
Arithmetic expressions in Biogeme

Michel Bierlaire

August 5, 2024

Report TRANSP-OR 240805

Transport and Mobility Laboratory

School of Architecture, Civil and Environmental Engineering

Ecole Polytechnique Fédérale de Lausanne

transp-or.epfl.ch

Series on Biogeme

1

The package Biogeme (biogeme.epfl.ch) is designed to estimate the pa-
rameters of various models using maximum likelihood estimation. It is par-
ticularly designed for discrete choice models.

This document describes how Biogeme handles arithmetic expressions and
deals with potential numerical issues. The concepts have been implemented
in cythonbiogeme 1.0.4, used by biogeme 3.2.14.

1 Introduction

The core of the Biogeme software package is the calculation of formulas for
each observation in a database. In estimation mode, the formula is the log
likelihood function. And its derivatives are necessary for the optimization
algorithm as well as the calculation of useful statistics. In simulation mode,
the formulas are any indicator that the analyst deems useful to calculate
(choice probabilities, elasticities, etc.) We refer the reader to Bierlaire (2018)
and Bierlaire (2023) for more details about the use of Biogeme for model
estimation and the calculation of indicators.

To allow the user to use Biogeme on a wide variety of model specifica-
tions, the formulas are composed of elementary arithmetic operations. These
building blocks are organized in a complex tree structure, where each of them
receives inputs from others, generates output, that is forwarded to the next
layer. For instance, the formula

−x+
exp(y− 1)

2

can be represented as illustrated in Figure 1.
Each node of the formula is associated with a specific simple operation,

and is in charge of calculating its value, and its derivatives.
Computers are working with finite arithmetic. It means that computers

have limitations in the way they represent and operate on numbers due to
their finite hardware resources and the design of numerical representations.
Therefore, the actual implementation of the arithmetic operations are not
necessarily an exact duplicate of their mathematical equivalent, that consid-
ers a continuous space of real numbers, that can take any value.

The objective of this document is to describe how each arithmetic expres-
sion is handled by Biogeme. Note that, by default, Biogeme follows the IEEE
standard (IEEE Standard for Floating-Point Arithmetic, 2019) that specify
formats and operations for floating-point arithmetic, including the definition
of exception conditions and the handling of these conditions. For instance,
the calculation of ln(0) results in −∞, and the calculation of ln(−1) results
in NaN (Not a Number). Those standards are not reviewed in this document.

1

+

-

x

/

exp

-

y 1

2

Figure 1: Tree representation of a formula

2 Numerical limits

The computer representation of a real number is called a “floating-point”
representation. It is divided into three parts. The values of the parameters
below correspond to a 64-bit representation:

• A sign bit s, that indicates the sign of the number (0 for positive, 1 for
negative).

• An exponent e covering k = 11 bits, that represents the exponent of
the number in a biased form. By bias, it is meant that negative and
positive powers of two are possible. The bias b is added to obtain a
positive number. The bias is b = 2k−1−1 = 1023, so that the exponents
range between -1022 to +1023.

• A mantissa (m), using p− 1 bits, where p is the precision.

So, for a 64-bit representation, s+k+p−1 = 64, so that p = 53. Therefore,
the value of a floating point number is

(−1)s(1+m)2e−b.

This representation allows for only a finite quantity of real numbers to
be represented: 264 ≈ 1019 numbers. And this imposes numerical limits. In
Python, it is possible to retrieve information about those limits using numpy.
If you type print(np.finfo(float)), you obtain:

2

Machine parameters for float64

precision = 15 resolution = 1.0000000000000001e-15

machep = -52 eps = 2.2204460492503131e-16

negep = -53 epsneg = 1.1102230246251565e-16

minexp = -1022 tiny = 2.2250738585072014e-308

maxexp = 1024 max = 1.7976931348623157 e+308

Nexp = 11 min = -max

smallest_normal = 2.2250738585072014e-308 smallest_subnormal

= 4.9406564584124654e-324

In this document, we consider ε, the “machine epsilon”, that is the dif-
ference between 1.0 and the next smallest representable float larger than 1.0.
It is an important value, because it means that, for each x < ε, adding x to
1 will provide 1 as a result:

1+ x = 1.

