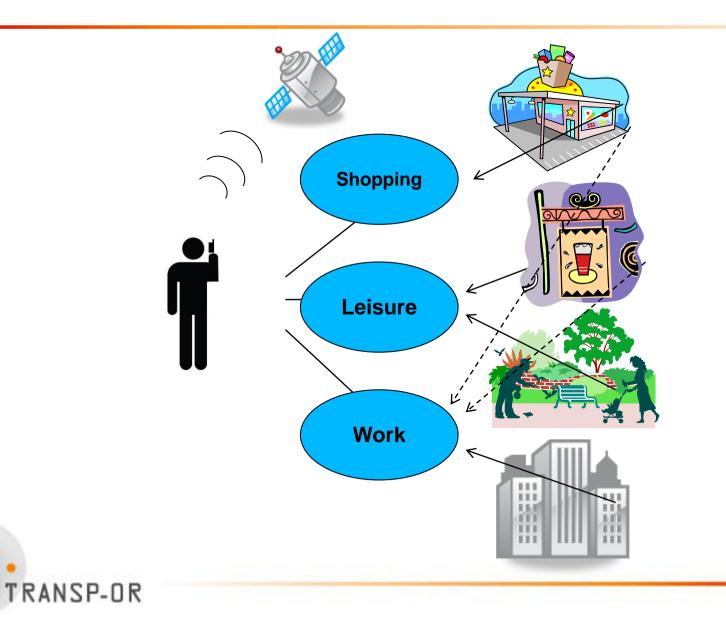
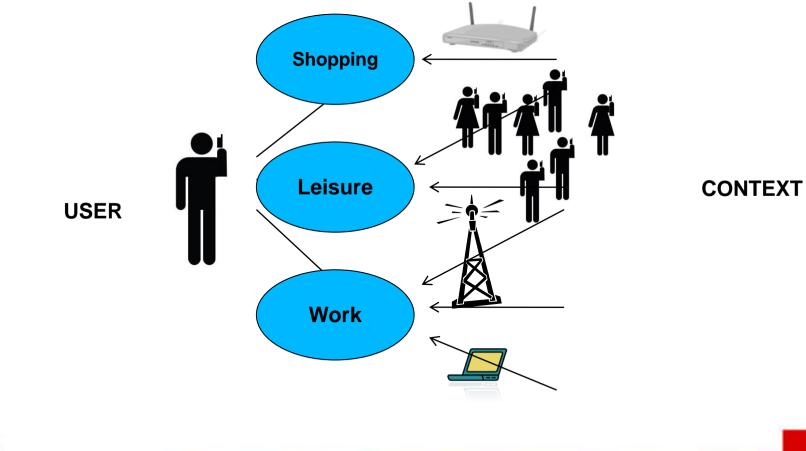
Inferring activity choice from context measurements using Bayesian inference and random utility models

