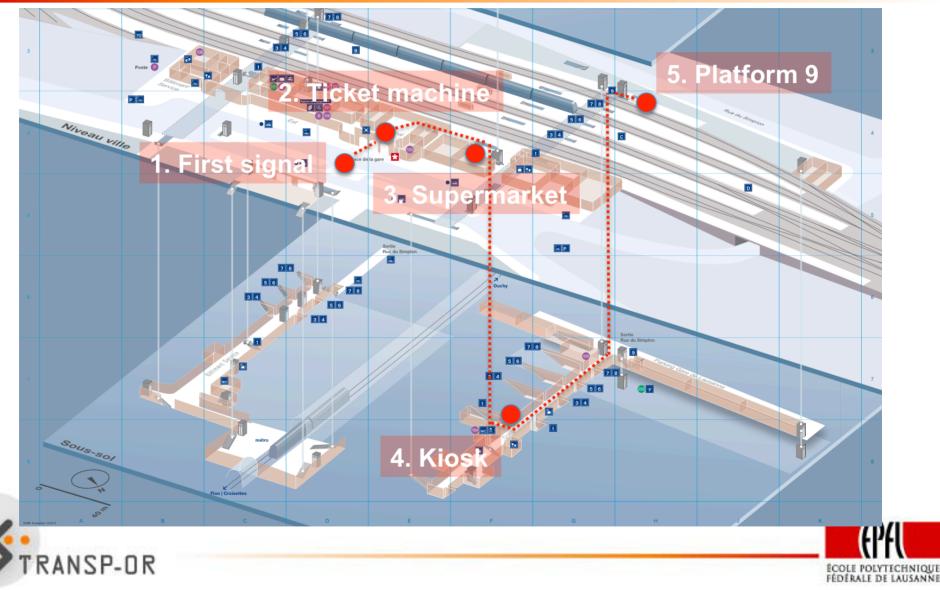
Towards an activity-based model for pedestrian facilities

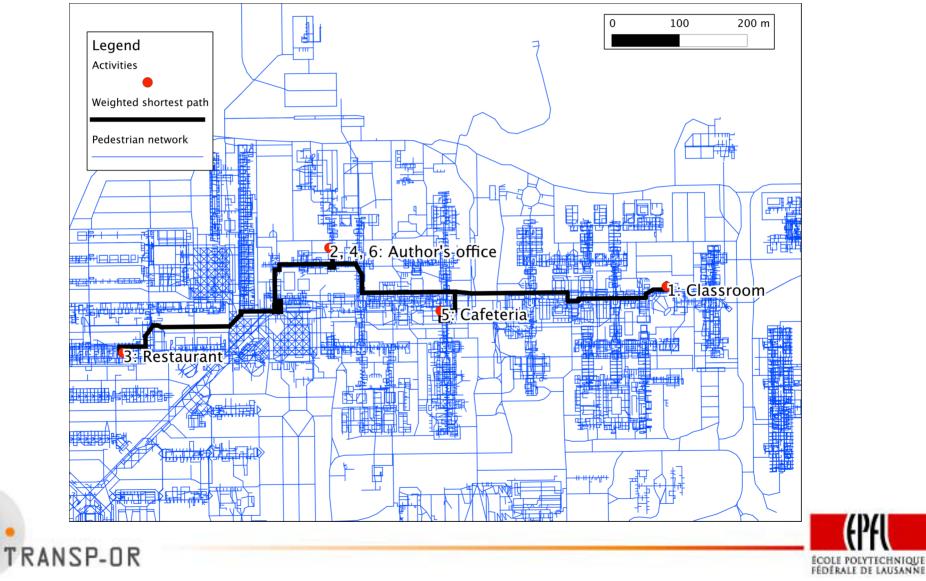
Antonin Danalet Bilal Farooq Michel Bierlaire Transport and Mobility Laboratory (TRANSP-OR)

April 25, 2013

- Motivation
- Data (short)
- A Bayesian estimation to detect destinations
- Model (long)


Why do we care about pedestrians?