This may clearly lead to unpredictable behavior of numerical calculations.
As mentioned in the output of numpy, the value of the machine epsilon in
64-bit representation is

ε ≈ 10−16.

There is an empirical way to calculate this value, using the following script:

epsilon = 1

while 1.0 + epsilon != 1.0:

epsilon /= 2.0

epsilon *= 2.0

In Biogeme, we consider
ξ =

√
ε

to determine if a value is sufficiently close to zero. Specifically, Biogeme
applies special handling to any value x such that −ξ ≤ x ≤ 0. For instance,
ln(−10−10) is treated as ln(0) = −∞ in Biogeme, whereas the IEEE standard
would produce NaN. es

3 Expressions

We explicitly characterize how each arithmetic expression is implemented in
Biogeme. Each expression in Biogeme is represented by an object of generic
type Expression.

The document is organized by groups of expressions:

• Elementary expressions, including the numbers, the variables, the pa-
rameters, etc.

3

• The unary expressions, accepting one input value.

• The comparison expressions, accepting two input values, and used to
compare two expressions.

• Other binary expressions, accepting two input values.

• The n-ary expressions, accepting more than two values.

• The logit expression, implementing the logit model.

3.1 Elementary expressions

The elementary expressions are the building blocks of any expression. They
correspond to the leaves of the tree representation, such as the one illustrated
in Figure 1.

Numeric values Numeric values are the most basic expressions. The syn-
tax for numeric values is

Numeric(x)

where x is the value. In most cases, the user does not need to use this
syntax, as Biogeme tries to identify them automatically.

Variables Variables are referring to the columns of the data set:

Variable(’name_of_the_variable ’)

This expression simply returns the value of the corresponding variable
for the current row.

Random variable A random variable is used in the context of numerical
integration. The syntax is

RandomVariable (’name_of_the_random_variable ’).

Draws Random draws are used in the context of Monte-Carlo integration.
The syntax is

bioDraws(’name_of_the_draws ’, draw_type)

where draw_type is a string. It can refer to a user defined type of draws,
or one of the native draws from the following list:

4

’UNIFORM ’, ’UNIFORM_ANTI ’, ’UNIFORM_HALTON2 ’,

’UNIFORM_HALTON3 ’, ’UNIFORM_HALTON5 ’, ’UNIFORM_MLHS ’,

’UNIFORM_MLHS_ANTI ’, ’UNIFORMSYM ’, ’UNIFORMSYM_ANTI ’,

’UNIFORMSYM_HALTON2 ’, ’UNIFORMSYM_HALTON3 ’,

’UNIFORMSYM_HALTON5 ’, ’UNIFORMSYM_MLHS ’,

’UNIFORMSYM_MLHS_ANTI ’, ’NORMAL ’, ’NORMAL_ANTI ’,

’NORMAL_HALTON2 ’, ’NORMAL_HALTON3 ’, ’NORMAL_HALTON5 ’,

’NORMAL_MLHS ’, ’NORMAL_MLHS_ANTI ’

Parameters Parameters must be estimated from data. Their first values is
defined by the user. There are two categories of parameters. Free pa-
rameters are updated by the optimization algorithm. Fixed parameters
are not. The syntax for parameters is

Beta(’name_of_the_parameter ’, x_0 , ell , u, fixed)

where x_0 is the initial value of the parameter, ell is the lower bound
on the parameter, u is the upper bound on the parameter, and fixed

specifies if the parameter must be fixed (fixed=1) of free (fixed=0).

Biogeme calculates derivatives with respects to the Beta parameters. In
the following, we denote by βi and βj the literals that are involved in the
derivatives. Obviously, we have

∂βi

∂βi

= 1,
∂βi

∂βj

= 0,

and
∂2βi

∂β2
i

=
∂2βi

∂βi∂βj

= 0.

3.2 Unary expressions

Unary expressions take one value as input. Like any expression, they return
a value and the derivatives.

Unary minus Syntax: if y is the input value, the unary minus is

-y

If y is the input value, it returns f(y) = −y. The derivatives are:

∂f

∂βi

= −
∂y

∂βi

and
∂2f

∂βi∂βj

= −
∂y

∂βi∂βj

.

