Irrational Behavior and Optimization

Michel Bierlaire

October 16, 2024

Outline

[Choice models](#page-1-0)

[Beyond rationality](#page-5-0)

[Optimization](#page-25-0)

Decision rule

Homo economicus

Rational and narrowly self-interested economic actor who is optimizing her outcome

Utility

$$
U_n: \mathcal{C}_n \longrightarrow \mathbb{R}: a \rightsquigarrow U_n(a)
$$

- \blacktriangleright captures the attractiveness of an alternative
- \blacktriangleright measure that the decision maker wants to optimize

Behavioral assumption

- \blacktriangleright the decision maker associates a utility with each alternative
- \blacktriangleright the decision maker is a perfect optimizer
- \blacktriangleright the alternative with the highest utility is chosen

Random utility model

Random utility

$$
U_{in} = V_{in} + \varepsilon_{in} = \beta^T X_{in} + \varepsilon_{in}.
$$

Choice model

$$
P(i|\mathcal{C}_n) = \Pr(U_{in} \geq U_{jn}, \forall j \in \mathcal{C}_n),
$$

Logit model

Assumptions ε_{in} are i.i.d. EV(0, μ).

Choice model

$$
P_n(i|\mathcal{C}_n)=\frac{y_{in}e^{\mu V_{in}}}{\sum_{j=1}^J y_{jn}e^{\mu V_{jn}}}.
$$

Outline

[Choice models](#page-1-0)

[Beyond rationality](#page-5-0)

[Optimization](#page-25-0)

Beyond rationality

Motivation

- ▶ There is evidence that human beings are not necessarily rational in the way assumed by random utility models.
- \triangleright We first review some experiments that illustrate that (apparent) irrationality.

Example: pain lovers

[\[Kahneman et al., 1993\]](#page-46-0)

- ▶ Short trial: immerse one hand in water at 14° for 60 sec.
- ▶ Long trial: immerse the other hand at 14° for 60 sec, then keep the hand in the water 30 sec. longer as the temperature of the water is gradually raised to 15° .
- ▶ Outcome: most people prefer the long trial.
- \blacktriangleright Explanation: duration plays a small role, the peak and the final moments matter.

Example: The Economist

[\[Ariely, 2008\]](#page-45-0)

Subscription to The Economist

Example: The Economist

[\[Ariely, 2008\]](#page-45-0)

Subscription to The Economist

Example: The Economist

[\[Ariely, 2008\]](#page-45-0)

Subscription to The Economist

The Economist: explanations

- ▶ Dominated alternative
- ▶ According to utility maximization, should not affect the choice.
- \blacktriangleright But it affects the perception, which affects the choice.

Decoy effect

Decoy

High-price, low-value product compared to other items in the choice set.

Behavior

Consumers shift their choice to more expensive items.

Applications

- ▶ Travel and tourism. [\[Josiam and Hobson, 1995\]](#page-45-1)
- \blacktriangleright Wine lists in restaurants. [\[Kimes et al., 2012\]](#page-46-1)
- ▶ Tobacco treatment. [\[Rogers et al., 2020\]](#page-47-0)
- ▶ Online diamond retail [\[Wu and Cosguner, 2020\]](#page-47-1)

Example: good or bad wine?

Choose a bottle of wine...

- ▶ Context plays a role on perceptions.
- ▶ Here, perceived quality is increased.

Example: live and let die

[\[Kahneman and Tversky, 1986\]](#page-46-2)

Population of 600 is threatened by a disease.

Two alternative treatments to combat the disease have been proposed.

Example: to be free

[\[Ariely, 2008\]](#page-45-0)

Choice between a fine and a regular chocolate

Discontinuity at 0

Source: thenib.com

Source: thenib.com

Source: thenib.com

Optimal solution

Subject B should accept any offer.

In practice

Offers of less than 30% are often rejected.

Modeling latent concepts

Motivation

- ▶ Some observed behavior may appear irrational, and inconsistent with random utility.
- \blacktriangleright It is only apparent, as these behaviors can be explained by more complex formulations of the concept of utility.
- \blacktriangleright In particular, this may involve subjective and latent concepts such as perceptions and attitudes.
- ▶ Latent concepts can be introduced in choice models.