- Urban growth \implies pressure on infrastructure
 - In particular in transport hubs
- Demand modeling for pedestrian facilities needs
 - data collections and
 - developments of modeling approaches
- Testbed on campus with WiFi from access point



What we plan to do

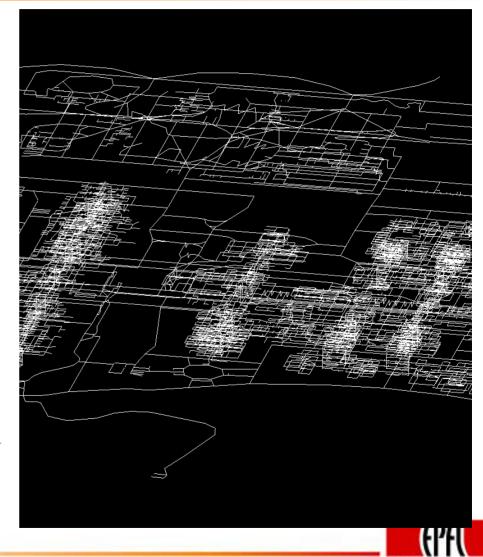
What we are doing

Campus

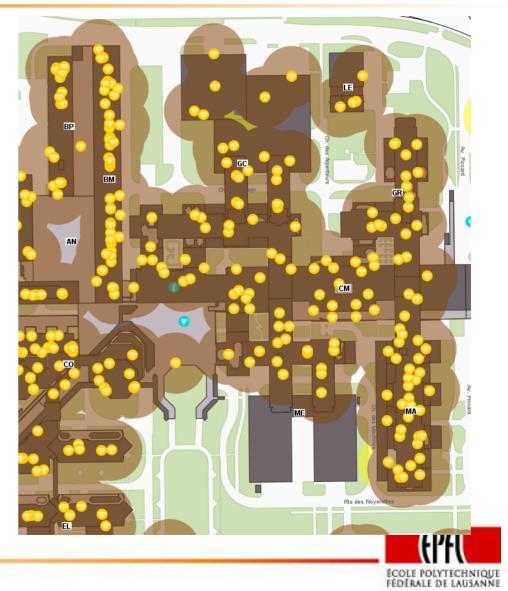
Transport hub

Class schedules

Available data

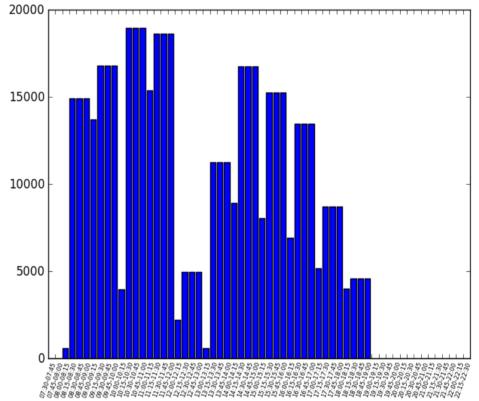

- Pedestrian network
 - destinations
 - path
- WiFi traces from access points
- Capacity
 - of classes,
 - of restaurants,
 - of platforms,

Available data: Pedestrian network


- Source: map.epfl.ch
- 56'655 edges
- 4 different levels of path
 - Major (« highway »)
 - Inter-building
 - Intra-building
 - Access to offices
- Weighted shortest path
- All offices, restaurants, classrooms and other points of interest are coded

Available data: WiFi traces

- Triangulation data from the 789 access points on campus
- Low precision (187m)
- 200 students from 6 different classes + 300 employees
 - Randomly chosen
 - Anonymous (but class is known)

