Modeling advanced disaggregate demand as MILP

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

February 2, 2018

Back to Belgium!

I want to open a bar

I want to open a bar

But there is a strong competition...

- La Cour St-Jean
- Le Mad Murphy
- Le Lausanne Express
- La Guimbarde
- ...

LECARRE

I want to open a bar

But there is a strong competition...

- La Cour St-Jean
- Le Mad Murphy
- Le Lausanne Express
- La Guimbarde
- ...

To be successful...

...I will use Operations Research to optimize my business.

Aggregate demand

• 22000 students in the University of Liège

- 22000 students in the University of Liège
- each student drinks 4.25L of beer per week (source: DH.be)

- 22000 students in the University of Liège
- each student drinks 4.25L of beer per week (source: DH.be)
- 45 bars in the "Carré"

- 22000 students in the University of Liège
- each student drinks 4.25L of beer per week (source: DH.be)
- 45 bars in the "Carré"
- I should sell about 2000 liters of beer per week

- 22000 students in the University of Liège
- each student drinks 4.25L of beer per week (source: DH.be)
- 45 bars in the "Carré"
- I should sell about 2000 liters of beer per week
- Jupiler 25cl at 4€: total revenues = 32000€ per week.

Assortment and prices

6€

8€

Customers are different

Customers are different

Mathematics

Customers are different

Mathematics

HEC

Disaggregate demand analysis

Disaggregate demand analysis

Customers behavior

- Customers have different tastes
- Customers have different willingness to pay

Disaggregate demand analysis

Customers behavior

- Customers have different tastes
- Customers have different willingness to pay

Customers choice

Outline

Choice models

2 MILP

Outlook

Variables: $x_{in} = (p_{in}, z_{in}, s_n)$

Attributes of alternative i: z_{in}

- Price (p_{in})
- Brand
- Color
- Percentage of alcohol
- etc.

Characteristics of customer n: s_n

- Income
- Age
- Sex
- Type of student
- etc.

Behavioral assumptions

Choice set: C_n

 $y_{in} = 1$ if $i \in C_n$, 0 otherwise

Behavioral assumptions

Choice set: C_n

 $y_{in} = 1$ if $i \in C_n$, 0 otherwise

Utility function

$$U_{in} = \sum_{k} \beta_k x_{ink} + \varepsilon_{in}$$

Behavioral assumptions

Choice set: C_n

 $y_{in} = 1$ if $i \in \mathcal{C}_n$, 0 otherwise

Utility function

$$U_{in} = \sum_{k} \beta_{k} x_{ink} + \varepsilon_{in}$$

Choice

$$P_n(i|x; C_n) = \Pr(U_{in} \geq U_{jn})$$

Choice models

Logit model

$$U_{in} = \sum_{k} \beta_{k} x_{ink} + \varepsilon_{in}$$

$$= V_{in} + \varepsilon_{in}$$

$$P_{n}(i|x; C_{n}) = \frac{y_{in} e^{V_{in}}}{\sum_{j \in C} y_{jn} e^{V_{jn}}}$$

Demand curve

THE MAND DEMAND CURVE

Quantity

Disaggregate model

$$P_n(i|p_{in},z_{in},s_n)$$

Total demand

$$D(i) = \sum_{n} P_{n}(i|p_{in}, z_{in}, s_{n})$$

Difficulty

Non linear and non convex in p_{in} and z_{in}

Example

Choice set: Jupiler

- Lausanne Express i = 0
- La Cour St-Jean i=1

Utility functions

$$V_{0n} = -2.2p_0 - 1.3$$

$$V_{1n} = -2.2p_1$$

Prices

- Lausanne Express: [0 6€]
- La Cour St-Jean: 1.8 €

Demand and revenues

Heterogeneous population

Two groups in the population

$$V_{0n} = -\beta_n p_0 + c_0$$

Mathematics: 25%

$$\beta_1 = -4.5$$
,

$$c_1 = -1.3$$

Business: 75%

$$\beta_2 = -0.25$$
,

$$c_2 = -1.3$$

Demand per market segment

Demand and revenues

Optimization

Pricing

- Non linear optimization problem.
- Non convex objective function.
- Multimodal function.
- May feature many local optima.
- In practice, the groups are many, and interdependent.
- Optimizing each group separately is not feasible.

