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Decision rule

Homo economicus
Rational and narrowly self-interested economic actor who is
optimizing her outcome

Utility

Un : Cn −→ R : a⇝ Un(a)

▶ captures the attractiveness of an alternative

▶ measure that the decision maker wants to optimize

Behavioral assumption

▶ the decision maker associates a utility with each alternative

▶ the decision maker is a perfect optimizer

▶ the alternative with the highest utility is chosen
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Random utility model

Random utility

Uin = Vin + εin = βTXin + εin.

Choice model

P(i |Cn) = Pr(Uin ≥ Ujn,∀j ∈ Cn),
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Logit model

Assumptions

εin are i.i.d. EV(0, µ).

Choice model

Pn(i |Cn) =
yine

µVin∑J
j=1 yjne

µVjn
.
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Beyond rationality

Motivation
▶ There is evidence that human beings are not necessarily

rational in the way assumed by random utility models.

▶ We first review some experiments that illustrate that
(apparent) irrationality.
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Example: pain lovers
[Kahneman et al., 1993]

▶ Short trial: immerse one hand in water at 14◦ for 60 sec.

▶ Long trial: immerse the other hand at 14◦ for 60 sec, then
keep the hand in the water 30 sec. longer as the temperature
of the water is gradually raised to 15◦.

▶ Outcome: most people prefer the long trial.

▶ Explanation: duration plays a small role,
the peak and the final moments matter.
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Example: The Economist

[Ariely, 2008]

Subscription to The Economist

Web only @ $59
Print only @ $125
Print and web @ $125
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Subscription to The Economist

Experiment 1 Experiment 2
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Example: The Economist

[Ariely, 2008]

Subscription to The Economist

Experiment 1 Experiment 2

16 Web only @ $59 Web only @ $59 68

0 Print only @ $125
84 Print and web @ $125 Print and web @ $125 32
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The Economist: explanations

▶ Dominated alternative.

▶ According to utility maximization, should not affect the
choice.

▶ But it affects the perception, which affects the choice.
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Decoy effect

Decoy

High-price, low-value product compared to other items in the
choice set.

Behavior
Consumers shift their choice to more expensive items.

Applications

▶ Travel and tourism.
[Josiam and Hobson, 1995]

▶ Wine lists in restaurants.
[Kimes et al., 2012]

▶ Tobacco treatment. [Rogers et al., 2020]

▶ Online diamond retail.
[Wu and Cosguner, 2020]
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Example: good or bad wine?

Choose a bottle of wine...

Experiment 1 Experiment 2

1 McFadden red at $10 McFadden red at $10
2 Nappa red at $12 Nappa red at $12
3 McFadden special reserve

pinot noir at $60
Most would choose 2 Most would choose 1

▶ Context plays a role on perceptions.
▶ Here, perceived quality is increased.

14 / 48



Example: live and let die

[Kahneman and Tversky, 1986]
Population of 600 is threatened by a disease.
Two alternative treatments to combat the disease have been
proposed.

Experiment 1 Experiment 2
# resp. = 152 # resp. = 155

Treatment A: !Treatment C:
72% 200 people saved 400 people die 22%

Treatment B: Treatment D:
28% 600 saved with prob.

1/3
0 die with prob. 1/3 78%

0 saved with prob. 2/3 600 die with prob. 2/3
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Example: to be free
[Ariely, 2008]

Choice between a fine and a regular chocolate

Experiment 1 Experiment 2

Lindt $0.15 $0.14
Hershey $0.01 $0.00
Lindt chosen 73% 31%
Hershey chosen 27% 69%

Discontinuity at 0
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Ultimatum game

Source: thenib.com
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Ultimatum game

Source: thenib.com
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Ultimatum game

Source: thenib.com

19 / 48



Ultimatum game

Optimal solution

Subject B should accept any offer.

In practice

Offers of less than 30% are often rejected.
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Modeling latent concepts

Motivation
▶ Some observed behavior may appear irrational, and

inconsistent with random utility.

▶ It is only apparent, as these behaviors can be explained by
more complex formulations of the concept of utility.

