Incorporating behavioral model into transport optimization

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

December 3, 2018

Outline

Disaggregate demand models A simple example 4 A generic framework5 MILP6 Conclusion

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

イロト イポト イヨト イヨト

Mobility as a service

Michel Bierlaire (EPFL)

Behavioral models and optimization

December 3, 2018 3 / 40

< □ > < □ > < □ > < □ > < □ >

Mobility as a service

Demand orientation [Jittrapirom et al., 2017]

- User-centric paradigm
- Best from customer's perspective
- Demand responsive

Personalization

- Every user has different needs
- Tailor-made solutions
- Social network

Michel Bierlaire (EPFL)

Mobility as a service

Key challenges [Jittrapirom et al., 2017]

- Demand-side modeling
- Supply-side modeling
- Governance and business model to match supply and demand

Michel Bierlaire (EPFL)

Behavioral models and optimization

December 3, 2018 4 / 40

4 E N

Outline

Demand and supply

Disaggregate demand models

A simple example

4 generic framework5 MILP6 Conclusion

ECOLE POLYTECHNIQUE

December 3, 2018 5 / 40

< 回 > < 三 > < 三 >

Choice models

Behavioral models

- Demand = sequence of choices
- Choosing means trade-offs
- In practice: derive trade-offs from choice models

Choice models

Theoretical foundations

- Random utility theory
- Choice set: C_n
- $y_{in} = 1$ if $i \in C_n$, 0 if not

 $P(i|\mathcal{C}_n) = \frac{y_{in}e^{v_{in}}}{\sum_{i\in\mathcal{C}}y_{jn}e^{V_{jn}}}$

• Logit model:

2000

(日)

Michel Bierlaire (EPFL)

December 3, 2018 7 / 40

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Logit model

Utility

$$U_{in} = V_{in} + \varepsilon_{in}$$

Choice probability
$$P_n(i|\mathcal{C}_n) = \frac{y_{in}e^{V_{in}}}{\sum_{j\in\mathcal{C}}y_{jn}e^{V_{jn}}}.$$

- Decision-maker n
- Alternative $i \in C_n$

Variables: $x_{in} = (p_{in}, z_{in}, s_n)$

Attributes of alternative *i*: *z*_{in}

- Cost / price (p_{in})
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Characteristics of decision-maker n: s_n

- Income
- Age
- Sex
- Trip purpose
- Car ownership
- Education
- Profession
- etc.

TRANSP-OR

December 3, 2018 9 / 40

(B)

ÉCOLE POLYTECHNIQUI

Demand curve

Price

Outline

4 A generic framework5 MILP6 Conclusion

Michel Bierlaire (EPFL)

Behavioral models and optimization

December 3, 2018 11 / 40

イロト イポト イヨト イヨト

Example

Choice set: Jupiler

- 't Klooster i = 0
- Belvédère i = 1

Utility functions

$$V_{0n} = -2.2p_0 - 1.3$$

 $V_{1n} = -2.2p_1$

Prices

- 't Klooster: [0 6€]
- Belvédère: 1.8€

TRANSP-UR

December 3, 2018 12 / 40

通 ト イ ヨ ト イ ヨ ト

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Demand and revenues

Heterogeneous population

Two groups in the population

$$V_{0n} = -\beta_n p_0 + c_0$$

Mathematics:25%Business:75% $\beta_1 = -4.5$, $\beta_2 = -0.25$, $c_2 = -1.3$

December 3, 2018 14 / 40

< □ > < 同 > < 回 > < 回 > < 回 >

Demand per market segment

December 3, 2018

Demand and revenues

Optimization

Pricing

- Non linear optimization problem.
- Non convex objective function.
- Multimodal function.
- May feature many local optima.
- In practice, the groups are many, and interdependent.
- Optimizing each group separately is not feasible.

Optimization

Pricing

- Non linear optimization problem.
- Non convex objective function.
- Multimodal function.
- May feature many local optima.
- In practice, the groups are many, and interdependent.
- Optimizing each group separately is not feasible.

Assortment

What about assortment?

Heterogeneous population, two products

Utility functions: math

$$\begin{split} V_{\text{K,Jupiler},m} &= -4.5 p_{\text{K,Jupiler}} - 1.3 \\ V_{\text{K,Orval},m} &= -4.5 p_{\text{K,Orval}} - 1.3 + 3 \\ V_{\text{B,Jupiler},m} &= -4.5 p_{\text{B,Jupiler}} \\ V_{\text{B,Orval},m} &= -4.5 p_{\text{B,Orval}} + 3 \end{split}$$

Utility functions: HEC

K: Price Orval = $1.5 \times \text{price}$ Jupiler B: Price Orval = $2 \times \text{price}$ Jupiler

$$\begin{split} V_{\text{K},\text{Jupiler},b} &= -0.25 p_{\text{K},\text{Jupiler}} - 1.3 \\ V_{\text{K},\text{Orval},b} &= -0.25 p_{\text{K},\text{Orval}} - 1.3 + 1 \\ V_{\text{B},\text{Jupiler},b} &= -0.25 p_{\text{B},\text{Jupiler}} \\ V_{\text{B},\text{Orval},b} &= -0.25 p_{\text{B},\text{Orval}} + 1 \end{split}$$