Optimization

Pricing

- Non linear optimization problem.
- Non convex objective function.
- Multimodal function.
- May feature many local optima.
- In practice, the groups are many, and interdependent.
- Optimizing each group separately is not feasible.

Assortment

What about assortment?

Heterogeneous population, two products

LE: Price Orval = $1.5 \times \text{price Jupiler}$ CSJ: Price Orval = $2 \times \text{price Jupiler}$

Utility functions: math

$$V_{\text{LE,Jupiler},m} = -4.5 p_{\text{LE,Jupiler}} - 1.3$$
 $V_{\text{LE,Orval},m} = -4.5 p_{\text{LE,Orval}} - 1.3 + 3$
 $V_{\text{CSJ,Jupiler},m} = -4.5 p_{\text{CSJ,Jupiler}}$

$$V_{\mathsf{CSJ},\mathsf{Orval},m} = -4.5p_{\mathsf{CSJ},\mathsf{Orval}} + 3$$

Utility functions: HEC

$$V_{\mathsf{LE},\mathsf{Jupiler},b} = -0.25 p_{\mathsf{LE},\mathsf{Jupiler}} - 1.3$$
 $V_{\mathsf{LE},\mathsf{Orval},b} = -0.25 p_{\mathsf{LE},\mathsf{Orval}} - 1.3 + 1$
 $V_{\mathsf{CSJ},\mathsf{Jupiler},b} = -0.25 p_{\mathsf{CSJ},\mathsf{Jupiler}}$
 $V_{\mathsf{CSJ},\mathsf{Orval},b} = -0.25 p_{\mathsf{CSJ},\mathsf{Orval}} + 1$

Total revenues

Orval only

Optimization

Assortment and pricing

- Combinatorial problem
- For each potential assortment, solve a pricing problem
- Select the assortment corresponding to the highest revenues
- MINLP
- Non convex relaxation

Disaggregate demand models

Advantages

- Theoretical foundations
- Market segmentation
- Taste heterogeneity
- Many variables
- Estimated from data

Disadvantages

- Complex mathematical formulation
- Not suited for optimization
- Literature: heuristics

Research objectives

Observations

- Revenues is not the only indicator to optimize,
- e.g. customer satisfaction.
- Many OR applications need a demand representation

Goal

- Generic mathematical representation of choice models.
- designed to be included in MILP,
- linear in the decision variables.

Outline

Choice models

2 MILP

Outlook

WWW. PHDCOMICS. COM

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability

A linear formulation

Utility function

$$U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \varepsilon_{in}.$$

Simulation

- Assume a distribution for ε_{in}
- E.g. logit: i.i.d. extreme value
- Draw R realizations ξ_{inr} , $r = 1, \dots, R$
- The choice problem becomes deterministic

FEDERALE DE LAUSANNE

Scenarios

Draws

- Draw R realizations ξ_{inr} , r = 1, ..., R
- We obtain R scenarios

$$U_{inr} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \xi_{inr}.$$

- For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.

Capacities

- Demand may exceed supply
- Each alternative i can be chosen by maximum c_i individuals.
- An exogenous priority list is available.
- Can be randomly generated, or according to some rules.
- The numbering of individuals is consistent with their priority.

Choice set

Variables

```
y_i \in \{0,1\} operator decision y_{in}^d \in \{0,1\} customer decision (data) y_{in} \in \{0,1\} product of decisions y_{inr} \in \{0,1\} capacity restrictions
```

Constraints

$$y_{in} = y_{in}^d y_i \quad \forall i, n$$

 $y_{inr} \le y_{in} \quad \forall i, n, r$

Utility

Variables

$$U_{inr}$$
 utility
$$z_{inr} = \left\{ egin{array}{ll} U_{inr} & \mbox{if } y_{inr} = 1 \\ \ell_{nr} & \mbox{if } y_{inr} = 0 \end{array}
ight. \label{eq:zinr}
ight. discounted utility \ (\ell_{nr} \mbox{ smallest lower bound})$$

Constraint: utility

$$U_{inr} = \overbrace{\beta_{in}p_{in} + q_d(x_d)}^{V_{in}} + \xi_{inr} \,\forall i, n, r$$

Utility (ctd)

