
A comparative analysis of optimization
algorithms for activity-based applications

Luca Bataillard * Janody Pougala † Tom Haering †

Michel Bierlaire †

June 10, 2022

Report TRANSP-OR 220610
Transport and Mobility Laboratory

School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

transp-or.epfl.ch

*École Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication
Sciences (IC), Switzerland, luca.bataillard@gmail.com

†École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and
Environmental Engineering (ENAC), Transport and Mobility Laboratory, Switzerland, {jan-
ody.pougala, tom.haering, michel.bierlaire }@epfl.ch

1

Abstract

In order to forecast travel demand, activity-based models generate schedules for every individ-
ual in a population sample. Most models generate these schedules using a sequential rule-based
approach. Recent activity-based models are based on econometric utility-maximisation, ex-
pressed as a Mixed-Integer Linear Program. In order to improve computational efficiency and
model expressiveness, we explore adaptations of the same scheduling problem in constraint
programming. In a first effort, we investigate a direct translation of the existing MILP formu-
lation. We then adapt the direct translation in two different manners to model the problem in
ways that exploit the advantages of constraint programming. In these new programs, we use
idiomatic constraint programming expressions: implications as constraints, global constraints
such as ELEMENT, and interval variables. We find that constraint programming not only makes
the model more intuitive, but also improves solver performance by at least one order or magni-
tude.

1 Introduction

Transportation agencies and researchers require travel demand forecasting tools such as Activity-
Based Models (ABMs) to make informed decisions. Activity-Based Models assume that travel
demand is derived from people’s need to participate in activities. Such models generate daily
schedules for those activities, subject to various time and space constraints, in order to forecast
travel demand.

Two general approaches to activity-based modelling exist: rule-based and econometric.
Rule-based models use decision heuristics to build feasible schedules. On the other hand,
econometric models generate schedules as consequence of utility maximization.

In traditional econometric models, scheduling choices such as activity location or mode
choice are decided sequentially. Decisions at one stage are dependent on decisions made at
an earlier stage. This can result in the model failing to capture trade-offs between different
objectives of the individual such as activity participation and duration, location, and transport
mode mode choice. For example, individuals staying home on a given day will not plan errands
located close to their workplace, but will postpone them to a later workday. A sequential model
might fail to model this behaviour if activity participation is decided before location.

Pougala et al. (2021) introduces a new approach to econometric activity scheduling based
on mixed-integer optimization. This allows all choice dimensions to be taken into account
simultaneously as part of a general framework. The dimensions of activity participation, start
time and duration, sequencing, location, and mode of transport are modelled as part of a single
Mixed-Integer Linear Program (MILP).

Such an optimization framework presents some challenges, in particular when it comes to
runtime. In travel demand forecasting, individual schedules are generated for every agent in
the model. Given the complexity of the MILP, full-scale simulations of large populations take
significantly longer compared to simpler rule-based models.

The aim of this project is to explore how Constraint Programming (CP) models could help

1

with the challenges of the scheduling MILP defined in Pougala et al. (2021). We first cover
some differences between CP and MILP and review existing applications of CP to scheduling
problems. We then define a equivalent formulation of the optimization problem in CP, up
to time discretization. Afterwards, we explore how expressiveness and performance can be
improved by writing equivalent CP formulations that utilize advanced Constraint Programming
features. Finally, we implement all CP models using the CP-SAT constraint solver, part of
Google OR-Tools optimization framework (Perron and Furnon, n.d.), and compare the relative
performance of the CP and MILP formulations.

This report is organized in five sections. We provide some context on constraint program-
ming and review similar applications from the literature in section 2. In section 3, we define
the modeling problem precisely and present three variants of the CP model: a direct transla-
tion, a version where activity duplication for mode and location choice is replaced with index
variables, and a version that uses interval variables. We then present our method for measuring
model performance and compare the results for each model in section 4. Finally, we present
our conclusions in section 5.

