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1 Introduction

This document provides an informal introduction to the methodological foundations of Bayesian
estimation for discrete choice models. It is designed as a conceptual and theoretical companion
to the use of Biogeme for Bayesian estimation, complementing the software documentation and
user guide (Bierlaire, 2025).

The intended audience consists of readers who are already familiar with random utility
theory, likelihood-based inference, and standard discrete choice models, in particular those ac-
customed to maximum likelihood estimation. The goal of this document is to provide the the-
oretical background necessary to understand how Bayesian estimation operates in the context
of discrete choice modeling and how the results produced by Biogeme should be interpreted.

The objective is not to offer a comprehensive or fully rigorous treatment of Bayesian statis-
tics. Rather, the focus is on introducing the essential concepts and computational principles
that underlie Bayesian estimation of discrete choice models, with particular emphasis on models
that are too complex to be handled analytically. Throughout the document, methodological
choices are motivated by their practical implications for model specification, estimation, and
interpretation in Biogeme.

In particular, the document aims to clarify:

e the conceptual differences between Bayesian inference and maximum likelihood estima-
tion, and the implications of these differences for parameter uncertainty and inference;

e why simulation-based methods are unavoidable for realistically specified discrete choice
models, especially in the presence of random coefficients and hierarchical structures;

e how Markov chain Monte Carlo (MCMC) methods are used to approximate posterior
distributions when closed-form solutions are unavailable;

e why modern gradient-based algorithms, such as Hamiltonian Monte Carlo (HMC), are
particularly well suited to Bayesian estimation of discrete choice models.

Implementation details, software configuration, and step-by-step user instructions are in-
tentionally excluded from this document. These aspects are documented separately in the
Biogeme user guide, while the present text focuses on the underlying statistical and compu-
tational principles needed to use Bayesian estimation in Biogeme in an informed and critical
manner.

2 Bayesian inference for discrete choice models

Bayesian inference provides a probabilistic framework for learning about unknown model pa-
rameters from observed choice data. Uncertainty about these parameters is represented explic-
itly through probability distributions, rather than summarized by a single point estimate.

Let D = {yn,xn}i’:l denote the observed data, where y, is the observed choice made in
situation n and x,, is the corresponding vector of explanatory variables. Let © denote the
vector of parameters of the discrete choice model.

In the Bayesian framework, the parameters 0 are treated as unknown random quantities and
assigned a prior distribution p(0). This prior encodes information or beliefs about plausible
parameter values before observing the data. The likelihood function,

N
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summarizes the information provided by the observed choices through the assumed behavioral
model.



Bayes’ theorem combines prior information and empirical evidence to produce the posterior

distribution:
L(D|6)p(0)

where the denominator is a normalizing constant ensuring that the posterior integrates to one.
This quantity, sometimes referred to as the marginal likelihood or model evidence, is typically
intractable for discrete choice models of practical interest.

The posterior distribution is the central object of Bayesian inference. It captures all in-
formation about the parameters that is available after observing the data and forms the basis
for estimation, prediction, and policy analysis. In contrast to frequentist estimation, which
yields a single point estimate and relies on asymptotic arguments for uncertainty quantifica-
tion, Bayesian inference produces a full probability distribution over parameters. This enables
direct probability statements, coherent predictive inference, and systematic propagation of pa-
rameter uncertainty into all derived quantities.

3 Simulation and Monte Carlo methods

For most Bayesian discrete choice models of practical interest, the posterior distribution of the
parameters cannot be characterized in closed form. It is typically high-dimensional, asymmet-
ric, and shaped by complex interactions between the likelihood and the prior. Consequently,
Bayesian inference relies on simulation rather than analytical manipulation of probability dis-
tributions.

Monte Carlo simulation refers broadly to the use of random sampling to study the properties
of probability distributions and random systems. In a Bayesian context, the central idea is to
represent a probability distribution by a large collection of simulated draws. These draws can
then be treated as a numerical representation of the distribution itself.

