hEART 2016 - 5th Symposium of the European Association for Research in Transportation, Delft University of Technology

Multi-class speed-density relationship for pedestrian traffic

Marija Nikolić, Michel Bierlaire, Matthieu de Lapparent, Riccardo Scarinci

September 14, 2016

Outline

Introduction

2 Methodology

3 Case study

- Model specification
- Model estimation and performance analysis

4 Conclusion and future work

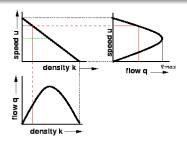
Outline

Introduction

2 Methodology

3) Case stuc

- Model specification
- Model estimation and performance analysis


Conclusion and future work

Fundamental relationships

- Play an important role in the filed: design and planing; model input or calibration criterion
- Modeling assumption: the traffic system is at equilibrium homogenous and stationary

Speed-density relationships for pedestrian traffic

Deterministic approach

- Empirically derived models [Older, 1968; Tregenza, 1976; Weidmann, 1993; Rastogi et al., 2013]
- Simulation-based models [Blue and Adler, 1998]
- Theory-based models [Flötteröd and Lämmel, 2015]

Empirical observations

• Scatter: violation of the equilibrium assumptions

Probabilistic approach

- Data-driven PedProb-vk [Nikolić et al., 2016]
- Superior compared to deterministic approaches from the literature

Outline

Introduction

Methodology

3) Case sti

- Model specification
- Model estimation and performance analysis

Conclusion and future work

Behavioral approach

Assupmtions

- Pedestrian population is heterogeneous (e.g. trip purpose, age, gender, etc.)
- Heterogeneity leads to the existence of multiple pedestrian classes
- Classes are characterized by different types of behavior
- Latent class modeling approach to capture unobserved heterogeneity

Multi-class speed-density relationship (MC-vk)

Model structure

$$P(v_i|k_i) = \sum_{c=1}^{C} P(v_i|k_i, c) P(c|X_i)$$

 $P(v_i|k_i, c)$: class-specific model $P(c|X_i)$: class membership model

- *i*: pedestrian identifier, i = 1, ..., N
- vi: speed of pedestrian i
- k_i : density for pedestrian i
- c: class identifier, C number of classes
- X_i : characteristics associated to pedestrian i

Class-specific speed-density relationship

Social Force Model

$$\vec{a}_i = \frac{\vec{v}_i^f - \vec{v}_i}{\tau_i} - C_i \sum_j \exp(-\frac{R_{ij}}{B_i}) \vec{n}_{ij} (\lambda_i + (1 - \lambda_i) \frac{1 + \cos(\phi_{ij})}{2})$$

[Helbing and Molnar, 1995]

Class-specific speed-density relationship

sotropy
$$(\lambda_i = 1)$$

$$a_i = \frac{v_i^f - v_i}{\tau_i} - C_i \sum_j \exp(-\frac{R_{ij}}{B_i}) = \frac{v_i^f - v_i}{\tau_i} - C_i k_i$$

Stationatity $(a_i = 0)$

$$\mathbf{v}_i = \mathbf{v}_i^f - \gamma_i \mathbf{k}_i$$

Homogeneity (all pedestrians have the same movement parameters)

$$\mathbf{v}_i = \mathbf{v} = \mathbf{v}_f - \gamma \mathbf{k}_i$$

Class membership model

- It cannot be deterministically identified to which class a pedestrian belongs
- Probability that a pedestrian *i*, associated with characteristics X_i (e.g. trip purpose, age, gender, etc.), belong to a latent class *c*: for each pedestrian there is a utility associated to each class *c*

Specification of utilities

$$U_i^c = \underbrace{ASC^c + \beta^c X_i}_{V_i^c} + \xi_i^c$$

 V_i^c : deterministic part of utilities ξ_i^c : error term

Multi-class speed-density relationship (MC-vk)

Class-specific model: $P(v_i|k_i, c)$

$$v_i^c = v_f^c - \gamma^c k_i + \epsilon_i^c$$

 $P(v_i|k_i, c)$ is determined by ϵ_i^c

Class membership model: $P(c|X_i)$

$$U_i^c = \underbrace{ASC^c + \beta^c X_i}_{V_i^c} + \xi_i^c$$

 $P(c|X_i)$ is determined by ξ_i^c

Likelihood of the sample

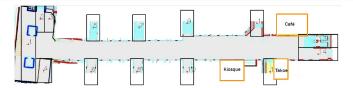
$$\mathcal{L} = \prod_{i=1}^{N} P(v_i|k_i) = \prod_{i=1}^{N} \sum_{c=1}^{C} P(v_i|k_i, c) P(c|X_i)$$