2 Literature review

Constraint Programming is an optimization model that presents a similar outward structure to
traditional Mixed Integer Linear Programming, with some key differences. The optimization
problem is represented as a set of decision variables, an objective function, and a set of con-
straints that the variables must respect. CP is limited to discrete values but allows for more
expressive native constraints, such as implications. MILP can use continuous variables but
makes more assumptions about the mathematical structure of the problem, such as enforcing
linear constraints.

Crucially, CP solves problems using logical inferences and constraint propagation to reduce
the feasible domain. On the other hand, MILP uses relaxations and branch and bound to find
optimal solutions to a problem.

Constraint programming is widely used in the field of Artificial Intelligence (AI) and often
applied to scheduling problems. Pape (2005) explains how CP can be used to represent com-
mon scheduling problems. The author defines several properties of scheduling problems. He
shows common representations of scheduling constraints and explains the mechanisms behind
constraint propagation.

The link between CP and traditional linear optimization is explored in Hooker (2002). The
paper lays out the history of the two fields and what each brings to the table. The main advan-
tage of CP is global, efficient and expressive constraints such as implications, ALL-DIFFERENT,
or ELEMENT. In contrast, MILPs have efficient objective maximization thanks to relaxation
techniques. The paper tries to find how to combine the strengths of each framework

Constraint programming for activity-based modelling, however, is not common practice.
Most of the literature regarding CP for scheduling comes from the AI community. Refani-
dis and Yorke-Smith (2010) applies CP to the problem of individual activity scheduling. The
scheduling model in the paper is based on the maximization of a utility function and fulfills a

2

similar function to the one in Pougala et al. (2021).

Other studies, not covering the exact same problem of activity-based scheduling, offer in-
sights on how to apply constraint programming to scheduling problems. Naderia et al. (n.d.) ex-
plores different ways of expressing the job-shop scheduling problem in CP, and compares them
to an equivalent MILP model. Ways of expressing employee, train, and quay-crane schedul-
ing constraints are explored in Weil et al., 1995, Rodriguez, 2007, and Unsal and Oguz, 2013
respectively.

3 Translating the model

In this section, we present three new Constraint Programming models that solve the Activity-
Based Scheduling problem defined in Pougala et al. (2021). The problem is defined identically
for all three models, and all models have the same possible objective functions. Table 1 recaps
the features and differences between the models.

Model Time Activities Implications Sequencing

MILP Continuous Duplicated by mode &
location

Encoded as 
Sequencing
indicators zabDirect CP

Discrete Encoded as)Indexed CP Mode & location
separate dvars, travel
times using ELEMENTInterval CP Interval variables

& NOOVERLAP

Table 1: Comparison of features between ABM models

3.1 Problem definition

We present a constraint program model that is as close as possible to the mixed-integer linear
programming model presented in Pougala et al. (2021).

Time, as in Pougala et al. (2021), starts at t = 0 and finishes at t = T , where T 2 N
represents the end of the day. Since constraint programming only allows decision variables to
take integer values, time is discretised to a finite number of time steps. The set of all time steps
is denoted by T = {0, 1, ..., T}.

Space is expressed identically as a discrete and finite set of locations L, indexed by l. The
location l0 = 0 is referred to as home. For this model, we assume all schedules must start and
finish at this location.

The set of modes considered by the agent is denoted by M , and is indexed by m. Travel
time between two locations lo and ld is denoted by ⇢(lo, ld,m). Travel time is infinite if the

3

destination ld cannot be reached from the origin lo using mode m.

The agent considers a discrete and finite set of activities A, indexed by a. We define AH to
be the set of all activities that occur at home. Each activity has:

• a set La of possible locations the activity can occur at.

• a desired start time x⇤
a
2 T .

• a desired duration ⌧ ⇤
a
2 T .

• a flexibility level for early start f se

a
, late start f sl

a
, short duration fds

a
, and long duration

fdl

a
. These set, for each activity a 2 A, how harshly deviations from the desired start

time and duration are penalized.