Let 0, ..., 0™ denote a sequence of simulated draws from a distribution of interest. Once
such draws are available, inference proceeds by operating directly on the sample. The empirical
distribution of the draws approximates the underlying probability distribution, and uncertainty
is represented by the dispersion and structure of the simulated values.

This simulation-based representation has several important consequences. First, there is
no need to manipulate probability densities analytically. Posterior summaries such as means,
medians, credible intervals, or correlations between parameters are obtained by simple oper-
ations on the simulated draws. Second, nonlinear transformations of parameters, predictions,
and welfare measures can be evaluated straightforwardly by applying the corresponding trans-
formation to each draw and examining the resulting sample. Parameter uncertainty is thus
propagated automatically to all derived quantities.

In Bayesian estimation, simulation therefore replaces analytical derivation as the primary
computational tool. The key challenge is no longer to evaluate expressions in closed form, but
to generate draws whose distribution accurately reflects the posterior distribution p(6 | D).
For discrete choice models, this distribution is known only up to a proportionality constant and
is often highly irregular, which rules out direct sampling.

This difficulty motivates the use of specialized simulation algorithms, most notably Markov
chain Monte Carlo (MCMC) methods. These algorithms construct a stochastic process whose
long-run behavior produces draws distributed according to the posterior. Although the draws
are typically dependent, they collectively form a valid simulation-based representation of the
posterior distribution.

Monte Carlo simulation thus lies at the heart of Bayesian estimation for discrete choice
models. Rather than seeking closed-form solutions, Bayesian inference proceeds by generating,
diagnosing, and exploiting large collections of simulated parameter draws, which serve as the
primary object of inference.



4 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a class of simulation techniques designed
to generate dependent draws whose empirical distribution converges to a target posterior dis-
tribution. Rather than sampling independently, MCMC constructs a stochastic process that
explores the parameter space in such a way that regions of high posterior probability are visited
more frequently.

An MCMC algorithm produces a sequence

o, 0, ...

forming a Markov chain whose stationary distribution is the posterior p(0 | D). Under standard
regularity conditions, ergodic averages of this sequence—where “ergodic” means that the simu-
lation eventually visits all relevant regions of the posterior distribution—converge to posterior
statistics. Consequently, once the chain has converged, the draws can be used to approximate
posterior means, variances, and other quantities of interest.

The initial iterations of an MCMC chain are typically influenced by the arbitrary starting
values and do not yet reflect the stationary distribution. These early draws are therefore dis-
carded during a burn-in or warm-up phase. In addition to reducing the impact of initialization,
the warm-up phase is often used to tune internal algorithmic parameters, such as proposal
scales or step sizes. Only draws generated after this phase are retained for posterior inference.

It is standard practice to run multiple MCMC chains in parallel, each initialized from dis-
persed starting points in the parameter space. If all chains converge to the same distribution
and mix well, their trajectories should be statistically indistinguishable after warm-up. Consis-
tency across chains therefore provides strong evidence of convergence and adequate exploration
of the posterior distribution.

Unlike standard Monte Carlo sampling, draws generated by MCMC are generally correlated.
As a consequence, a sequence of N MCMC draws typically contains less information than N
independent samples from the same distribution. This reduction in information is quantified by
the effective sample size (ESS), which measures the number of independent draws that would
yield an estimator with the same variance.

Consider a scalar parameter 8 and a sequence of N post-warm-up draws {8(V}N . Let
px denote the lag-k autocorrelation of the chain that measures the linear dependence between
draws separated by k iterations of the Markov chain:

N—k
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t=1
Under standard assumptions, the effective sample size is defined as

N
ESS = = ) 2
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The denominator captures the cumulative impact of autocorrelation: positive autocorrelation
inflates the variance of Monte Carlo estimators and reduces the amount of independent infor-
mation contained in the sample.

In practice, the infinite sum in (2) is truncated using data-driven rules, and effective sample
sizes are estimated separately for each parameter or function of parameters. Modern Bayesian
software, including PyMC and ArviZ used in Biogeme, reports multiple ESS measures, such as
bulk and tail ESS, which assess sampling efficiency in the central region and in the tails of the
posterior distribution.