Outline

3 Case study

- Model specification
- Model estimation and performance analysis

Conclusion and future work

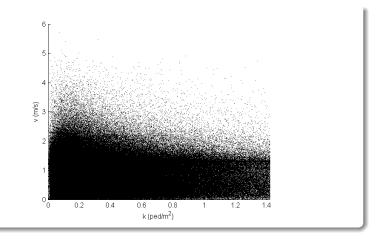


Lausanne railway station

Pedestrian underpass West

- 1: South entrance, 3: Coop Pronto Supermarket
- 2 4: Stairs (resp. ramp) to platform 9
- 5 6: Stairs (resp. ramp) to platform 7 and 8
- 7 8: Stairs (resp. ramp) to platform 5 and 6
- 9 10: Stairs (resp. ramp) to platform 3 and 4
- 11: Stairs to platform 1 and out of the station
- 12: Access ramp
- 13: Stairs to or out of the train station and to buses
- 14: Pathway leading to buses and metro (M2)

Pedestrian underpass


- A large-scale network of smart sensors: a sparsity driven tracking framework [Alahi et al., 2014]
- Dataset: 25,603 trajectories, collected between 07:00 and 08:00 on February 12, 13, 14, 15 and 18, 2013
- The average length of the trajectories: 78 meters
- The duration of a pedestrians' stay: from 15 seconds to 2.2 minutes

Speed-density relationship

Outline

3 Case study Model specification

• Model estimation and performance analysis

Conclusion and future work

Specification issues

Panel data

• Data collected over multiple time periods for the same sample of individuals

Serial correlation

- The observations across time for a single pedestrian are likely to be correlated, due to the unobserved factors related to a pedestrian that exist over time
- $\epsilon^{c}_{i(t-1)}$ cannot be assumed independent from ϵ^{c}_{it}
- If ignored consistent but not efficient estimators

Multi-class speed-density relationship (MC-vk)

Class-specific model: $P(v_i|k_i, c)$

$$\mathbf{v}_{it}^{c} = \mathbf{v}_{f}^{c} - \gamma^{c} \mathbf{k}_{it} + \alpha_{i}^{c} + \epsilon_{it}^{'c}$$

 $P(v_i|k_i, c)$ is determined by $\epsilon_{it}^{\prime c}$, α_i^c is an agent effect

Class membership model: $P(c|X_i)$

$$U_i^c = \underbrace{ASC^c + \beta^c X_i}_{V_i^c} + \xi_i^c$$

 $P(c|X_i)$ is determined by ξ_i^c

Likelihood of the sample

$$\mathcal{L} = \prod_{i=1}^{N} \sum_{c=1}^{C} \{ \frac{1}{R} \sum_{r}^{R} exp(\sum_{t=1}^{T} \log P(v_i | k_i, c, \alpha_r^c)) \} P(c | X_i)$$

Assumptions

Number of classes

- 1. Pedestrians sensitive to congestion
- 2. Pedestrians non-sensitive to congestion

Class specific model

- The same functional form of v-k for each class
- $\epsilon_{it}^{'c} \sim \text{Rayleigh distribution}$
- $\alpha_i^{\prime c} \sim \text{Rayleigh distribution}$

Class membership model

- Logit model
- Explanatory variables: type of pedestrian, time to departure, OD distance, peak periods

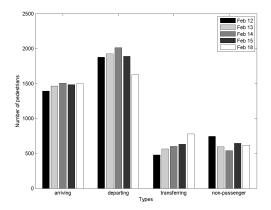
Pedestrian types

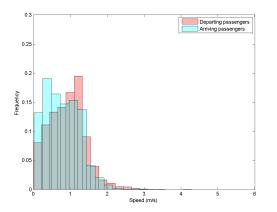
Classification based on origins and destinations

 $1:\ \mbox{Arriving passenger}$ - pedestrians originating from a platform and exiting the station

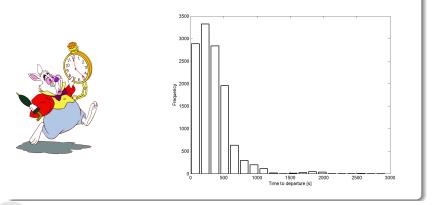
 $2\colon$ Departing passenger - pedestrians walking to a platform to embark on their trains

3: Transferring passenger - pedestrians whose origin and destination are different platforms