• a minimum duration ⌧min
a

2 T .

• a feasible time interval [��
a
, �+

a
] during which the activity can occur.

Each model should generate a utility-maximizing schedule respecting the same constraints
as the MILP in Pougala et al. (2021). A schedule S is a sequence of n activities A =
(a0, ..., an�1). Each schedule must start with an activity a0 called “dawn” and end with an
activity an�1 called “dusk”. Both of these dummy activities must take place at home. Each
activity a in the schedule is associated with an location la, a starting time xa, a duration ⌧a, and
a transport mode ma.

3.2 Objective function

The objective function is defined using the same parameters and utility specification as the
MILP from Pougala et al. (2021):

US = U +
n�1X

a=0

�
U1
s
+ V 2

s
+ V 3

s
+ U4

s
+ V 5

s

�
(1)

This means that in the experimental investigation, the penalties for each flexibility level have
the same values. The error terms are sampled using the same distributions. The penalties and
error values are sampled as hourly values then discretised into the T time steps used by the CP
model.

The deterministic utilities V 2
s

, V 3
s

, and V 5
s

are modelled identically to Pougala et al. (2021).
V 2
s

penalises deviation from the desired start time, V 3
s

penalises deviation from the desired
duration, and V 5

s
penalises total travel time. Due to the specificities of our CP Solver, some

additional helper variables are created to store the results of expressions such as max(0, xas �
x+
as
). These do not impact the actual model constraint set and are only used to compute the

objective function.

The time-independent stochastic utilities U , U1
s

, and U4
s

are, as in Pougala et al. (2021),
represented by a random variable. The generic utility U is sampled from Gumbel(0, 1). The
other two utilities are represented as a sum of four error functions for each activity in the
schedule:

4

• The error functions fe(v) take a decision variable v as input and output an error value.

• The functions fe are defined, like in the MILP, using a vector e of size n sampled from a
standard normal distribution.

• The size of the error vector n depends on the decision variable used: for decision vari-
ables v = wa, za, xa, ⌧a, we have n = 2, 2, 4, 6 respectively.

We express the random activity utility as follows:

U1
a
+ U2

a
= few(wa) + fex(xa) + fe⌧ (⌧a) +

X

b2A

fez(zab) 8a 2 A (2)

In order to test model performance under objective functions of varying complexity, three
variants of the error functions were evaluated: a zero function, a stepwise function, and a
piecewise linear function.

• The zero function fe(v) = 0 amounts to setting U1
a

and U2
a

to 0 and using the general
error term U as the only source of randomness in the objective function.

• The stepwise function uses the values of the error vector e to define the function steps.
We define a set of n equally-spaced points {pi}ni=1 in the domain D of the decision
variable such that pn = max{D}. We then define fe as a stepwise function with points
P = {(pi, ei)}ni=1:

fe(v) =

8
><

>:

e1 v  p1
ei pi  v < pi+1 8i 2 {1, ..., n}
en pn  v

• The piecewise linear function uses the same set of points {pi}ni=1 as the stepwise function
and is defined as follows:

fe(v) =

8
><

>:

e1 v  p1
ei +

ei+1�ei

pi+1�pi
· (v � pi) pi  v < pi+1 8i 2 {1, ..., n}

en pn  v

Figure 1 illustrates the difference between a stepwise and a piecewise linear function.

Special care must be taken when representing stepwise and piecewise linear functions in CP.
Indeed, only integer decision variables are allowed in CP. Both variants of the error functions
are represented as a sum of expressions fe(v) =

P
i
ci · Ei, with some constant ci 2 R and an

integer decision variable Ei. In the stepwise version, each variable Ei represents the value of
one step in the stepwise function. For the piecewise version, each Ei represents the value of
one slope in the piecewise linear function. Consider a step Ei for the stepwise function fe(v),
with input decision variable x 2 D. We can represent each step in the stepwise function as two
constraints, where I[pi  x < pi+1] is a boolean variable indicating if x is in the given step:

I[pi  x < pi+1]) (Ei = 1) (3)
¬I[pi  x < pi+1]) (Ei = 0) (4)

5

Figure 1: Difference between a piecewise error function and a stepwise error function using

the same input variable and error vector.