Indirect measurements of latent concepts

Attitude towards the environment

For each question, response on a scale: strongly agree, agree, neutral, disagree, strongly disagree, no idea.

- ▶ The price of oil should be increased to reduce congestion and pollution.
- \triangleright More public transportation is necessary, even if it means additional taxes.
- \blacktriangleright Ecology is a threat to minorities and small companies.
- ▶ People and employment are more important than the environment.
- \blacktriangleright I feel concerned by the global warming.
- \triangleright Decisions must be taken to reduce the greenhouse gas emission.

Indirect measurements of latent concepts

Psychometric indicators

- ▶ Usually easy to respond.
- ▶ Arbitrary units.
- ▶ Important to minimize framing.

Data

For each individual, we have

- \blacktriangleright Vector of independent variables: x.
- \blacktriangleright Choice: *i*.
- ▶ vector of psychometric indicators: *I*.

Prediction model

Latent variable

- \blacktriangleright Captures perceptions, attitudes, anchors, etc.
- ▶ Not observed.
- \triangleright Modeled as a function of observed variables:

 $X^* =$ EnvironmentalAttidude = f(Age, Education, etc.; θ) + ξ.

Random utility model

- \blacktriangleright Utility is also unobserved.
- \triangleright Modeled as a function of observed variables, as well as the latent variable(s):

Utility(PublicTransport) $=$ f(Price, Time, Frequency, EnvironmentalAttitude; θ) + ε

Prediction model

Choice model: mixture of logit models

$$
P_n(i|x_n, X_n^*, C_n) = \frac{y_{in}e^{\mu V_{in}(x_n, X_n^*)}}{\sum_{j=1}^J y_{jn}e^{\mu V_{jn}(x_n, X_n^*)}}.
$$

$$
P_n(i|x_n, C_n) = \int_t P_n(i|x_n, t, C_n) f_{X_n^*}(t) dt
$$

=
$$
\int_t \frac{y_{in} e^{\mu V_{in}(x_n, t)}}{\sum_{j=1}^J y_{jn} e^{\mu V_{jn}(x_n, t)}} f_{X_n^*}(t) dt.
$$

Outline

[Choice models](#page-1-0)

[Beyond rationality](#page-5-0)

[Optimization](#page-25-0)

Demand-based optimization

Context

- ▶ An operator providing goods or services.
- ▶ Potentially, competing operators.
- \triangleright Customers who freely decide which service/good to choose.

Objective

Help the operator with strategic, tactical or operational decisions.

Comments

- \blacktriangleright This is the core business of operations research.
- ▶ But the decisions of customers are often assumed to be given, exogenous.
- ▶ Challenge: use choice models to capture the demand, the decisions of customers.

Demand-based optimization

Examples

- \blacktriangleright Pricing, toll setting.
- ▶ Revenue management.
- ▶ Facility location.
- ▶ Assortment optimization.
- ▶ Passenger-centric railway timetabling.

▶ · · ·

Main issue

Demand representation

- \blacktriangleright $d_i(x)$: number of customers who select service/good *i*, under decision x.
- ▶ Using a choice model:

$$
d_i(x) = \sum_n P_n(i|\mathcal{C}_n) = \sum_n \int_t \frac{y_{in}(x) e^{\mu V_{in}(x,t)}}{\sum_{j=1}^J y_{jn}(x) e^{\mu V_{jn}(x,t)}} f_{X^*}(t) dt.
$$

Issue

- ▶ Most optimization models in OR rely on convenient relaxations of the original problem.
- ▶ Usually, "convenient" means linear or convex.
- ▶ But mixtures of logit models are far from being convex.

Exogenous and endogenous variables

Endogenous variables

- ▶ Decision variables of the operator that influence the choice of customers.
- \blacktriangleright Examples: price, quality of service, properties of goods, etc.

Exogenous variables

- ▶ Variables influencing the choice of customers, but not decided by the operator.
- \blacktriangleright Examples: decisions of the competing operators, attitudes, perceptions, etc.

Mathematical requirement

We need linearity (or convexity) in the endogenous variables.