5

Exponential If y is the input value, the syntax is

exp(y)

Let y be the input value.

f(y) = ey,

∂f(y)

∂βi

= ey
∂y

∂βi

,

∂2f(y)

∂βi∂βj

= ey
∂y

∂βi

∂y

∂βj

+
∂2y

∂βi∂βj

.

Logarithm If y is the input value, the syntax is

log(y)

Biogeme considers a negative y that is close to zero to be 0:

y← 0, if y < 0 and y ≥ −ξ.

Let y be the input value, processed as described above.

f(y) = ln(y),

∂f(y)

∂βi

=
1

y

∂y

∂βi

,

∂2f(y)

∂βi∂βj

= −
1

y2

∂y

∂βi

∂y

∂βj

+
1

y

∂2y

∂βi∂βj

.

Logarithm or zero This expression is the same as the logarithm, except
that if the argument is exactly zero, it returns 0. For any value different
from zero, it returns the same as for the log expression. It is designed
as a shortcut for the expression

Elem ({1: 0, 0: log(x)}, x == 0).

If y is the input value, the syntax is

logzero(y)

Biogeme considers a negative y that is close to zero to be 0:

y← 0, if y < 0 and y ≥ −ξ.

6

Let y be the input value, processed as described above.

f(y) = 0,

∂f(y)

∂βi

= 0,

∂2f(y)

∂βi∂βj

= 0.

If y > 0, we define

f(y) = ln(y),

∂f(y)

∂βi

=
1

y

∂y

∂βi

,

∂2f(y)

∂βi∂βj

= −
1

y2

∂y

∂βi

∂y

∂βj

+
1

y

∂2y

∂βi∂βj

.

Sinus If y is the input value, the syntax is

sin(y)

Let y be the input value. We define

f(y) = sin(y),

∂f(y)

∂βi

= cos(y)
∂y

∂βi

,

∂2f(y)

∂βi∂βj

= − sin(y)
∂y

∂βi

∂y

∂βj

+ cos(y)
∂2y

∂βi∂βj

.

Cosinus If y is the input value, the syntax is

cos(y)

Let y be the input value. We define

f(y) = cos(y),

∂f(y)

∂βi

= − sin(y)
∂y

∂βi

,

∂2f(y)

∂βi∂βj

= − cos(y)
∂y

∂βi

∂y

∂βj

− sin(y)
∂2y

∂βi∂βj

.

7

Derive This expression calculates the derivative of the input with respect
to one of the literals. If y is the input expression, the syntax for its
derivative with respect to a literal beta is

Derive(y, ’beta’)

Let y be the input value. Then,

f(y) =
∂y

∂β
.

The derivatives of this expression are not evaluated by Biogeme. It is
meant to be used in simulation mode only.

Integrate This expression performs numerical integration of Biogeme ex-
pressions using the Gauss-Hermite quadrature method. The integra-
tion is performed over a random variable, and the method can compute
both gradients and hessians of the integrated function.

If takes as argument an expression y that includes a random variable
omega. The syntax is

Integrate(y, ’omega ’)

Let y be the input value. We define

f(y) =

∫+∞

−∞

y(ω)dω,

∂f(y)

∂βi

=

∫+∞

−∞

∂y(ω)

∂βi

dω,

∂2f(y)

∂βi∂βj

=

∫+∞

−∞

∂2y(ω)

∂βi∂βj

dω.

MonteCarlo This expression approximates an integral using Monte-Carlo
integration. If takes as argument an expression y that includes draws.
The syntax is

MonteCarlo(y)

8

Let y be the input value. We define

f(y) =
1

R

R∑

r=1

y(ξr),

∂f(y)

∂βi

=
1

R

R∑

r=1

∂y(ξr)

∂βi

,

∂2f(y)

∂βi∂βj

=
1

R

R∑

r=1

∂2y(ξr)

∂βi∂βj

,

where R is a parameter defining the number of draws to be used, and
ξr are the values of the draws.

bioNormalCdf This expression provides an analytical approximation of the
cumulative distribution function of a normal random variable. If y is
the input, the syntax is

bioNormalCdf(y).

The routine calculates the CDF of the normal distribution, Φ(y), for
a given input expression y, along with its gradient and hessian. The
CDF of the normal distribution is defined as:

Φ(y) =
1

2

[

1+
2√
π

∫ y
√

2

0

e−t2 dt

]

To approximate the normal CDF, the method relies on numerical tech-
niques involving series expansions and the incomplete gamma function.