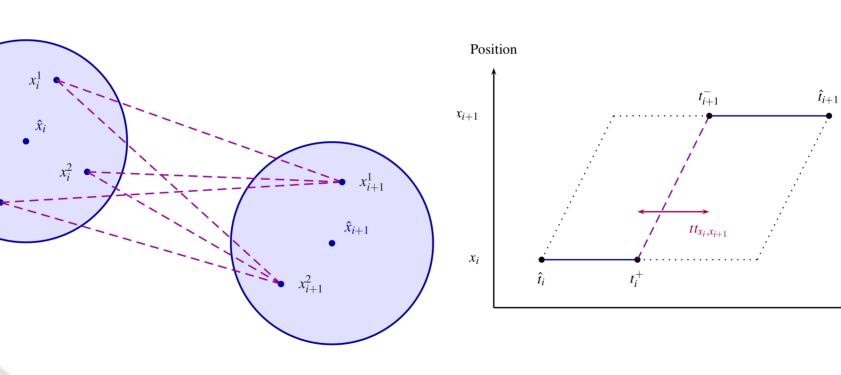


Available data: Capacity

- Class schedules with
 - Number of students
 - Name of the classroom
- Number of employees per office
 - Name of the office
 - Sum of percent of work
 (e.g, 3 full times = 300%)
- Number of seats in restaurants
 - Localization
 - Opening hours
- Number of seats in library

Bayesian estimation of destinations

• Activity probability


Activity probability

Bayesian estimation of destinations

- Candidate generation
 - Space

- Time

Time

Bayesian estimation of destinations: Results

• Flat prior

Model			Truth			Δx	
Arrival time	Departure time	Floor	Location	Time spent	Floor	Location	(in m.)
8:35-8:35	10:38-10:38	1	Printer	8.32am-10.30am	1	Classroom	61
10:40-10:40	11:51-11:51	3	Office	Until 11.47am	3	Author's office	7
12:09-12:10	12:47-12:53	1	Office	From 11.55 am	1	Restaurant	77
12:52-12:58	13:03-13:44	3	Office	Around 1pm	3	Author's office	7
13:06-13:47	13:53-14:02	2	Cafeteria	Around 2pm	2	Cafeteria	0
13:55-14:04	19:45-19:45	3	Office	Until around 7.45pm	3	Author's office	7
19:47-19:47	19:52-19:52	0	Classroom	-	3	Metro stop	277

• Perfect prior 1:3

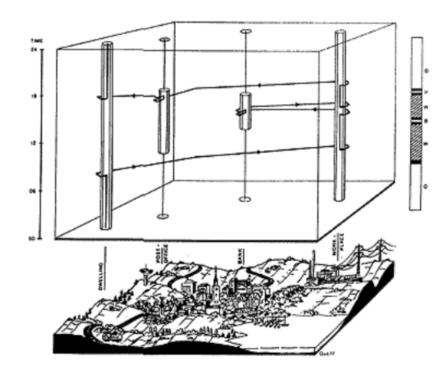
Model			Truth			Δx	
Arrival time	Departure time	Floor	Location	Time spent	Floor	Location	(in m.)
8:35-8:35	10:38-10:38	1	Classroom	8.32am-10.30am	1	Classroom	0
10:40-10:40	11:51-11:51	3	Office	Until 11.47am	3	Author's office	0
11:54-11:54	12:47-12:53	1	Restaurant	From 11.55 am	1	Restaurant	0
12:51-12:58	13:03-13:44	3	Office	Around 1pm	3	Author's office	0
13:06-13:47	13:53-14:02	2	Cafeteria	Around 2pm	2	Cafeteria	0
13:55-14:04	19:45-19:45	3	Office	Until around 7.45pm	3	Author's office	0
19:47-19:47	19:52-19:52	3	Classroom	-	3	Metro stop	278

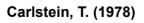
Bayesian estimation of destinations: Results

• Campus prior

Model			Truth			Δx	
Arrival time	Departure time	Floor	Location	Time spent	Floor	Location	(in m.)
8:35-8:35	10:38-10:38	1	Classroom	8.32am-10.30am	1	Classroom	96
10:40-10:40	11:51-11:51	3	Classroom	Until 11.47am	3	Author's office	71
11:54-11:54	12:47-12:53	1	Restaurant	From 11.55 am	1	Restaurant	0
12:51-12:58	13:03-13:44	3	Office	Around 1pm	3	Author's office	7
13:06-13:47	13:53-14:02	2	Cafeteria	Around 2pm	2	Cafeteria	0
13:55-14:04	19:40-19:44	3	Classroom	Until around 7.45pm	3	Author's office	37
19:47-19:47	19:52-19:52	3	Workshop	-	3	Metro stop	366