The stepwise error function will then be written as:

fe(v) =
nX

i=1

ei · Ei (5)

The corresponding slopes in the piecewise linear function are split into their constant part
Ei,c and their linear part Ei,s:

I[pi  x < pi+1]) (Ei,c = 1) (6)
I[pi  x < pi+1]) (Ei,s = (x� pi)) (7)

¬I[pi  x < pi+1]) (Ei,c = 0) (8)
¬I[pi  x < pi+1]) (Ei,s = 0) (9)

The piecewise linear error function can be expressed as:

fe(v) =
nX

i=1

ei · Ei,c +
ei+1 � ei
pi+1 � pi

· Ei,s (10)

3.3 Direct translation

This model utilises the same activity duplication mechanism as the MILP from Pougala et al.
(2021). This means that, for each activity, we enumerate the combinations of locations and

6

transport modes associated with the activity. The duplicates for each activity form a group Ga.
The model considers each duplicate a separate activity, with the exception that no two activities
from the same group can be part of schedule at the same time.

We define the following decision variables:

• !a 2 {0, 1}: binary variable that indicates if activity a 2 A occurs in the schedule.

• zab 2 {0, 1}: binary variable that indicates if activity a 2 A occurs right after activity
b 2 A in the schedule.

• xa 2 T : start time of activity a 2 A.

• ⌧a 2 T : duration of activity a 2 A.

• ↵car
a

2 {0, 1}: binary variable to indicate if the agent uses the car to move from activity
a 2 A to the subsequent activity.

7

We can write the constraints of the direct translation model as follows:

X

a2A

⌧a +

X

b2A

zab⇢(la, lb,ma)

!
= T (11)

X

a2Gdawn

!a = 1 (12)

X

a2Gdusk

!a = 1 (13)

!a) (⌧min
a

 ⌧a) 8a 2 A (14)
!a) (⌧a  T) 8a 2 A (15)

¬!a) (⌧a = 0) 8a 2 A (16)
¬zab _ ¬zba = TRUE 8a, b 2 A (17)

zad = 0 8a 2 A, d 2 Gdawn (18)
zda = 0 8a 2 A, d 2 Gdusk (19)

!a =
X

b2A

zba 8a 2 A \Gdawn (20)

!a =
X

b2A

zab 8a 2 A \Gdusk (21)

zab) (xa + ⌧a+ ⇢(la, lb,ma) = xb) 8a, b 2 A, a 6= b (22)
X

b2Ga

!b  1 8a 2 A (23)

xa � ��
a

8a 2 A (24)
xa + da  �+

a
8a 2 A (25)

↵car
a

= 1 8a 2 {a 2 AH |ma = car} (26)
↵car
a

= 0 8a 2 {a 2 AH |ma 6= car} (27)
¬↵car

a
) (!a = 0) 8a 2 {a 2 A |ma = car} (28)

zab) (↵car
a

= ↵car
b
) 8a 2 A, b 2 A \ AH (29)

Equation (11) enforces that the time taken by all activities sums to a whole day. Equations
(12) and (13) ensure that at least one variant of dawn, respectively dusk, occurs. Equations
(14) and (15) make sure that, if an activity occurs, its duration is between its minimum and
maximum duration. Conversely, equation (16) enforces the duration to be zero if an activity
doesn’t occur. Equations (20) and (21) ensure that, if an activity occurs, then it has a single
predecessor and successor. If it doesn’t occur, the activity has no predecessor or successor. This
excludes the first and last activity in the schedule. Equation (22) enforces time consistency
between subsequent activities, taking travel time into account. Equation (23) only allows a
single activity to be selected from each duplicate group. Equations (24) and (25) ensure that an
activity starts and finishes within its feasible time range. The last four equations enforce mode
consistency within a tour away from home. Equation (26) makes the car available for home
activities whose mode is driving, and equation (27) prohibits car use for home activities that
use a different travel mode. Equation (28) prohibits selecting an activity that uses driving if the

8

car is not available for that activity. Finally, equation (29) makes the car available to an activity
away from home only if the car was available for its predecessor.