Constraints: discounted utility

$$\ell_{nr} \leq z_{inr}$$
 $\forall i, n, r$
 $z_{inr} \leq \ell_{nr} + M_{inr}y_{inr}$ $\forall i, n, r$
 $U_{inr} - M_{inr}(1 - y_{inr}) \leq z_{inr}$ $\forall i, n, r$
 $z_{inr} \leq U_{inr}$ $\forall i, n, r$

Choice

Variables

$$U_{nr} = \max_{i \in \mathcal{C}} z_{inr}$$
 $w_{inr} = \left\{ egin{array}{l} 1 & ext{if } z_{inr} = U_{nr} \ 0 & ext{otherwise} \end{array}
ight.$

choice

Constraints

$$z_{inr} \leq U_{nr}$$
 $U_{nr} \leq z_{inr} + M_{nr}(1 - w_{inr})$
 $\sum_{i} w_{inr} = 1$
 $w_{inr} \leq y_{inr}$

$$\forall i, n, r$$

 $\forall i, n, r$

$$\forall n, r$$

$$\forall i, n, r$$

Capacity

Capacity cannot be exceeded $\Rightarrow y_{inr} = 1$

$$\sum_{m=1}^{n-1} w_{imr} \leq (c_i - 1)y_{inr} + (n-1)(1 - y_{inr}) \ \forall i > 0, n > c_i, r$$

Capacity has been reached $\Rightarrow y_{inr} = 0$

$$c_i(y_{in} - y_{inr}) \le \sum_{m=1}^{n-1} w_{imr}, \ \forall i > 0, n, r$$

A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.

A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.

Parking choice

• [Ibeas et al., 2014]

Parking choices [Ibeas et al., 2014]

Alternatives

- Paid on-street parking
- Paid underground parking
- Free street parking

Model

- N = 50 customers
- $C = \{PSP, PUP, FSP\}$
- $C_n = C \quad \forall n$
- $p_{in} = p_i \quad \forall n$
- Capacity of 20 spots
- Mixture of logit models

General experiments

Uncapacitated vs Capacitated case

- Maximization of revenue
- Unlimited capacity
- Capacity of 20 spots for PSP and PUP

Price differentiation by population segmentation

- Reduced price for residents
- Two scenarios
 - Subsidy offered by the municipality
 - Operator is forced to offer a reduced price

Uncapacitated vs Capacitated case

Uncapacitated

Capacitated

Computational time

	Uncapacitated case				Capacitated case			
R	Sol time	PSP	PUP	Rev	Sol time	PSP	PUP	Rev
5	2.58 s	0.54	0.79	26.43	12.0 s	0.63	0.84	25.91
10	3.98 s	0.53	0.74	26.36	54.5 s	0.57	0.78	25.31
25	29.2 s	0.54	0.79	26.90	13.8 min	0.59	0.80	25.96
50	4.08 min	0.54	0.75	26.97	50.2 min	0.59	0.80	26.10
100	20.7 min	0.54	0.74	26.90	6.60 h	0.59	0.79	26.03
250	2.51 h	0.54	0.74	26.85	1.74 days	0.60	0.80	25.93

Outline

Choice models

2 MILP

Outlook

Linear formulation of choice models

Generic framework

- Not only logit: any choice model.
- Choice models from the literature can be used as such.
- Disaggregate: the choice of every individual for every draw is available.
- Many indicators can be derived.

Challenges

- Large scale
- Simulation noise
- Additional linearization may be necessary (e.g. revenue = $p \cdot w$)

Linear formulation of choice models

Opportunities: decomposition methods

- Lagrangian relaxation
- Decomposable by individual
- Decomposable by draw

Future work

- Game theory
- Parameter estimation (discrete maximum likelihood)
- Link with machine learning (SVM, random forests, etc.)

February 2, 2018

- Bernard Gendron
- Virginie Lurkin
- Meritxell Pacheco
- Shadi Sharif Azadeh

Online course edX.org

Introduction to discrete choice models

Thank you!

Merci Dank u wel Danke schön

ARRE

© OPT - J.P.Remy

Bibliography

Ibeas, A., dell'Olio, L., Bordagaray, M., and de D. Ortúzar, J. (2014). Modelling parking choices considering user heterogeneity. Transportation Research Part A: Policy and Practice, 70:41 – 49.