Ricardo Hurtubia Gunnar Flötteröd Michel Bierlaire


Transport and mobility laboratory - EPFL

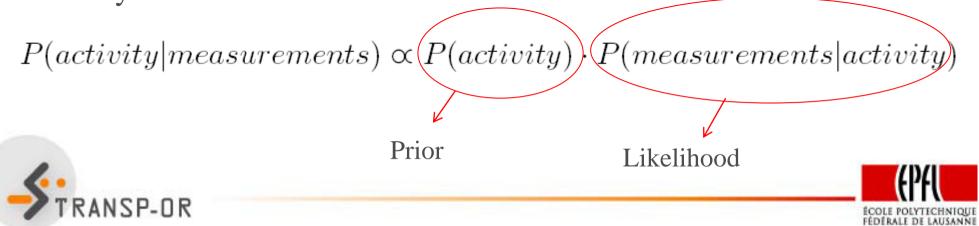
Urbanics – February 2010

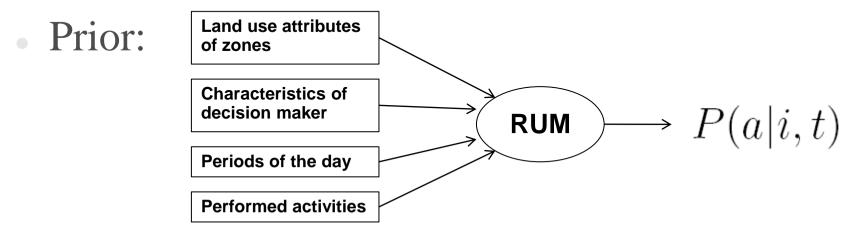


Motivation

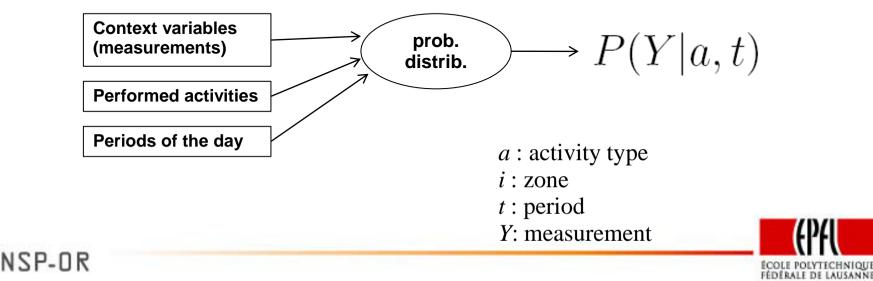
Motivation

Outline


- 1. Motivation
- 2. Framework
 - 2.1 Prior model
 - 2.2 Collected data
 - 2.3 Likelihood function
- 3. Results / Case study
- 4. Practical Issues
- 5. Possible improvements
- 6. Conclusions



General framework


- Objective: combine general knowledge of population's behavior and individual context variables' measurements into estimates of an individual's activities
- Available data:
 - Reported activities in Swiss Transport Microcensus 2005
 - Land use data
 - Measurements from a smartphone for one user over a two-month period
 - Activity survey
- Bayesian inference:

General framework

• Likelihood:

Prior model

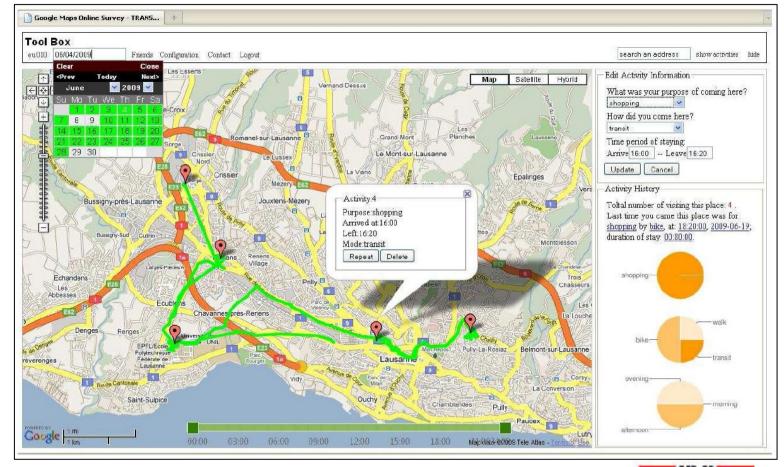
- Probability of performing a certain type of activity given a location (zone) and a time of the day
- Structure: Multinomial logit

$$P_n(a \mid i, t) = \frac{\exp(U_{na}(z_i, z_n, \delta_t))}{\sum_{a'} \exp(U_{na'}(z_i, z_n, \delta_t))}$$

- *a* : type of activity (work, study, leisure, shopping....)
- z_i : land use attributes of zone *i*
- z_n : attributes of user *n*
- δ_t : indicator of the period of the day {morning, noon, afternoon, night}

Prior model estimation results

	parameter	work	study	shopping	services	leisure	other
	constant	-	-0.532	2.031	2.311	3.522	0.656
	male	0.713	-	-0.377	-0.278	-	-
-	employed	2.132	-	-	-	-	-
	children	-	-	-	-	-	0.379
_	🕥 morning	2.720	-	0.887	1.341	-	-
	L <mark>noon</mark>	1.001	-	-	-	-	-
	industry	0.025	-	-	-	-	-
	commerce	-	-	0.077	-	-	-
	services	0.046	-	-	0.055	0.024	-
-	other	0.032	-	-	-	0.053	0.065
	retail	-	-	1.074	-	-	-
	long term retail	-	-	0.554	-	-	-
	restaurant	-	-	-	-	0.109	-
	school*age<19	-	1.694	-	-	-	-
4	high_educ*student	-	1.328	-	-	-	-
	morning*student	-	6.516	-	-	-	-
	noon*student	-	4.212	-	-	-	-
	morning*age>60	-	-	1.114	-	0.836	-
-	afternoon*age<19	-	-	-	-	0.813	-
	afternoon*age>60	-	-	-	-	-0.242	-
	night*age19_25	-	-	-	-	1.683	-



estimated using Biogeme (Bierlaire, 2003)