High autocorrelation leads to small effective sample sizes and thus larger Monte Carlo
error. Reliable Bayesian inference therefore requires not only convergence of the chains but
also sufficiently large effective sample sizes for the quantities of interest.

We refer the reader to Geyer (1992), Gelman et al. (2014) and Vehtari et al. (2021) for
comprehensive discussions of MCMC theory, diagnostics, and best practices.

5 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC), originally introduced in the physics and lattice field theory
literature and later formalized for statistical inference by Duane et al. (1987) and Neal (2011),
addresses the inefficiency of random-walk MCMC methods by exploiting gradient information
of the log posterior to generate long, coherent proposals.

Let f(0) o< p(0 | D). HMC introduces an auxiliary momentum variable p and defines the
Hamiltonian

1
H(0,p) =—logf(0) + op M 'p,

where M is a positive definite mass matrix.
Sampling proceeds by simulating Hamiltonian dynamics in the augmented space (0,p),
followed by a Metropolis correction step to ensure exactness.

Leapfrog integration. Hamiltonian Monte Carlo relies on simulating Hamiltonian dynamics
in an augmented parameter—-momentum space. Since the associated differential equations
cannot be solved analytically in realistic models, they are approximated numerically us-
ing the leapfrog (or Stormer—Verlet) integrator (see Neal, 2011). The leapfrog scheme
alternates half-steps for the momentum and full-steps for the parameters, using gradients
of the log posterior to guide the trajectory.

A key property of the leapfrog integrator is that it is both time-reversible and volume-
preserving. These properties are essential: they ensure that the numerical approximation
can be embedded within a Metropolis—Hastings accept-reject step that exactly preserves
the target posterior distribution, despite the presence of numerical integration error. As
the step size decreases, the Hamiltonian error decreases and the acceptance probability
approaches one, allowing HMC to propose long, coherent moves through the parameter
space with high efficiency.

The No-U-Turn Sampler. In standard Hamiltonian Monte Carlo, the efficiency of the algo-
rithm depends critically on the choice of the trajectory length (equivalently, the number
of leapfrog steps). If the trajectory is too short, the sampler behaves like a random walk;
if it is too long, computation is wasted as the trajectory starts retracing its steps.

The No-U-Turn Sampler (NUTS, Hoffman and Gelman, 2014) resolves this issue by dy-
namically and automatically determining when to stop the Hamiltonian trajectory. It
builds trajectories forward and backward in time and terminates the expansion when
a U-turn is detected, that is, when the momentum begins to point back toward previ-
ously visited states. This adaptive strategy eliminates the need for manual tuning of the
trajectory length while retaining the theoretical guarantees of HMC.

Combined with automatic step-size and mass-matrix adaptation during warm-up, NUTS
provides a robust, efficient, and largely tuning-free algorithm. For this reason, it has
become the default sampler in modern Bayesian software such as Stan and PyMC, used
by Biogeme for Bayesian estimation.

Leapfrog integration. Hamiltonian Monte Carlo relies on simulating Hamiltonian dynamics
in an augmented parameter-momentum space. Since the associated differential equations
cannot be solved analytically in realistic models, they are approximated numerically using



the leapfrog (or Stormer—Verlet) integrator. The leapfrog scheme alternates half-steps for
the momentum and full-steps for the parameters, using gradients of the log posterior to
guide the trajectory.

A key property of the leapfrog integrator is that it is both time-reversible and volume-
preserving. These properties are essential: they ensure that the numerical approximation
can be embedded within a Metropolis—Hastings accept-reject step that exactly preserves
the target posterior distribution, despite the presence of numerical integration error. As
the step size decreases, the Hamiltonian error decreases and the acceptance probability
approaches one, allowing HMC to propose long, coherent moves through the parameter
space with high efficiency.

The No-U-Turn Sampler. In standard Hamiltonian Monte Carlo, the efficiency of the algo-
rithm depends critically on the choice of the trajectory length (equivalently, the number
of leapfrog steps). If the trajectory is too short, the sampler behaves like a random walk;
if it is too long, computation is wasted as the trajectory starts retracing its steps.