Class prior

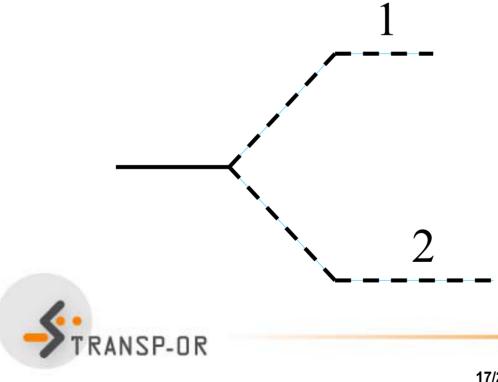

Model			Truth			Δx	
Arrival time	Departure time	Floor	Location	Time spent	Floor	Location	(in m.)
8:33-8:33	10:38-10:38	1	Classroom	8.32am-10.30am	1	Classroom	0
10:40-10:40	11:51-11:51	3	Office	Until 11.47am	3	Author's office	7
11:54-11:54	12:47-12:53	1	Restaurant	From 11.55 am	1	Restaurant	0
12:51-12:58	13:03-13:44	3	Office	Around 1pm	3	Author's office	7
13:06-13:47	13:53-14:02	2	Cafeteria	Around 2pm	2	Cafeteria	0
13:55-14:04	19:45-19:45	3	Office	Until around 7.45pm	3	Author's office	7
19:47-19:47	19:52-19:52	3	Workshop	-	3	Metro stop	366



Activity-based model for pedestrians?

- **Goal**: adapt the concept to pedestrian facilities
- Hägerstrand
 - Capability constraints: *lunch*
 - Coupling constraints: *timetables*
- Pedestrians have **planned** and **unplanned** activities
- Sensitivity to changes in:
 - Pedestrian network
 - Possible destinations
 - Schedules

Differences urban / pedestrian facilities


- Focus on pedestrian facilities
 - Space: Train stations, music festivals, supermarkets, airports, stadiums, campuses, city centers
 - Time: Covering the journey in the facility
- No home mo tour
- Mode is already known
- No monetary cost (but distance)

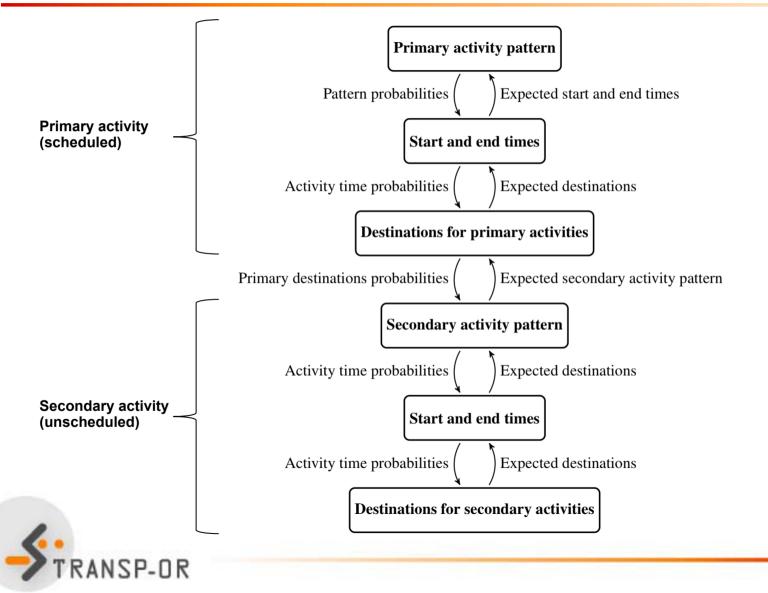
Model structure

 One modeling approach: sequential destination choice (hybrid simulation: Ettema, Borgers and Timmermans 1993; Ettema et al. 1995)

Choice set: 1,2

Model structure

- One modeling approach: sequential destination choice
- Existence of schedules in pedestrian facilities, activity scheduling decision (Bowman 1998)



 $\{2,1\}$

Choice set: $\{1,2\}$,

7

Model structure

ÉCOLE POLYTECHNIQU FÉDÉRALE DE LAUSANS

Model structure: example (campus)