Data: survey

Daily activity survey: Two months, one user

- · Location
- · Time
- Type of activity
- · Transport mode


ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Data: measurements

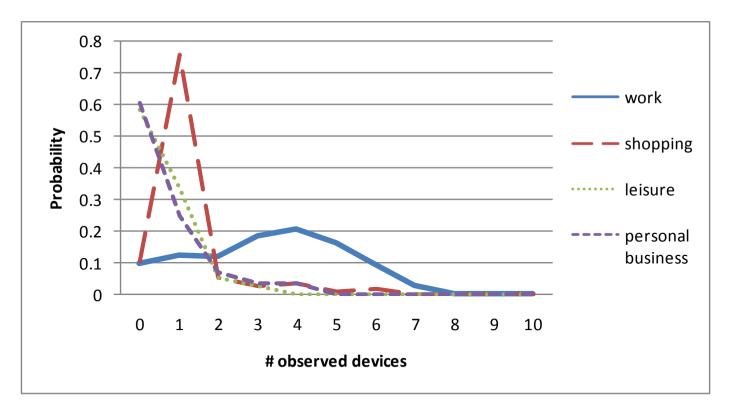
- Measurements from a smartphone (Nokia N95)
- Context variables:
 - GPS location
 - Nearby networks (LAN,GPRS, cell id)
 - Nearby Bluetooth devices (MAC address)
 - Movement detection (accelerometer)
 - Call log (duration, direction, contact)
 - SMS (length, direction, contact)
 - Camera usage
 - Media player usage
 - Profile (silent, general, etc)
 - Battery life
 - Energy plug state
 - Inactive time

Data: measurements

Types of measurements:

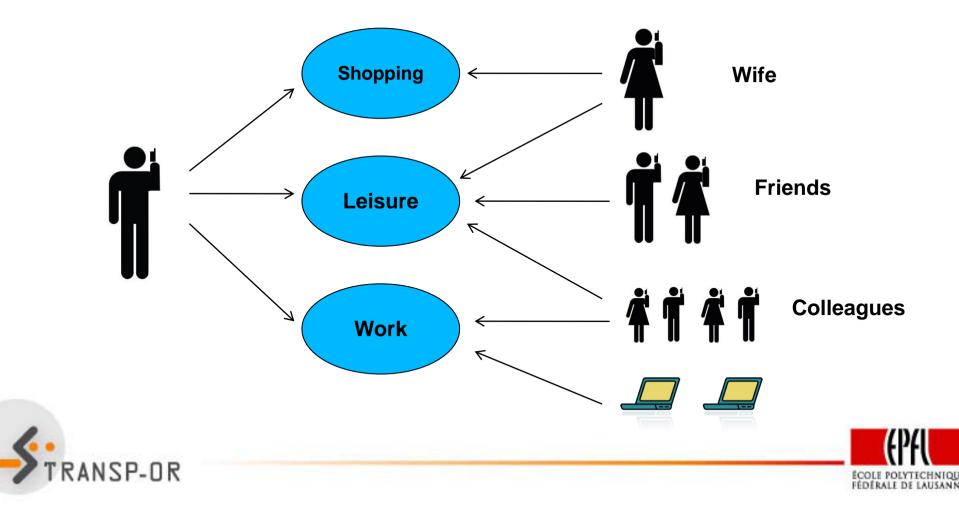
- Active: actions triggered by the user
 - Camera
 - Media player
 - Calls/SMS
 - Profile
- Passive: product of the environment
 - Detected networks
 - Nearby bluetooth devices

Data: measurements


- Bluetooth measurements can be understood as either an active or passive measurement
 - Number of nearby Bluetooth devices \rightarrow passive
 - Detection of particular devices \rightarrow active
 - Decision of user to perform certain activity with specific individuals
 - Decision of other individuals to perform activities with user