The probability density function (pdf) of the normal distribution, φ(y),
is given by:

φ(y) =
1√
2π

exp

(

−
y2

2

)

.

The gradient of the CDF with respect to the input variables is calcu-
lated as:

∂Φ(y)

∂βi

= φ(y)
∂y

∂βi

where ∂y
∂βi

are the partial derivatives of the input expression y.

9

The hessian matrix of the CDF is computed as:

∂2Φ(y)

∂βi∂βj

= φ(y)
∂2y

∂βi∂βj

− φ(y)y
∂y

∂βi

∂y

∂βj

where ∂2y
∂βi∂βj

are the second-order partial derivatives of the input ex-

pression y.

Belongs to This expression verifies if the input value belongs to a set. If y
is the input, the syntax is

BelongsTo(y, {1, 2, 3})

It returns the value 1 if the value belongs to the set, and 0 otherwise.
The function is not differentiable.

Trajectory This expression is necessary when the data is organized as panel
data. It means that several observations are available for the same
individual. If y is the input, the syntax is

PanelLikelihoodTrajectory (y)

We denote by yt the value of the input expression for observation t.
Those values must be positive. If not, a NaN will be generated.

Then, we define

f(y) =

T∏

t=1

yt,

∂f(y)

∂βi

= f(y)

T∑

t=1

1

yt

∂yt

∂βi

,

∂2f(y)

∂βi∂βj

=
1

f(y)

∂f(y)

∂βi

∂f(y)

∂βj

+ f

T∑

t=1

[

1

yt

∂2yt

∂βi∂βj

−
1

y2
t

∂yt

∂βi

∂yt

∂βj

]

.

PowerConstant This expression raises the input to a power. If y is the
input, the syntax is

PowerConstant(y, 2)

or

y ** 2

10

Let y be the input value and p the exponent, which is a constant.
When p is not an integer, Biogeme considers a negative y that is close
to zero to be 0:

y← 0, if p /∈ Z, and y < 0 and y ≥ −ξ.

Let y be the input value, processed as described above.

• If p = 0, we have

f(y) = 1,

∂f(y)

∂βi

= 0,

∂2f(y)

∂βi∂βj

= 0.

• If p = 1, we have

f(y) = y,

∂f(y)

∂βi

=
∂y

∂βi

,

∂2f(y)

∂βi∂βj

=
∂2y

∂βi∂βj

.

• If p = 2, we have

f(y) = y2,

∂f(y)

∂βi

= 2y
∂y

∂βi

,

∂2f(y)

∂βi∂βj

= 2
∂y

∂βi

∂y

∂βj

+ 2
∂2y

∂βi∂βj

.

• Otherwise, we define

f(y) = yp,

∂f(y)

∂βi

= pyp−1 ∂y

∂βi

,

∂2f(y)

∂βi∂βj

= p(p− 1)yp−2 ∂y

∂βi

∂y

∂βj

+ pyp−1 ∂2y

∂βi∂βj

.

11

3.3 Comparison expressions

A comparison expression expects two expressions as argument. The output
is either 0 or 1, where 0 means “False” and 1 means “True”.

Equal This expression returns 1 if the two arguments have the same value,
and 0 otherwise. The expression is not differentiable. If y and z are the
two arguments, the syntax is

y == z

Not equal This expression returns 1 if the two arguments do not have the
same value, and 0 otherwise. The expression is not differentiable. If y
and z are the two arguments, the syntax is

y != z

Greater than This expression returns 1 if the value of the first argument
is strictly greater than the value of the second one, and 0 otherwise.
The expression is not differentiable. If y and z are the two arguments,
the syntax is

y > z

Greater or equal than This expression returns 1 if the value of the first
argument is greater or equal than the value of the second one, and 0
otherwise. The expression is not differentiable. If y and z are the two
arguments, the syntax is

y >= z

Less than This expression returns 1 if the value of the first argument is
strictly less than the value of the second one, and 0 otherwise. The
expression is not differentiable. If y and z are the two arguments, the
syntax is

y < z

Less or equal than This expression returns 1 if the value of the first argu-
ment is less or equal than the value of the second one, and 0 otherwise.
The expression is not differentiable. If y and z are the two arguments,
the syntax is

y <= z

12

3.4 Binary expressions

Binary expression expects two expressions as argument.