▶ In particular, this may involve subjective and latent concepts
such as perceptions and attitudes.

▶ Latent concepts can be introduced in choice models.
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Indirect measurements of latent concepts

Attitude towards the environment

For each question, response on a scale: strongly agree, agree,
neutral, disagree, strongly disagree, no idea.

▶ The price of oil should be increased to reduce congestion and
pollution.

▶ More public transportation is necessary, even if it means
additional taxes.

▶ Ecology is a threat to minorities and small companies.

▶ People and employment are more important than the
environment.

▶ I feel concerned by the global warming.

▶ Decisions must be taken to reduce the greenhouse gas
emission.
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Indirect measurements of latent concepts

Psychometric indicators

▶ Usually easy to respond.

▶ Arbitrary units.

▶ Important to minimize framing.

Data
For each individual, we have

▶ Vector of independent variables: x .

▶ Choice: i .

▶ vector of psychometric indicators: I .
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Prediction model

Latent variable
▶ Captures perceptions, attitudes, anchors, etc.

▶ Not observed.

▶ Modeled as a function of observed variables:

X ∗ = EnvironmentalAttidude = f(Age, Education, etc.; θ) +
ξ.

Random utility model

▶ Utility is also unobserved.

▶ Modeled as a function of observed variables, as well as the
latent variable(s):

Utility(PublicTransport) =
f(Price, Time, Frequency, EnvironmentalAttitude; θ) + ε
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Prediction model

Choice model: mixture of logit models

Pn(i |xn,X ∗
n , Cn) =

yine
µVin(xn,X

∗
n )∑J

j=1 yjne
µVjn(xn,X∗

n )
.

Pn(i |xn, Cn) =
∫
t
Pn(i |xn, t, Cn)fX∗

n
(t)dt

=

∫
t

yine
µVin(xn,t)∑J

j=1 yjne
µVjn(xn,t)

fX∗
n
(t)dt.
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Demand-based optimization

Context
▶ An operator providing goods or services.

▶ Potentially, competing operators.

▶ Customers who freely decide which service/good to choose.

Objective

Help the operator with strategic, tactical or operational decisions.

Comments
▶ This is the core business of operations research.

▶ But the decisions of customers are often assumed to be given,
exogenous.

▶ Challenge: use choice models to capture the demand, the
decisions of customers.
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Demand-based optimization

Examples

▶ Pricing, toll setting.

▶ Revenue management.

▶ Facility location.

▶ Assortment optimization.

▶ Passenger-centric railway timetabling.

▶ · · ·
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Main issue

Demand representation

▶ di (x): number of customers who select service/good i , under
decision x .

▶ Using a choice model:

di (x) =
∑
n

Pn(i |Cn) =
∑
n

∫
t

yin(x)e
µVin(x ,t)∑J

j=1 yjn(x)e
µVjn(x ,t)

fX∗(t)dt.

Issue
▶ Most optimization models in OR rely on convenient

relaxations of the original problem.

▶ Usually, “convenient” means linear or convex.

▶ But mixtures of logit models are far from being convex.
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Exogenous and endogenous variables

Endogenous variables

▶ Decision variables of the operator that influence the choice of
customers.

▶ Examples: price, quality of service, properties of goods, etc.

Exogenous variables

▶ Variables influencing the choice of customers, but not decided
by the operator.

▶ Examples: decisions of the competing operators, attitudes,
perceptions, etc.

Mathematical requirement

We need linearity (or convexity) in the endogenous variables.
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The main idea
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The main idea

Linearization
▶ Hopeless to linearize the logit formula (we tried...)

▶ Anyway, we want to go beyond logit.

Idea
Work with the utility and not the probability.
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A linear formulation

Latent variable

X ∗
n = fX (zendo, zexo) + ξn,where fX is linear (or convex) in zendo.

Simulation

▶ Assume a distribution for ξn
▶ E.g. normal distribution.

▶ Draw R realizations ξnr ,
r = 1, . . . ,R
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A linear formulation

Utility function

Uin = Vin(xendo, xexo,X
∗
n ) + εin,

where Vin is linear (or convex) in xendo and X ∗
n (and so, in zendo).