3.4 Indexed version

This model improves the expressiveness of the direct translation by replacing activity dupli-
cation with the array indexing features of constraint programming. Activities are no longer
duplicated by mode and location. Instead, mode and location choice for each activity are mod-
eled as separate decision variables. We find the corresponding travel time using the ELEMENT
constraint from CP. Given a target variable t, an index variable i, and an array of variables V ,
ELEMENT enforces the target to take the value of V indexed by i:

ELEMENT(i, V, t) () t = V [i] (30)

Travel time for each mode m 2 M from all locations la 2 L to every location lb 2 L
is stored in an array D. In order to simplify model definition, this travel time array D of
size |M ||L|2 + 1 is expressed as a flattened version of the three-dimensional array of travel
times indexed by (m, la, lb). We access the travel time from lo to ld using mode m as follows,
assuming indices are zero-indexed:

⇢(la, lb,m) = D[|L|2m+ |L|la + lb] (31)

The very last element of D is set to zero and can never be accessed when indexing using la,
lb, and m. We use this element to set the travel time between two activities to zero when these
activities do not follow each other.

Thanks to mode choice being a decision variable for every activity, mode consistency on
tours away from home can be expressed in a very concise way. Indeed, the choice of mode for
activity a refers to the trip from a to its subsequent activity. This means we can ensure mode
consistency by enforcing that, for two subsequent activities a and b, if b is not at home, then the
mode choice of activity a must be the same as activity b. To remain consistent with the MILP
and the direct CP translation, we limit this mode consistency to driving only.

The indexed model defines the following decision variables:

• wa 2 {0, 1}: binary variable that indicates if activity a 2 A occurs in the schedule.

• zab 2 {0, 1}: binary variable that indicates if activity a 2 A occurs right after activity
b 2 A in the schedule.

• xa 2 T : start time of activity a 2 A.

• ⌧a 2 T : duration of activity a 2 A.

• ma 2 M : mode choice for activity a 2 A.

• la 2 La: location choice among possible locations for activity a 2 A.

• tab 2 T : travel time from activity a 2 A to activity b 2 B.

9

• iab 2 {0, |M ||L|2}: the index in the travel time array D for pair of activities a, b 2 A

• da 2 {0, 1}: binary variable indicating if the agent chooses to use the car for a 2 A.

We can write the constraints of the indexed model like so:
X

a2A

⌧a +

X

b2A

tab

!
= T (32)

!dawn = 1 (33)
!dusk = 1 (34)
!a) (⌧min

a
 ⌧a) 8a 2 A (35)

!a) (⌧a  T) 8a 2 A (36)
¬!a) (⌧a = 0) 8a 2 A (37)

¬zab _ ¬zba = TRUE 8a, b 2 A (38)
za,dawn = 0 8a 2 A (39)
zdusk,a = 0 8a 2 A (40)

!a =
X

b2A

zba 8a 2 A, a 6= dawn (41)

!a =
X

b2A

zab 8a 2 A, a 6= dusk (42)

zab) (xa + ⌧a+ tab = xb) 8a, b 2 A, a 6= b (43)
xa � ��

a
8a 2 A (44)

xa + da  �+
a

8a 2 A (45)
¬zab) (iab = |M ||L|2) 8a, b 2 A (46)
zab) (iab = |L|2ma + |L|la + lb) 8a, b 2 A (47)

ELEMENT(iab, D, tab) 8a, b 2 A (48)
da) (ma = mdriving) 8a 2 A (49)

¬da) (ma 6= mdriving) 8a 2 A (50)
(zab ^ da)) (db = 1) 8a 2 A, b 2 A \ AH (51)

(zab ^ ¬da)) (db = 0) 8a 2 A, b 2 A \ AH (52)

Most equations remain identical to the direct translation and perform the same function.
Equations (33), (34), (39), (40), (41), and (42) are simplified thanks to the lack of duplicate
activities: only a single copy of dusk and dawn exist. Equations (32) and (43) use the travel
time decision variable tab instead of the constant values. Equations (46), (47), and (48) enforce
travel time computation as described above. Mode consistency is enforced using equations (49)
to (52).