Measurements: Bluetooth (passive)

- Aprox 8700 measurements
- Distribution of number of detected devices:



Measurements: Bluetooth (active)

Frequent Bluetooth devices: some devices are mostly observed when performing certain types of activities

Likelihood

• We define

$$y_j = \begin{cases} 1 & \text{if device j is observed} \\ 0 & \end{cases}$$

• Joint likelihood:

NSP-OR

$$P(Y|a,t) = \prod_{j} (P(y_j = 1|a,t)) y_j + (1 - P(y_j = 1|a,t))) \cdot (1 - y_j))$$
Probability of
observing device j
Probability of not
observing device j

Likelihood

• Empirical probability of observing a device given the activity type and period of the day:

$$P(y_j = 1 \mid a, t) = \frac{N_{jat} + \varepsilon_a \cdot \alpha}{N_{at} + \alpha}$$

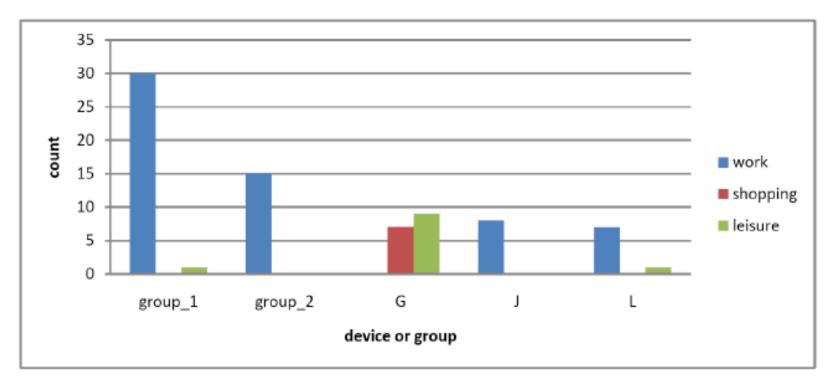
where:

- N_{at} : number of times activities type *a* were performed during period *t*
- N_{jat} : number of times device *j* was detected while performing activities type *a* during *t*
- ε_a : probability of observing any device while performing activity type *a*
- α : weight of "uninformed prior knowledge"

Inference

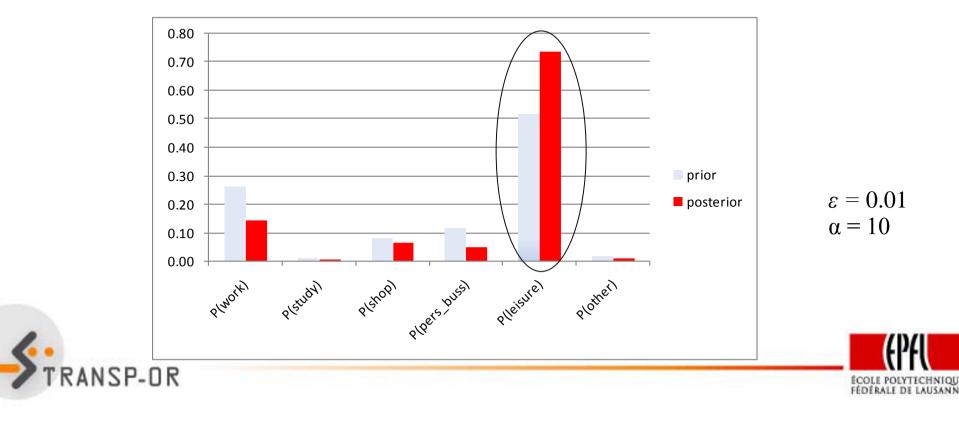
• We update the prior using the likelihood of the Bluetooth devices' measurements