Simulation

▶ Assume a distribution for εin
▶ E.g. logit: i.i.d. extreme value

▶ Draw R realizations εinr ,
r = 1, . . . ,R
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Scenarios

Draws
▶ Draw R realizations ξinr , εinr , r = 1, . . . ,R

▶ We obtain R scenarios

X ∗
nr =

∑
k

θkzendo + f (zexo) + ξinr .

Uinr =
∑
k

βkxendo + f (xexo) + εinr .

▶ For each scenario r , we can identify the largest utility.

▶ It corresponds to the chosen alternative.
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Capacities

▶ Demand may exceed supply

▶ Each alternative i can be chosen by
maximum ci individuals.

▶ An exogenous priority list is
available.

▶ Can be randomly generated, or
according to some rules.

▶ The numbering of individuals is
consistent with their priority.
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Choice set

Variables

yi ∈ {0, 1} operator decision

ydin ∈ {0, 1} customer decision (data)

yin ∈ {0, 1} product of decisions

yinr ∈ {0, 1} capacity restrictions

Constraints

yin = ydinyi ∀i , n
yinr ≤ yin ∀i , n, r
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Utility

Variables

Uinr utility

zinr =

{
Uinr if yinr = 1
ℓnr if yinr = 0

discounted utility

(ℓnr smallest lower bound)

Constraint: utility

Uinr =

Vin︷ ︸︸ ︷∑
k

βkxkn,endo + f (xn,exo)+εinr ∀i , n, r
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Utility (ctd)

Constraints: discounted utility

ℓnr ≤ zinr ∀i , n, r
zinr ≤ ℓnr +Minryinr ∀i , n, r

Uinr −Minr (1− yinr ) ≤ zinr ∀i , n, r
zinr ≤ Uinr ∀i , n, r

39 / 48



Choice

Variables

Unr = max
i∈C

zinr

winr =

{
1 if zinr = Unr

0 otherwise
choice

Constraints

zinr ≤ Unr ∀i , n, r
Unr ≤ zinr +Mnr (1− winr ) ∀i , n, r∑

i

winr = 1 ∀n, r

winr ≤ yinr ∀i , n, r
40 / 48



Capacity

If yinr = 1 ⇒ capacity not reached

n−1∑
m=1

wimr ≤ (ci − 1)yinr + (n − 1)(1− yinr ) ∀i > 0, n > ci , r

If yinr = 0 ⇒ capacity is reached

ci (yin − yinr ) ≤
n−1∑
m=1

wimr , ∀i > 0, n, r

41 / 48



Family of models

Constraints
▶ Set of linear constraints characterizing choice behavior

▶ Can be included in any relevant optimization problem.

Examples

▶ Profit maximization

▶ Facility location

Difficulties
▶ big M constraints

▶ large dimensions
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Profit maximization

Profit
If pin is the price paid by individual to purchase option i , the
revenue generated by this option is

1

R

R∑
r=1

N∑
n=1

pinwinr .

Linearization
If ain ≤ pin ≤ bin, we define ηinr = pinwinr , and the following
constraints:

ainwinr ≤ ηinr

ηinr ≤ binwinr

pin − (1− winr )bin ≤ ηinr

ηinr ≤ pin − (1− winr )ain
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Profit maximization

[Haering et al., 2023]

▶ Knapsack problem: continuous reformulation.

▶ Breakpoints (where things happen): brute force algorithm.

▶ Spatial branch & bound: McCormick envelopes.

▶ Large scale: Benders decomposition.

▶ Case study: mixture of logit model.

Ongoing...

▶ Heuristic inspired by the brute force algorithm.

▶ Exact method: valid inequalities.
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Conclusion

▶ Complex behavior requires complex mathematical models.

▶ Use simulation do deal with the complexity.

▶ Consequence: large dimension.

▶ Strategy: exploit the structure of the problem to design exact
algorithms and heuristics.

▶ This is what OR researchers do well!
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