3.5 Interval version

Constraint programming allows the definition of interval variables. These variables I(x, ⌧, y)
represent a time interval, starting at x and ending at y, with a duration ⌧ . They are treated as

10

both a variable than can be used as input to other constraints, and as a constraint in themselves,
enforcing:

I(x, ⌧, y) () x+ ⌧ = y (53)

Interval variables can be used in global constraints such as NOOVERLAP(I1, ..., Ik), which
enforces that no interval in I1, ..., Ik can overlap in time.

Furthermore, we can define optional interval variables I(x, ⌧, y,!) that take an additional
boolean variable. These interval variables only enforce the time consistency constraint if the
boolean variable is true:

I(x, ⌧, y,!) () (!) x+ ⌧ = y) (54)

These optional interval variables are taken into account in global constraints such as NOOVERLAP.
They are counted only if the indicator ! is true.

The interval-based model is based on the indexed version, includes the same decision vari-
ables. We add the following decision variables:

• ⇥a 2 T : a variable representing the sum of duration and travel time for activity a 2 A.

• ya 2 T : a variable representing the end time of an activity a 2 A.

• Ia(xa,⇥a, ya,!a): an optional interval variable representing the time span of an activity
a 2 A.

The interval model keeps all the constraints from the indexed model, but adds the following
additional constraints:

⇥a = ⌧a +
X

b2A

tab 8a 2 A (55)

ya = xa +⇥a 8a 2 A (56)
NOOVERLAP{Ia : a 2 A} (57)

Constraints (55) and (56) define the inputs to the interval variable, and (57) ensures that
activity time spans do not overlap. Note that equation (57) is redundant due to equation (43).
This is because we need to retain some sequencing information in order to force a subsequent
activity to start right after the end of the current activity’s travel time. If we relax this assump-
tion and remove equation (43), the interval model produces otherwise valid schedules. We kept
both constraints for two reasons: the first is to remain consistent with the output of other mod-
els, and the second is because we noticed a strong performance drop if we removed equation
(43). This slowdown is most likely due to the model having to consider more possible start
times for each activity after the strict time-consistency constraint relaxation.

11

4 Empirical investigation

The aim of this section is to evaluate the models introduced in section 3. We wish to compare
performance across the three newly defined models and the original MILP models. We first de-
vise a procedure that can measure model performance using randomly generated activity data.
We use this procedure to compare solver runtimes, as the number of activities increases, across
all four models. We also investigate the performance impact of the three different objective
functions on the CP models.

4.1 Experimental setup

All models in the experiment have the same interface. They take as input a list of activities as
defined in section 3.1, and a list of travel times between start and end locations based on travel
mode. The models return the solved schedule and the time taken to find the solved schedule.

The evaluation procedure is split into two parts: data generation and model evaluation. The
data generation phase prepares the input data that is given to the models during evaluation.
It does so by either loading an existing list of activities and travel times, or by generating a
random set of activities and travel times. In the model evaluation phase, we run every model on
the selected data one hundred times, sampling new error parameters every time. No maximum
limit was placed on the runtime for all models. We record the solve time, objective value, and
generated schedule for every iteration of each model. We plot the mean runtimes by model and
error function, and compute a corresponding bootstrapped 95% confidence interval.

