to assess the amount of learning.

e Verify through trace plots that the chains explore the posterior rather than merely repro-
ducing the prior.

e Reconsider the model specification and verify that the data contain sufficient identifying
variation.
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6 Simulation and prediction

Once posterior draws are available, Biogeme supports simulation either at a single representative
parameter vector (posterior means) or by propagating full posterior uncertainty.

6.1 Simulation using posterior means

Replace each parameter by its posterior mean and run a deterministic simulation:

results = biosim.simulate(the_beta_values=betas)

This is fast and interpretable, but ignores posterior uncertainty.

6.2 Bayesian simulation using posterior draws

Propagate uncertainty by simulating the model for a subset of posterior draws:

bayesian_results = biosim.simulate_bayesian (
bayesian_estimation_results=estimation_results ,
percentage_of_draws_to_use=3

)

The output becomes a distribution of simulated quantities, enabling credible regions and
uncertainty-aware decision support.

7 Conclusion

This user guide has presented the practical workflow for Bayesian estimation in Biogeme. We
described how to enable Bayesian inference through the [Bayesian] section of biogeme.toml,
how to specify priors and identification constraints within the usual Beta parameter objects,
and how Bayesian estimation naturally handles random coefficients and hierarchical structures
by sampling latent variables rather than requiring explicit numerical integration.

We then explained how to interpret the HT'ML report and the accompanying .nc output file:
posterior parameter summaries (mean, median, mode, HDI), convergence diagnostics (R and
ESS), identification diagnostics based on posterior (and optionally prior) draws, information
criteria for model comparison (WAIC and LOO), and the role of graphical diagnostics such as
trace plots, pair plots, and energy plots. Finally, we provided troubleshooting guidance and
illustrated how posterior draws can be used for uncertainty-aware simulation and prediction.

While the concepts and options described here apply broadly, effective Bayesian practice is
best learned by working through concrete examples. For this reason, readers are strongly en-
couraged to consult the online examples provided with Biogeme, which illustrate recommended
configurations, typical diagnostic patterns, and complete end-to-end workflows for estimation,
model comparison, and Bayesian simulation.
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