The No-U-Turn Sampler (NUTS) resolves this issue by dynamically and automatically
determining when to stop the Hamiltonian trajectory. It builds trajectories forward and
backward in time and terminates the expansion when a U-turn is detected, that is, when
the momentum begins to point back toward previously visited states. This adaptive
strategy eliminates the need for manual tuning of the trajectory length while retaining
the theoretical guarantees of HMC.

Combined with automatic step-size and mass-matrix adaptation during warm-up, NUTS
provides a robust, efficient, and largely tuning-free algorithm. For this reason, it has
become the default sampler in modern Bayesian software such as Stan and PyMC. It is
the algorithm used by Biogeme for Bayesian estimation.

In summary, HMC and NUTS:

e scale well to high-dimensional parameter spaces,

e handle strong posterior correlations efficiently,

e avoid random-walk behavior,

e are well suited to hierarchical and latent-variable models.

These properties make them particularly effective for Bayesian discrete choice models, in-
cluding mixtures and panel data.

6 Bayesian treatment of random coefficients

In a Bayesian framework, random coefficients are treated as latent variables and are inferred
jointly with the structural (population-level) parameters of the model. This contrasts with
classical logit mixtures estimation, where random coefficients are integrated out analytically or
numerically to obtain a marginal likelihood.

6.1 Model structure

Let D = {yn,xn}l:’:l denote the observed data, where y,, is the observed choice for decision-
maker (or observation) n, and x, collects the associated explanatory variables. Let n,, denote
the vector of individual-specific random coefficients associated with observation n, and let 3
denote the vector of population-level parameters governing the distribution of these random
coefficients (e.g. means, standard deviations, or covariance parameters).

6



The hierarchical structure of the model can be written as

N [ B~pn | B), Yn [ My ~PYn [ Mn), B~p(B),

where p(f) denotes the prior distribution over the structural parameters.

6.2 Joint posterior distribution

Rather than working with the marginal likelihood

PlynlB) = Jp(yn [ n)p(ny, [ B) dny,

Bayesian inference targets the joint posterior distribution of all unknown quantities:

N
P(B.Min [ D) o< p(B) ] [P | BIP(Yn [ M)
n=1

This joint posterior is explored using Markov chain Monte Carlo (MCMC) methods. Each
MCMC draw provides a joint realization of the population parameters 3 and the latent coeffi-
cients ny.-

6.3 Implicit integration and relation to logit mixtures

Posterior expectations of functions of $ or predictive quantities are obtained by Monte Carlo
averaging over posterior draws. In particular, the integration over the random coefficients that
appears explicitly in classical mixtures of logit models is performed implicitly by averaging over
the sampled values of n,.:

(J)I»—t

pPlyn | D) =

S
Z (Yn IM3),

where {nn 5_; are draws from the posterior. This avoids explicit numerical integration.

6.4 Panel data

When panel data are available, each decision-maker 1 is observed over multiple choice occasions
t = 1,...,Ti. In that case, the random coefficients are indexed at the individual level and
shared across observations:

N B~pMmilB), Yie [N ~Pyie [ M)

The joint posterior becomes

-

I T;
pP(B; My | D) o P(B)H (mi | B) HP Yie [ M)
i=1 t=1

This formulation naturally captures intertemporal correlation in choices through the shared
latent coefficients 1, without requiring any modification of the estimation machinery. The
Bayesian hierarchical model thus provides a unified and coherent framework for cross-sectional
and panel logit mixtures models.



7 Identification and posterior geometry

Identification issues arise when the likelihood function is weakly informative with respect to
some parameters or linear combinations of parameters. In such situations, substantial changes
in these directions of the parameter space produce only negligible changes in the likelihood, so
that the data provide little information to pin down unique parameter values. In frequentist
estimation, this typically manifests itself through a nearly singular or ill-conditioned Hessian
matrix. In Bayesian estimation, the same phenomenon appears in the geometry of the posterior
distribution.