We generate four datasets of random activities, ranging from RANDOM-2 with two distinct
activities, to RANDOM-5 with five distinct activities. A random dataset of size N � 2 contains
dusk, dawn, and N�2 other randomly sampled activities. The properties of dusk and dawn such
as location are not randomized and are set to pre-defined values. For each remaining activity,
we uniformly sample a label for the activity from the set of available labels. We randomly
choose n ⇠ U [1, 3] locations without replacement, and randomly choose each flexibility level
f i

a
. The n locations will be the set of locations where the activity can take place. We then

sample the following time parameters:

• ��
a
⇠ U(0, T�x): the start of the feasible time range, given a minimum feasible duration

x.

• �+
a
⇠ U(�+

a
+ x, T): the end of the feasible time range.

• x⇤
a
⇠ U(��

a
, �+

a
): the desired start time.

• ⌧ ⇤
a
⇠ U(0, �+

a
� x⇤

a
): the desired duration

We then uniformly sample a travel time between 5 and 45 minutes for each pair of locations and
for each travel mode. Finally, we create a duplicate of each activity for every activity location
and travel mode. This forms groups of duplicates Ga, as defined in Pougala et al. (2021).

12

4.2 Results

All Constraint Programming models generate schedules similar to the ones generated by the
MILP. This is illustrated in Figure 2, which plots the schedule from one instantiation of the
direct translation CP model on the CLAIRE dataset from Pougala et al. (2021). We can see that
the agent starts at home, takes part in several activities at multiple locations, then returns home
at the end of the day. We also see that travel time between activities is accounted for.

Figure 2: A daily schedule generated by the direct translation CP using the CLAIRE dataset,

with 5-minute time steps

The average runtime of each model increases with the number of activities in the schedule,
but the CP models perform significantly better with more complex schedules (Figure 3). The
computational time of the MILP model increases rapidly from 0.38s with two activities to 67.6s
with five activities, with runtime increasing by approximately one order of magnitude for every
additional activity. Performance of the direct CP translation is initially in the same order of
magnitude as the MILP, but runtime levels off as the complexity increases. With five distinct
activities in the dataset, the direct translation is 20 times better than the MILP. Both the indexed
and interval models perform significantly better than both the MILP and the direct translation.
Runtime for the indexed model only increases by a factor of 9 from two to five activities, only
one order of magnitude. At five activities, the indexed model performs 750 times faster than
the MILP and 36 times faster than the direct CP translation. In all performance measurements,
the interval model is 1.5 to 2 times slower than the indexed model.

The effect of different error functions on each CP model can be seen in Figure 4. We notice
that the performance between all three models is almost identical when using the general error
term and the stepwise error function. However, when using the piecewise error function, we
observe a large difference between the direct translation (2.32s) and the indexed version (0.04s).

4.3 Interpretation

This experimental framework shows that the CP models can generate adequate solutions to our
scheduling problem, while significantly outperforming the runtime of the MILP. In particular,
we find that runtime does not increase in the same manner when the number of activities in
the schedule increases. This could be due to Constraint Programming handling many small
constraints better than Mixed-Integer Linear Programming, as those are common in scheduling
problems. However, the performance improvement could also be due to a better optimization
of the CP-SAT solver compared to CPLEX, the solver used to solve the MILP model. It could
also be explained in part by the discretization of time for CP, which might reduce the size of the

13

Figure 3: Comparison of the average runtime per schedule, over 100 iterations of all four ABM

models, with an increasing number of activities. All models use the piecewise error function.

Figure 4: Comparison of the effect of different error functions on the average per-schedule

runtime of the CP models

14

decision space for the model. More investigation is needed to determine exactly which factors
explain this improvement in performance.

We find that the indexed model performs the best, closely followed by the interval model,
with the direct translation a distant third. This could be explained by the more expressive
structure offered by the indexed model. Disregarding the activity duplication mechanism in
favour of array indexing might make the link between the activity and its different modes and
locations clearer to the solver. The solver could use this to make more informed optimization
choices. This seems to be corroborated by the performance difference between the direct and
indexed models on the piecewise error function. The indexed model performs much better,
which could be due to the piecewise error function being simpler to reason about for a model
with more structure. The fact that this is not the case for the other two error functions is unclear,
but might be due to the decreased interpretability of the error functions.