Model				Truth			Δx
Arrival time	Departure time	Floor	Location	Time spent	Floor	Location	(in m.)
8:33-8:33	10:38-10:38	1	Classroom	8.32am-10.30am	1	Classroom	0
10:40-10:40	11:51-11:51	3	Office	Until 11.47am	3	Author's office	7
11:54-11:54	12:47-12:53	1	Restaurant	From 11.55 am	1	Restaurant	0
12:51-12:58	13:03-13:44	3	Office	Around 1pm	3	Author's office	7
13:06-13:47	13:53-14:02	2	Cafeteria	Around 2pm	2	Cafeteria	0
13:55-14:04	19:45-19:45	3	Office	Until around 7.45pm	3	Author's office	7
19:47-19:47	19:52-19:52	3	Workshop	-	3	Metro stop	366

• Primary pattern (scheduled):

Primary activity	Free time	Primary activity	Free time
Classroom		Restaurant	
8:33-10:38		11:54-12:47/12:53	
CE 1 105		Ornithorynque	
STRANSP-OR			ECOLE POLYTECHN FÉDERALE DE LAUS

Model structure: example (campus)

Model				Truth			Δx
Arrival time	Departure time	Floor	Location	Time spent	Floor	Location	(in m.)
8:33-8:33	10:38-10:38	1	Classroom	8.32am-10.30am	1	Classroom	0
10:40-10:40	11:51-11:51	3	Office	Until 11.47am	3	Author's office	7
11:54-11:54	12:47-12:53	1	Restaurant	From 11.55 am	1	Restaurant	0
12:51-12:58	13:03-13:44	3	Office	Around 1pm	3	Author's office	7
13:06-13:47	13:53-14:02	2	Cafeteria	Around 2pm	2	Cafeteria	0
13:55-14:04	19:45-19:45	3	Office	Until around 7.45pm	3	Author's office	7
19:47-19:47	19:52-19:52	3	Workshop	-	3	Metro stop	366

Secondary pattern (unscheduled):

Primary activity	Sec. activ.	Primary activity	Secondary activities
Classroom	Office	Restaurant	Office / Cafeteria / Office
8:33-10:38	10:40-11:51	11:54-12:47/12:53	12:51/12:58-13:03/13:4419:45
CE 1 105	GC B3 445	Ornithorynque	GC B3 445 / Satellite / GC B3 445

Model structure: example (station)

Primary pattern (scheduled)

Primary activity Free time	Primary activity
Ticket machine	Train
7:30-7:34	7:40-7:50
North east machine	Platform 8

Secondary pattern (unscheduled):

Primary activity	Secondary activity	Primary activity
Ticket machine	Buying a croissant and a newspaper	Train
7:30-7:34	7:36-7:40	7:40-7:50
North east machine	Newspaper kiosk	Platform 8

Primary activity pattern: choice set

- Free time (21)
- myClassroom, freeTime (2)
- freeTime, myClassroom (2)
- freeTime, myClassroom, freeTime (2)
- myClassroom, freeTime, restaurant, freeTime (1)
- freeTime, myClassroom, freeTime, myClassroom, freeTime, myClassroom, myClassroom (1)
- freeTime, restaurant, restaurant, freeTime, myClassroom, myClassroom (1)

Primary activity pattern: attributes

- Socioeconomic:
 - class
- Alternative-specific:
 - nb of courses in total,
 - nb of courses followed,
 - going to restaurant for lunch or not

What's next

- Application with data for 10 days
 - Test panel effect
 - Test different attributes:
 - distance
 - rain
 - cost of meals
 - evaluation of restaurants
 - evaluation of courses
 - • •
 - Latent class model with measurement equation
- Destination category (observed) \neq activity (unobs.)
 - Destination category is an indicator of a latent activity

Conclusion

- Transport hubs face an increasing demand
 - Detect, model and forecast at a large scale and from innovative and available data
- Schedules are common:
 - Campuses (classes)
 - Stations (trains)
 - Music festivals (concerts)
- Stations are small cities (SBB/CFF: "Rail cities") with various activities