When identification is weak, the posterior tends to be highly anisotropic. Some directions
in parameter space remain very wide, reflecting large uncertainty along combinations of param-
eters that are poorly identified by the data. These wide directions are often accompanied by
strong posterior correlations, as multiple parameters can trade off against one another without
materially affecting model fit. From a computational perspective, such posterior geometries are
challenging: Markov chains tend to explore these elongated regions slowly, leading to high au-
tocorrelation and a low effective sample size, even when formal convergence diagnostics appear
acceptable.

A useful way to characterize posterior geometry is through the eigenvalue decomposition
of the posterior covariance matrix. The eigenvalues measure the variance of the posterior
distribution along orthogonal directions in parameter space. Large eigenvalues correspond
to directions in which the posterior is very diffuse, indicating weak identification, while small
eigenvalues correspond to tightly constrained, well-identified directions. The ratio of the largest
to the smallest eigenvalue, known as the condition number, provides a compact summary
of posterior anisotropy. A large condition number signals near-linear dependencies among
parameters and should be interpreted as a warning sign of weak or partial identification.

Finally, comparing posterior dispersion to prior dispersion provides additional insight into
the source of identification. When the posterior variance of a parameter is similar to its prior
variance, the data have added little information beyond the prior, suggesting that identifica-
tion is driven primarily by prior assumptions. Conversely, substantial shrinkage from prior to
posterior indicates that the likelihood is informative and that the parameter is identified by the
data. Such comparisons are particularly valuable in Bayesian estimation, as they make explicit
whether inference is supported by empirical evidence or mainly by prior structure.

8 Posterior inference and prediction

Once samples from the joint posterior distribution are available, statistical inference and pre-
diction reduce to Monte Carlo integration. Let {6 S_, denote posterior draws of the model
parameters, where O collects all unknown quantities of interest, including structural parameters
and, when relevant, latent random coeflicients.

Posterior summaries such as means, medians, posterior modes, and credible intervals are
obtained by evaluating the corresponding functionals over the posterior draws. For a scalar
parameter 0, for example, the posterior mean and a (1 — «) highest density interval are ap-
proximated as

s
E[O | D] ~ Z ols) HDI,_(0) ~ quantiles of {6'%) S
s=1

wn| =

with analogous expressions for other summary statistics. Convergence diagnostics and effective
sample sizes computed from the MCMC output provide quantitative measures of the reliability
of these estimates.

Prediction in a Bayesian framework is based on the posterior predictive distribution. For a



new observation with covariates x*, the predictive probability of outcome y* is given by

ply* | X, D) = Jp(y* x,0)p(0 | D) de.

which is approximated by Monte Carlo averaging over posterior draws:

S
1

* * ~ * * (s)

Py Ix,®)~ss§_lp(y | x*,0°°).

The same principle applies to derived quantities such as elasticities, value-of-time measures,
or welfare changes induced by counterfactual policies. Each posterior draw defines a complete
model realization, from which these quantities can be computed deterministically. The posterior
distribution of the derived quantity is then obtained by evaluating it across all draws, yielding
both point estimates and credible intervals that fully account for parameter uncertainty.

Posterior predictive simulation extends this approach further by generating synthetic out-
comes from the predictive distribution. By sampling parameters from the posterior and out-
comes from the corresponding likelihood, one obtains simulated datasets that reflect both
stochastic choice behavior and uncertainty about the underlying model parameters. This pro-
vides a natural framework for model checking, forecasting, and scenario analysis.

Overall, Bayesian posterior inference and prediction offer a coherent and unified approach
in which estimation, prediction, and policy evaluation are all based on the same probabilistic
foundation. Parameter uncertainty is propagated automatically into predictions and derived
outputs, enabling uncertainty-aware decision support without requiring ad hoc approximations
or asymptotic arguments.

9 Concluding remarks

Bayesian estimation provides a coherent and flexible framework for discrete choice modeling.
Its combination with modern MCMC algorithms enables the estimation of models that are
difficult or impractical to handle using classical maximum likelihood.

The methodological concepts presented in this document underpin the practical implemen-
tation described in the companion software-oriented documentation (Bierlaire, 2025).
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