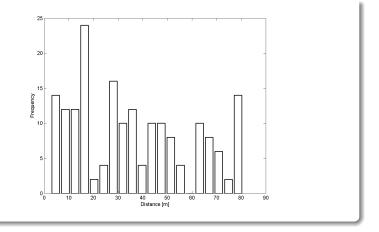

4: Non-passenger - pedestrians whose origin and destination are different from a platform (e.g. pedestrians that go shopping in the station)

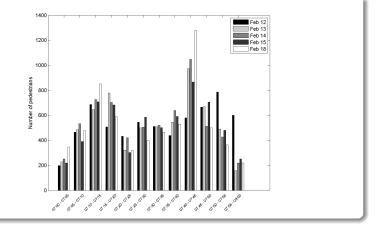

Number of pedestrians per pedestrian type

Speed distribution per pedestrian type



Train timetable


Time to departure


OD distance

Peak periods

Outline

3 Case study

- Model specification
- Model estimation and performance analysis

Conclusion and future work

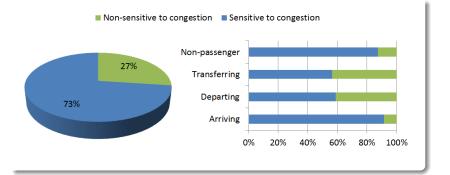
Class membership model

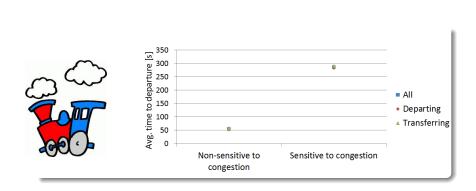
Parameter	Value	Std.err.
ASC ^{NS}	-0.258	$5.18e^{-06}$
$eta_{Arriving}^{NS}$	-0.641	1.03e ⁻⁰⁵
$eta_{Departing pass}^{NS}$	58.5	$2.11e^{-05}$
$eta^{NS}_{Transferring pass}$	63.5	1.73e ⁻⁰⁵
$eta^S_{Time to departure}$	0.236	1.57e ⁻⁰⁵
$eta^S_{Peak period}$	0.125	$1.54e^{-05}$
$\beta_{\text{OD distnce}}^{S}$	0.0328	1.93e ⁻⁰⁵

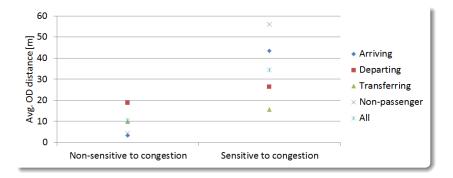
Class specific model

Value	Std.err.
1.13	$1.32e^{-0.5}$
0.0812	$1.73e^{-05}$
0.949	9.37e ⁻⁰⁵
0.178	$1.28 e^{-05}$
0.0104	$2.67e^{-05}$
0.102	$1.66e^{-05}$
	1.13 0.0812 0.949 0.178 0.0104

- S Pedestrians sensitive to congestion
- NS Pedestrians non-sensitive to congestion


Bayesian information criterion - <i>BIC</i>									
1 class	2 classes	3 classes							
-527491.289	-524094.577	-523726.125							
747385	747385	747385							
3	13	23							
1055023.152	1048364.971	1047763.309							
	1 class -527491.289 747385 3	1 class2 classes-527491.289-524094.577747385747385313							


Shares



Average time to departure


Scenario: time table change (decrease of the time to departure)

Model comparison

	Model	Weidmann	Tregenza	Rastogi	Linear	PedProb-vk	MC-vk
[-	$4.81e^{-03}$	3.63e ⁻⁰³	3.95e ⁻⁰³	4.99e ⁻⁰³	3.17e ⁻⁰³	2.12e ⁻⁰³
	₽ R²	2.64e ⁻⁰¹	4.45e ⁻⁰¹	3.96e ⁻⁰¹	2.37e ⁻⁰¹	5.16e ⁻⁰¹	6.76e ⁻⁰¹

Outline

- Model specification
- Model estimation and performance analysis

4 Conclusion and future work

Conclusion and future work

Conclusion

- MC-vk: latent class modeling approach to capture heterogeneity in pedestrian population
- Satisfying behavioral interpretation
- Good performance at the aggregate level

Future work

- Additional factors: walking in groups, attractiveness of origins/destinations
- Additional scenarios: train reallocation
- Accounting for dynamics

hEART 2016 - 5th Symposium of the European Association for Research in Transportation, Delft University of Technology: Multi-class speed-density relationship for pedestrian traffic Marija Nikolić, Michel Bierlaire, Matthieu de Lapparent, Riccardo Scarinci

- marija.nikolic@epfl.ch