The main idea

The main idea

Linearization

- \blacktriangleright Hopeless to linearize the logit formula (we tried...)
- ▶ Anyway, we want to go beyond logit.

Idea

Work with the utility and not the probability.

A linear formulation

Latent variable

 $X_n^* = f_X(z_{\text{endo}}, z_{\text{exo}}) + \xi_n$, where f_X is linear (or convex) in z_{endo} .

Simulation

- Assume a distribution for ξ_n
- \blacktriangleright E.g. normal distribution.
- \blacktriangleright Draw R realizations ξ_{nr} , $r=1,\ldots,R$

A linear formulation

Utility function

$$
U_{in}=V_{in}(x_{endo},x_{exo},X_n^*)+\varepsilon_{in},
$$

where V_{in} is linear (or convex) in x_{endo} and X_{n}^{*} (and so, in z_{endo}). Simulation

- Assume a distribution for ε_{in}
- ▶ E.g. logit: i.i.d. extreme value
- \blacktriangleright Draw R realizations ε_{inv} , $r=1,\ldots,R$

Scenarios

Draws

• Draw *R* realizations
$$
\xi_{\text{inr}}
$$
, ε_{inr} , $r = 1, ..., R$

 \blacktriangleright We obtain R scenarios

$$
X_{nr}^{*} = \sum_{k} \theta_{k} z_{\text{endo}} + f(z_{\text{exo}}) + \xi_{\text{inr}}.
$$

$$
U_{\text{inr}} = \sum_{k} \beta_{k} x_{\text{endo}} + f(x_{\text{exo}}) + \varepsilon_{\text{inr}}.
$$

 \triangleright For each scenario r, we can identify the largest utility. ▶ It corresponds to the chosen alternative.

Capacities

- ▶ Demand may exceed supply
- \blacktriangleright Each alternative *i* can be chosen by $maximum$ c_i individuals.
- \blacktriangleright An exogenous priority list is available.
- ▶ Can be randomly generated, or according to some rules.
- \blacktriangleright The numbering of individuals is consistent with their priority.

Choice set

Variables

 $y_i \in \{0, 1\}$ operator decision y d customer decision (data) $y_{in} \in \{0, 1\}$ product of decisions $y_{\text{inr}} \in \{0, 1\}$ capacity restrictions

Constraints

$$
y_{in} = y_{in}^{d} y_i \quad \forall i, n
$$

$$
y_{inr} \le y_{in} \quad \forall i, n, r
$$

Utility

Variables

$$
U_{\text{inr}} \qquad \text{utility}
$$
\n
$$
z_{\text{inr}} = \begin{cases} U_{\text{inr}} & \text{if } y_{\text{inr}} = 1 \\ \ell_{\text{nr}} & \text{if } y_{\text{inr}} = 0 \end{cases} \qquad \text{discounted utility}
$$
\n
$$
(\ell_{\text{nr}} \text{ smallest lower bound})
$$

Constraint: utility

$$
U_{\text{inr}} = \underbrace{\sum_{k} \beta_{k} x_{kn,\text{endo}}}_{k} + f(x_{n,\text{exo}}) + \varepsilon_{\text{inr}} \,\forall i, n, r
$$

Utility (ctd)

Constraints: discounted utility

$$
\ell_{nr} \leq z_{inr} \qquad \forall i, n, r
$$

\n
$$
z_{inr} \leq \ell_{nr} + M_{inr}y_{inr} \qquad \forall i, n, r
$$

\n
$$
U_{inr} - M_{inr}(1 - y_{inr}) \leq z_{inr} \qquad \forall i, n, r
$$

\n
$$
z_{inr} \leq U_{inr} \qquad \forall i, n, r
$$

Choice

Variables

$$
U_{nr} = \max_{i \in \mathcal{C}} z_{inr}
$$

$$
w_{inr} = \begin{cases} 1 & \text{if } z_{inr} = U_{nr} \\ 0 & \text{otherwise} \end{cases}
$$
 choice

Constraints

$$
z_{\text{inr}} \leq U_{\text{nr}} \qquad \forall i, n, r
$$

\n
$$
U_{\text{nr}} \leq z_{\text{inr}} + M_{\text{nr}}(1 - w_{\text{inr}}) \qquad \forall i, n, r
$$