Compared to the indexed model, we can clearly see that the addition of interval variables
does not improve performance. This is due to the two models being almost identical in struc-
ture, except for the NOOVERLAP constraint in the interval model. This constraint only in-
creases model complexity without helping the solver find a solution faster. We can determine
that interval variables are not particularly relevant for this scheduling problem: interval vari-
ables as defined by CP-SAT might be more useful for job-shop scheduling problems.

5 Conclusion and future work

This research project shows how to define an econometric activity-based scheduling model us-
ing Constraint Programming. Basing our models on the existing Mixed-Integer Linear Program
from Pougala et al. (2021), we explore how to translate all the aspects of such a model: param-
eter space, objective functions and constraints. We define a direct translation that generates
similar schedules, with minimal changes to the original framework and better computational
performance. We then improve on the direct translation and introduce two new models: an
indexed model and a interval model. These depart from the MILP formulation by introducing
array indexing for location and mode choice for the former, and interval variables for the latter.
We measure performance on randomly generated datasets of increasing complexity, and find
that not only does CP in general perform better than MILP, the more expressive CP models
such as the indexed model outperform the direct CP by one order of magnitude, and the MILP
by two orders of magnitude.

We demonstrated that Constraint Programming is particularly well suited to the problem of
activity-based scheduling. We also found that performance and model expressiveness can be
significantly improved by using features specific to CP, such as logical implication constraints
and array indexing using the ELEMENT global constraint. However, not all CP features bring
these benefits: we found that interval variables and the NOOVERLAP constraint do not improve
performance, nor do they make the model more understandable.

We can identify two key limitations of our study. Firstly, it is currently unclear which
factors explain the performance improvements offered by CP: further examination is need to
understand exactly which factors influence model runtimes. Secondly, this study does not
compare the quality of the solutions generated by the different models. We think that devising

15

a procedure to compare generated schedule quality, for example by using the objective value
and controlling for the error parameters, is an interesting direction for further studies.

References

Hooker, J. N. (2002). Logic, Optimization, and Constraint Programming, INFORMS Journal

on Computing 14(4): 295–321.
URL: http://pubsonline.informs.org/doi/abs/10.1287/ijoc.14.4.295.2828

Naderia, B., Ruizb, R. and Roshanaeic, V. (n.d.). Mixed-integer programming versus constraint
programming for shop scheduling problems: New results and outlook.

Pape, C. L. (2005). Constraint-Based Scheduling : A Tutorial.

Perron, L. and Furnon, V. (n.d.). Or-tools.
URL: https://developers.google.com/optimization/

Pougala, J., Hillel, T. and Bierlaire, M. (2021). Capturing trade-offs between daily schedul-
ing choices, Technical Report TRANSP-OR 210101, Transport and Mobility Laboratory,
Ecole Polytechnique Fédérale de Lausanne.

Refanidis, I. and Yorke-Smith, N. (2010). A constraint-based approach to scheduling an indi-
vidual’s activities, ACM Transactions on Intelligent Systems and Technology 1(2): 1–32.
URL: https://dl.acm.org/doi/10.1145/1869397.1869401

Rodriguez, J. (2007). A constraint programming model for real-time train scheduling at junc-
tions, Transportation Research Part B: Methodological 41(2): 231–245.
URL: https://linkinghub.elsevier.com/retrieve/pii/S0191261506000233

Unsal, O. and Oguz, C. (2013). Constraint programming approach to quay crane scheduling
problem, Transportation Research Part E: Logistics and Transportation Review 59: 108–
122.
URL: https://linkinghub.elsevier.com/retrieve/pii/S1366554513001543

Weil, G., Heus, K., Francois, P. and Poujade, M. (1995). Constraint programming for nurse
scheduling, IEEE Engineering in Medicine and Biology Magazine 14(4): 417–422.
URL: http://ieeexplore.ieee.org/document/395324/

16