Michel Bierlaire (EPFL)

Behavioral models and optimization

Total revenues

Outline

イロト イポト イヨト イヨト

In transportation

Assortment and pricing

- Airlines
- Deregulated railways
- Mobility as a service

-

i

æ

Michel Bierlaire (EPFL)

Behavioral models and optimization

December 3, 2018 22 / 40

<ロト < 四ト < 三ト < 三ト

Optimization

Assortment and pricing

- Combinatorial problem
- For each potential assortment, solve a pricing problem
- Select the assortment corresponding to the highest revenues
- MINLP
- Non convex relaxation

Disaggregate demand models

Advantages

- Theoretical foundations
- Market segmentation
- Taste heterogeneity
- Many variables
- Estimated from data

Disadvantages

- Complex mathematical formulation
- Not suited for optimization
- Literature: heuristics

Research objectives

Observations

- Revenues is not the only indicator to optimize,
- e.g. customer satisfaction.
- Many transportation applications need a demand representation

Goal

- Generic mathematical representation of choice models,
- designed to be included in MILP,
- linear in the decision variables.

MILP

Outline

Demand and supply Disaggregate demand models A simple example

Michel Bierlaire (EPFL)

Behavioral models and optimization

December 3, 2018 25 / 40

イロト イポト イヨト イヨト

Michel Bierlaire (EPFL)

Behavioral models and optimization

December 3, 2018 26 / 40

MILI

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability

MILP

A linear formulation

Utility function

$$U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \varepsilon_{in}.$$

Simulation

- Assume a distribution for ε_{in}
- E.g. logit: i.i.d. extreme value
- Draw R realizations ξ_{inr} , $r = 1, \dots, R$
- The choice problem becomes deterministic

< 回 > < 三 > < 三 >

FEDERALE DE LAUSANNE

December 3, 2018 28 / 40

MILP

Scenarios

Draws

- Draw R realizations ξ_{inr} , $r = 1, \ldots, R$
- We obtain R scenarios

$$U_{inr} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \xi_{inr}.$$

- For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.

MILP (in words)

MILP

max benefit subject to utility definition availability discounted utility choice capacity allocation price selection

MILP

A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.

31 / 40

December 3, 2018

MILP

A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.

Parking choice

• [lbeas et al., 2014]

December 3, 2018 31 / 40

Parking choices [Ibeas et al., 2014]

Alternatives

- Paid on-street parking
- Paid underground parking
- Free street parking

Model

- N = 50 customers
- $C = \{PSP, PUP, FSP\}$
- $C_n = C \quad \forall n$
- $p_{in} = p_i \quad \forall n$
- Capacity of 20 spots
- Mixture of logit models

3

4 E b

• • • • • • • • • •

General experiments

Uncapacitated vs Capacitated case

- Maximization of revenue
- Unlimited capacity
- Capacity of 20 spots for PSP and PUP

Price differentiation by population segmentation

- Reduced price for residents
- Two scenarios
 - Subsidy offered by the municipality
 - Operator is forced to offer a reduced price

MILP

Uncapacitated vs Capacitated case

Uncapacitated

MILP

Computational time

	Uncapacitated case				Capacitated case			
R	Sol time	PSP	PUP	Rev	Sol time	PSP	PUP	Rev
5	2.58 s	0.54	0.79	26.43	12.0 s	0.63	0.84	25.91
10	3.98 s	0.53	0.74	26.36	54.5 s	0.57	0.78	25.31
25	29.2 s	0.54	0.79	26.90	13.8 min	0.59	0.80	25.96
50	4.08 min	0.54	0.75	26.97	50.2 min	0.59	0.80	26.10
100	20.7 min	0.54	0.74	26.90	6.60 h	0.59	0.79	26.03
250	2.51 h	0.54	0.74	26.85	1.74 days	0.60	0.80	25.93

Outline

イロト イポト イヨト イヨト

Summary

Demand and supply

- Supply: prices and capacity
- Demand: choice of customers
- Interaction between the two

Discrete choice models

- Rich family of behavioral models
- Strong theoretical foundations
- Great deal of concrete applications
- Capture the heterogeneity of behavior
- Probabilistic models

TRANSP-OR

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Optimization

Discrete choice models

- Non linear and non convex
- Idea: use utility instead of probability
- Rely on simulation to capture stochasticity

Proposed formulation

- Linear in the decision variables
- Large scale
- Fairly general

Ongoing research

- Decomposition methods.
- Competitive markets: several suppliers.

Bibliography I

- Ibeas, A., dell'Olio, L., Bordagaray, M., and de D. OrtÃ^ozar, J. (2014).
 Modelling parking choices considering user heterogeneity.
 Transportation Research Part A: Policy and Practice, 70:41 49.
- Jittrapirom, P., Caiati, V., Feneri, A.-M., Ebrahimigharehbaghi, S., González, M. J. A., and Narayan, J. (2017).
 Mobility as a service: a critical review of definitions, assessments of schemes, and key challenges.
 Urban Planning, 2(2):13.

▲ 同 ▶ → ● ▶