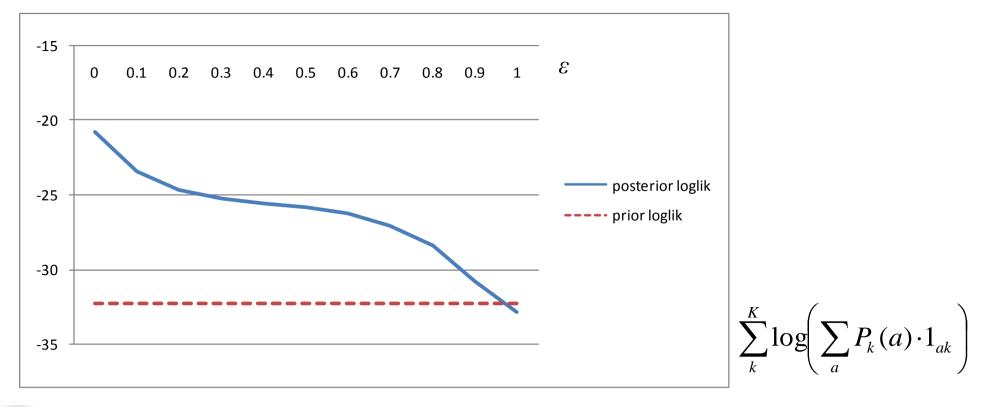
$$P(a|Y, i, t) = \frac{P(Y|a, t) \cdot P(a|i, t)}{P(Y|i, t)}$$


where:

$$P(Y|i,t) = \sum_{a'} P(Y|a',t) \cdot P(a'|i,t)$$

- 12 independent devices appear more than 4 times
- Grouped according to simultaneous-detection correlation





- A particular event
 - Leisure activity performed at work location during afternoon/night
 - Detection of devices:
 - Group_1 (frequent at work, also observed at leisure)
 - Device G (frequent at shopping and leisure, never observed at work)

• If we assume a high value for epsilon, the aggregate fit of the posterior distribution deteriorates

FÉDÉRALE DE LAUSA

Practical issues

• How do we update the likelihood if there is no survey information available?

- "end of day" update: $P_k(a | i, t) \quad \forall k$

$$N'_{jat} = N_{jat} + \sum_{k} P_{k}(a \mid i, t) \cdot y_{jk}$$
$$N'_{at} = N_{at} + \sum_{k} P_{k}(a \mid i, t)$$

Practical issues

• Problem: endogeneity

- Our prediction of the activity type depends on a likelihood function based on the same prediction
 - Potential propagation of errors
 - Generation of noise.
- Solution?

. . .

- "pop-up questions"
 - Are you at work?
 - Are you shopping?

Possible improvements

Behavioral approach:

If we understand the measurement as user n choosing to perform activity a with user/device j:

$$P_n(y_j \mid a) = f(x_j, x_n, \beta_a)$$

Possible attributes (x_i) :

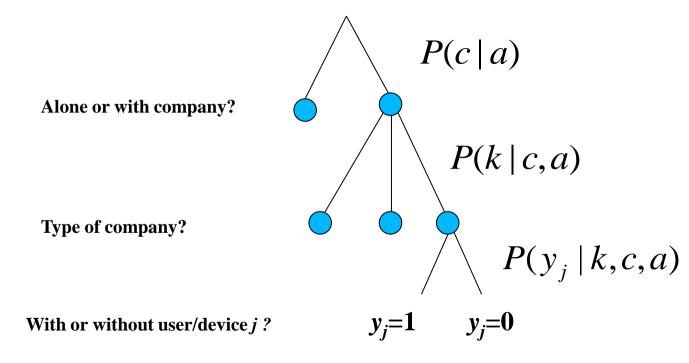
- Previously observed frequency while performing *a*
- Presence while performing other types of activity
- Presence in different locations
- Inclusion of other measurements in the likelihood function

Conclusions and further work

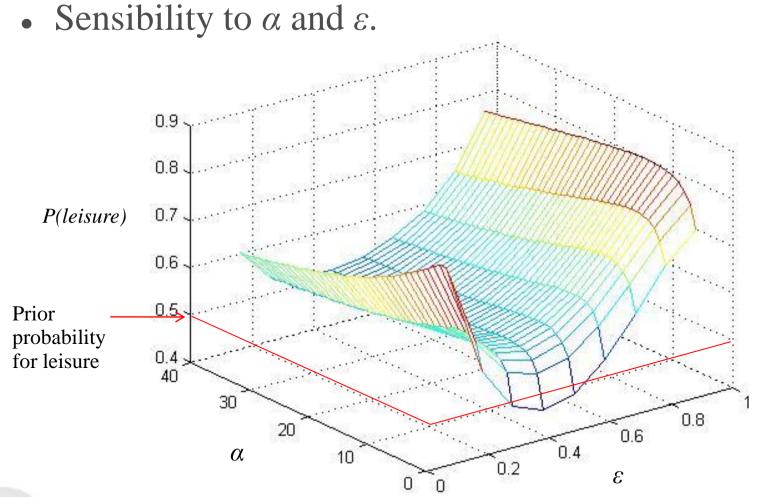
- Bayesian approach allows to improve the quality of the activity type inference
- Bluetooth measurements are useful to infer activity type