Plus This expression returns the sum of the two arguments. The syntax is:

y + z

If y and z are the input expressions, we define

f(y, z) = y+ z,

∂f(y, z)

∂βi

=
∂y

∂βi

+
∂z

∂βi

,

∂2f(y, z)

∂βi∂βj

=
∂2y

∂βi∂βj

+
∂2z

∂βi∂βj

.

Minus This expression returns the difference of the two arguments. The
syntax is:

y - z

If y and z are the input expressions, we define

f(y, z) = y− z,

∂f(y, z)

∂βi

=
∂y

∂βi

−
∂z

∂βi

,

∂2f(y, z)

∂βi∂βj

=
∂2y

∂βi∂βj

−
∂2z

∂βi∂βj

.

Times This expression returns the product of the two arguments. The syn-
tax is:

y * z

If y and z are the input expressions, we define

f(y, z) = y · z,
∂f(y, z)

∂βi

=
∂y

∂βi

· z+ y · ∂z

∂βi

,

∂2f(y, z)

∂βi∂βj

=
∂2y

∂βi∂βj

· z+ ∂y

∂βi

· ∂z

∂βj

+
∂y

∂βj

· ∂z

∂βi

+ y · ∂2z

∂βi∂βj

.

Divide This expression returns the quotient of the two arguments. The
syntax is:

13

y / z

If y and z are the input expressions, we define

f(y, z) =
y

z
,

∂f(y, z)

∂βi

=
1

z

∂y

∂βi

−
y

z2
∂z

∂βi

,

∂2f(y, z)

∂βi∂βj

=
1

z

∂2y

∂βi∂βj

−
1

z2
∂y

∂βi

∂z

∂βj

−
1

z2
∂y

∂βj

∂z

∂βi

.

+ 2
y

z3
∂z

∂βi

∂z

∂βj

−
y

z2
∂2z

∂βi∂βj

.

We treat the case y = 0 explicitly to save calculation time:

f(y = 0, z) =0,

∂f(y = 0, z)

∂βi

=
1

z

∂y

∂βi

,

∂2f(y = 0, z)

∂βi∂βj

=
1

z

∂2y

∂βi∂βj

−
1

z2
∂y

∂βi

∂z

∂βj

−
1

z2
∂y

∂βj

∂z

∂βi

.

We also treat the case z = 1 specifically:

f(y, z = 1) =y,

∂f(y, z = 1)

∂βi

=
∂y

∂βi

− y
∂z

∂βi

,

∂2f(y, z = 1)

∂βi∂βj

=
∂2y

∂βi∂βj

−
∂y

∂βi

∂z

∂βj

−
∂y

∂βj

∂z

∂βi

.

+ 2y
∂z

∂βi

∂z

∂βj

− y
∂2z

∂βi∂βj

.

Power It implements the exponentiation, where the first argument is the
base, and the second the exponent. If y and z is the input, the syntax
is

Power(y, z)

or

y ** z

14

Biogeme considers a negative y that is close to zero to be 0:

y← 0, if y < 0 and y ≥ −ξ.

Let y be the base, processed as described before, and z the exponent.

f(y, z) =yz,

ln f(y, z) =z ln(y),

∂ ln f(y, z)

∂βi

=
∂z

∂βi

ln(y) +
z

y

∂y

∂βi

,

∂f(y)

∂βi

=yz

(

∂z

∂βi

ln(y) +
z

y

∂y

∂βi

)

,

∂2f(y)

∂βi∂βj

=
∂f

∂βj

(

∂z

∂βi

ln(y) +
z

y

∂y

∂βi

)

+ yz

(

∂2z

∂βi∂βj

ln(y) +
1

y

∂z

∂βi

∂y

∂βj

−
z

y2

∂y

∂βi

∂y

∂βj

+
1

y

∂y

∂βi

∂z

∂βj

+
z

y

∂2y

∂βi∂βj

)

.

bioMin This expression returns the minimum of the two arguments. The
syntax is:

bioMin(y, z)

Note that this function is not differentiable everywhere. If y ≤ z, then
it returns:

f(y, z) = y,

∂f(y, z)

∂βi

=
∂y

∂βi

,

∂2f(y, z)

∂βi∂βj

=
∂2y

∂βi∂βj

.