\n
$$
\sum_{i} w_{\text{inr}} = 1 \qquad \forall n, r
$$

\n
$$
w_{\text{inr}} \leq y_{\text{inr}} \qquad \forall i, n, r
$$

Capacity

If $y_{\text{inr}} = 1 \Rightarrow$ capacity not reached

$$
\sum_{m=1}^{n-1} w_{imr} \leq (c_i-1)y_{inr} + (n-1)(1-y_{inr}) \ \forall i > 0, n > c_i, r
$$

If $y_{\text{inr}} = 0 \Rightarrow$ capacity is reached

$$
c_i(y_{in}-y_{inr})\leq \sum_{m=1}^{n-1}w_{imr},\ \forall i>0,n,r
$$

Family of models

Constraints

- ▶ Set of linear constraints characterizing choice behavior
- \triangleright Can be included in any relevant optimization problem.

Examples

- ▶ Profit maximization
- ▶ Facility location

Difficulties

- \blacktriangleright big M constraints
- \blacktriangleright large dimensions

Profit maximization

Profit

If p_{in} is the price paid by individual to purchase option *i*, the revenue generated by this option is

$$
\frac{1}{R}\sum_{r=1}^R\sum_{n=1}^N p_{in}w_{inr}.
$$

Linearization

If $a_{in} \le p_{in} \le b_{in}$, we define $\eta_{in} = p_{in}w_{in}$, and the following constraints:

$$
a_{in}w_{inr} \leq \eta_{inr}
$$

$$
\eta_{inr} \leq b_{in}w_{inr}
$$

$$
p_{in} - (1 - w_{inr})b_{in} \leq \eta_{inr}
$$

$$
\eta_{inr} \leq p_{in} - (1 - w_{inr})a_{in}
$$

Profit maximization

[\[Haering et al., 2023\]](#page-45-2)

- ▶ Knapsack problem: continuous reformulation.
- \triangleright Breakpoints (where things happen): brute force algorithm.
- ▶ Spatial branch & bound: McCormick envelopes.
- ▶ Large scale: Benders decomposition.
- ▶ Case study: mixture of logit model.

Ongoing...

- \blacktriangleright Heuristic inspired by the brute force algorithm.
- \blacktriangleright Exact method: valid inequalities.

Conclusion

- ▶ Complex behavior requires complex mathematical models.
- \triangleright Use simulation do deal with the complexity.
- ▶ Consequence: large dimension.
- ▶ Strategy: exploit the structure of the problem to design exact algorithms and heuristics.
- ▶ This is what OR researchers do well!

Bibliography I

```
量
Ariely, D. (2008).
```
Predictably irrational. The hidden forces that shape our decisions. Harper Collins.

E.

Haering, T., Legault, R., Torres, F., Ljubic, I., and Bierlaire, M. (2023).

Exact algorithms for continuous pricing with advanced discrete choice demand models.

Technical Report TRANSP-OR 231211, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

F

Josiam, B. M. and Hobson, J. S. P. (1995). Consumer choice in context: The decoy effect in travel and tourism.

Journal of Travel Research, 34(1):45–50.

Bibliography II

譶 Kahneman, D., Fredrickson, B., Schreiber, C., and Redelmeier, D. (1993). When more pain is preferred to less: Adding a better end. Psychological Science, 4(6):401–405.

- Kahneman, D. and Tversky, A. (1986). F Rational choice and the framing of decisions. Journal of business, 59(4):251–278.
- 譶 Kimes, S. E., Phillips, R., and Summa, L. (2012). Pricing in restaurants. In Ozer, O. and Phillips, R., editors, The Oxford Handbook of pricing management, Oxford Handbooks. OUP Oxford.

Bibliography III

量 Rogers, E., Vargas, E., and Voigt, E. (2020). Exploring the decoy effect to guide tobacco treatment choice: a randomized experiment. BMC Res Notes, 13(3).

Wu, C. and Cosguner, K. (2020).

Profiting from the decoy effect: A case study of an online diamond retailer.

Marketing Science, 39(5):849–1031.