Further work

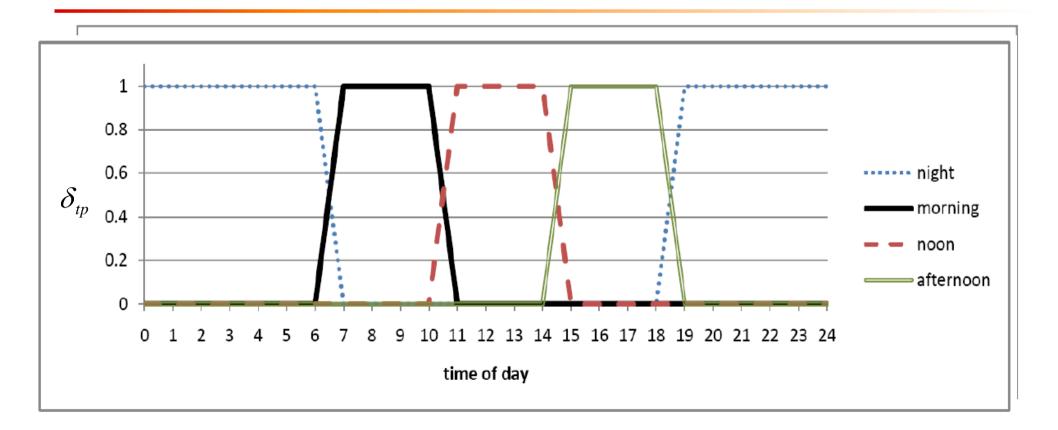
- Test of "end of day update"
- Behavioral explanation of the likelihood function
- Inclusion of other measurements in the likelihood function


Thank you

Behavioral approach


• A better behavioral explanation?

$$P(y_{j} | a) = \sum_{c} \sum_{k} P(y_{j} | k, c, a) \cdot P(k | c, a) \cdot P(c | a)$$



Time discretization

 $\delta_t = (\delta_{tp}) \quad p \in \{\text{night, morning, noon, afternoon}\}$

Correlation of devices

correl	Α	В	С	D	Е	F	G	н	I	J	К	L	Μ	Ν
Α	1	G1	G1	G1	G1	G1			G1					
В	0.73	1	G1	G1	G1	G1			G1					
С	0.79	0.78	1	G1	G1	G1			G1					
D	0.81	0.80	0.80	1	G1	G1			G1					
E	0.70	0.68	0.68	0.71	1	G1			G1					
F	0.73	0.59	0.65	0.79	0.60	1			G1					
G	-0.27	-0.25	-0.25	-0.25	-0.23	-0.23	1			G2				
н	0.51	0.61	0.48	0.57	0.40	0.49	-0.19	1				G3		
I	0.58	0.68	0.68	0.70	0.54	0.42	-0.19	0.13	1					
J	-0.26	-0.25	-0.25	-0.24	-0.22	-0.22	0.96	-0.18	-0.18	1				
К	0.41	0.52	0.52	0.54	0.48	0.40	-0.13	0.49	0.29	-0.13	1			
L	0.50	0.52	0.44	0.54	0.39	0.50	-0.13	0.70	0.08	-0.13	0.59	1		
М	0.41	0.44	0.35	0.45	0.30	0.31	-0.13	0.18	0.39	-0.13	0.32	0.18	1	
N	-0.50	-0.47	-0.47	-0.46	-0.43	-0.37	0.54	-0.35	-0.35	0.52	-0.25	-0.25	-0.17	1.00

$$correl(j, j^*) = \frac{\sum (y_j - \overline{y_j}) (y_{j^*} - \overline{y_{j^*}})}{\sqrt{\sum (y_j - \overline{y_j})^2} (y_{j^*} - \overline{y_{j^*}})^2}$$

BACK