If y > z, then it returns:

f(y, z) = z,

∂f(y, z)

∂βi

=
∂z

∂βi

,

∂2f(y, z)

∂βi∂βj

=
∂2z

∂βi∂βj

.

15

bioMax This expression returns the maximum of the two arguments. The
syntax is:

bioMax(y, z)

Note that this function is not differentiable everywhere. If y > z, then
it returns:

f(y, z) = y,

∂f(y, z)

∂βi

=
∂y

∂βi

,

∂2f(y, z)

∂βi∂βj

=
∂2y

∂βi∂βj

.

If y ≤ z, then it returns:

f(y, z) = z,

∂f(y, z)

∂βi

=
∂z

∂βi

,

∂2f(y, z)

∂βi∂βj

=
∂2z

∂βi∂βj

.

And This expression returns the conjunction of two expressions. The syntax
is:

y & z

Warning: the following syntax does not work, as it is a reserved key-
word in Python:

y and z

This function is not differentiable.

f(y, z) =

{
1 if y 6= 0 and z 6= 0,

0 otherwise.

Or This expression returns the disjunction of two expressions. The syntax
is:

y | z

Warning: the following syntax does not work, as it is a reserved key-
word in Python:

16

y or z

This function is not differentiable.

f(y, z) =

{
1 if y 6= 0 or z 6= 0,

0 otherwise.

3.5 n-ary expressions

N-ary expression expects several expressions as argument.

bioMultSum It calculates the sum of a list or a dict of terms.

the_sum = bioMultSum ([first_term , second_term ,

third_term])

or

the_sum = bioMultSum ({1: first_term , 2: second_term , 3:

third_term })

Note that it is more efficient, in terms of calculation time, to use this
expression instead of

first_term + second_term + third_term ,

which relies on several binary expressions.

If the input is y = (yk)k∈K, where yk is the expression for term k, then
the expression returns

f(y) =
∑

k∈K

yk,

∂f

∂βi

=
∑

k∈K

∂yk

∂βi

,

∂2f

∂βi∂βj

=
∑

k∈K

∂2yk

∂βi∂βj

.

ConditionalSum It calculates the sum of a list of terms, where each term
is included only if the corresponding condition is verified. One term of
the list is defined using the following syntax:

first_term =

ConditionalTermTuple (condition=first_condition ,

term=first_expression)

17

The ConditionalSum operator accepts a list of such tuples as an argument:

the_sum = ConditionalSum ([first_term , second_term ,

third_term]).

If the input is [(yk, zk)]k∈K, where yk is the expression for condition k,
and zk is the expression for term k, then the expression returns

f([(yk, zk)]k∈K) =
∑

k∈K

zkδ(yk),

∂f

∂βi

=
∑

k∈K

∂zk

∂βi

δ(yk),

∂2f

∂βi∂βj

=
∑

k∈K

∂2zk

∂βi∂βj

δ(yk),

where

δyi
=

{
0 if yk = 0,

1 otherwise.

Elem It first calculates a key, then the expression that corresponds to the
calculated value of the key. It is designed for conditional expressions.
The syntax is

Elem ({1: first_expression , 2: second_expression , 3:

third_expression }, key).

If (yℓ)ℓ∈K is the input dict, and z the expression for the key, then the
expression returns:

f((yℓ)ℓ∈K, z) =
∑

ℓ∈K

yℓδ(z = k),

∂f

∂βi

=
∑

ℓ∈K

∂yℓ

∂βi

δ(z = k),

∂2f

∂βi

=
∑

ℓ∈K

∂2yℓ

∂βi

δ(z = k),

where

δ(z = k) =

{
1 if z = k,

0 otherwise.

18

Note that each of those sums have exactly one non zero term, as the
keys of a dict are unique. An exception is raised if the key is not found
in the dictionary.

A typical example of the use of this expression is the calculation of a
conditional expression such as

{
y1 if z >= 0,

y2 otherwise,

which is coded as follows:

Elem ({1: y_1 , 0: y_2}, z >= 0).

bioLinearUtility This expression is designed to code the specification of
a linear utility function. One term of the utility is defined using the
following syntax:

first_term = LinearTermTuple(beta=a_parameter ,

variable=a_variable).

The bioLinearUtility expression accepts a list of such tuples as an ar-
gument:

bioLinearUtility ([first_term , second_term , third_term])

If the input is [(βk, zk)]k∈K, where βk is the parameter for term k and
zk is the variable for term k, then the expression returns

f([(βk, zk)]k∈K) =
∑

k∈K

βkzk,

∂f

∂βℓ

= zℓ,

∂2f

∂βℓβk

= 0.

3.6 Logit expressions

These expressions calculate the logarithm of the logit formula. We include
them here for the sake of completeness, but they should not be used directly.
Instead, it is advised to use the logit and loglogit functions available in the
models module.

There are two of them

19

LogLogit It has the following syntax:

_bioLogLogit(util , av , k)

It takes three arguments:

• a vector V of utility functions (denoted util above),

• a vector a of availabilities (denoted av above),

• the index k of the alternative for which we need to calculate the
formula.

We want to compute the logarithm of the logit formula, assuming that
aℓ = 1 if alternative ℓ is available, and aℓ = 0 otherwise. The formula
is

ln

(

ak exp(Vk − c)
∑

ℓ aℓ exp(Vℓ − c)

)

,

where c is a constant used for numerical purposes. Typically, c can be
the largest utility. Let’s define

D =
∑

ℓ

aℓ exp(Vℓ − c),

The formula is calculated as follows. If ak = 0,

f(V, a, k) = −U,

∂f(V, a, k)

∂βi

=0,

∂2f(y, z)

∂βi∂βj

=0.

If ak = 1, we have

f(V, a, k) =Vk − c− ln(
∑

ℓ

aℓ exp(Vℓ − c)) = Vk − c− lnD,

∂f(V, a, k)

∂βi

=
∂Vk

∂βi

−D−1Ki,

∂2f(y, z)

∂βi∂βj

=
∂2Vk

∂βi∂βj

+D−2KiKj −D−1Kij,

20

where

Ki =
∂D

∂βi

=
∑

ℓ

aℓ exp(Vℓ − c)
∂Vℓ

∂βi

,

and

Kij =
∂Ki

∂βj

=
∑

ℓ

aℓ exp(Vℓ − c)

(

∂Vℓ

∂βi

∂Vℓ

∂βj

+
∂2Vℓ

∂βi∂βj

)

.

LogLogitFullChoiceSet It has the following syntax:

_bioLogLogitFullChoiceSet (util , k)

It takes two arguments:

• a vector V of utility functions (denoted util above),

• the index k of the alternative for which we need to calculate the
formula.

We compute the logarithm of the logit formula exactly as above, except
that all alternatives are assumed to be available:

ln

(

exp(Vk − c)
∑

ℓ exp(Vℓ − c)

)

,

where c is a constant used for numerical purposed. Typically, c can be
the largest utility. Let’s define

D =
∑

ℓ

exp(Vℓ − c),

The formula is calculated as follows:

f(V, a, k) =Vk − c− ln(
∑

ℓ

exp(Vℓ − c)) = Vk − c− lnD,

∂f(V, a, k)

∂βi

=
∂Vk

∂βi

−D−1Ki,

∂2f(y, z)

∂βi∂βj

=
∂2Vk

∂βi∂βj

+D−2KiKj −D−1Kij,

where

Ki =
∂D

∂βi

=
∑

ℓ

exp(Vℓ − c)
∂Vℓ

∂βi

,

and

Kij =
∂Ki

∂βj

=
∑

ℓ

exp(Vℓ − c)

(

∂Vℓ

∂βi

∂Vℓ

∂βj

+
∂2Vℓ

∂βi∂βj

)

.

21

4 Conclusion

The expressions described above are coded in C++ and distributed via the

References

Bierlaire, M. (2018). Calculating indicators with PandasBiogeme, Technical
Report TRANSP-OR 181223, Lausanne, Switzerland.

Bierlaire, M. (2023). A short introduction to biogeme, Technical Report

TRANSP-OR 230620, Transport and Mobility Laboratory, Ecole Poly-
technique Fédérale de Lausanne, Lausanne, Switzerland.

IEEE Standard for Floating-Point Arithmetic (2019). DOI:
10.1109/IEEESTD.2019.8766229.

22

