## Pedestrians: the new kings of smart cities

#### Michel Bierlaire Marija Nikolic Riccardo Scarinci

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

November 20, 2016



### Outline



Fundamental quantities

- Discretization
- 3D Voronoi
- Indicators







< 回 > < 三 > < 三 >

### Motivation



Bierlaire, Nikolic & Scarinci (EPFL)

Pedestrians: the new kings of smart cities

3 / 31

### Motivation

#### A world of cities

• 2014: 54% of the world's population lives in cities Source: UN

#### Share of walking trips in cities

- Bangalore 2011: 26%
- Beijing, 2011: 21%
- Bogota, 2008: 15%
- Delhi, 2011: 21%
- London, 2011: 30%
- New-York, 2010: 39%

- Barcelona 2006: 38%
- Berlin, 2010: 29%
- Chicago, 2008: 19%
- Madrid, 2006: 36%
- Singapore, 2011: 22%
- Mumbai, 2011: 27%

Source: [LTA Academy, 2011]

・ 同 ト ・ ヨ ト ・ ヨ ト

EDENNES DE ENVERNENE

#### Research challenges



- Understand, describe and predict
- Design of facilities
- Management and control
- Information and guidance



### In this talk ...

- Characterization of fundamental quantities
- A futuristic transportation system: a network of moving walkways







- A - E - N

### Outline

2



#### Fundamental quantities

- Discretization
- 3D Voronoi
- Indicators







E + 4 E +

### Fundamental quantities



Flow Density Relationship

#### For pedestrians

- Density k (ped/m<sup>2</sup>)
- Speed v (m/s)
- Flow q (ped/ms)



# $\mathsf{Pedestrians} \neq \mathsf{vehicles}$

#### Issues

- Scattered fundamental diagram
- Impact of spatial discretization



# 25603 trajectories, Lausanne train station, February 2013

Source: [Nikolic et al., 2016]





#### Discretization methods



Bierlaire, Nikolic & Scarinci (EPFL)

Pedestrians: the new kings of smart cities

November 20, 2016

#### Discretization methods



æ

- 4 回 ト - 4 回 ト

### Context

#### Model

- Space-time representation:  $\Omega \subset \mathbb{R}^3$
- Units: meters and seconds
- $p = (x, y, t) \in \Omega$ : physical position (x, y) in space at a specific time t
- Assumption:  $\Omega$  is convex (obstacle-free and bounded)

#### Data: trajectories

- Continuous:  $\Gamma_i : \{ p_i(t) | p_i(t) = (x_i(t), y_i(t), t) \}$
- Discrete (sample):  $\Gamma_i : \{p_{is} | p_{is} = (x_{is}, y_{is}, t_s)\}, t_s = [t_0, t_1, ..., t_f]$



November 20, 2016

12 / 31

## 3D Voronoi diagram





#### Definition

- For each point  $p \in \Omega$
- For each trajectory  $\Gamma_i$
- Define a distance  $D(p, \Gamma_i)$
- Associate p with the closest trajectory:  $\delta_{\Gamma}(p,\Gamma_i) =$

$$\left\{ \begin{array}{ll} 1, \quad D(p, \Gamma_i) \leq D(p, \Gamma_j), \forall j \neq i \\ 0, \qquad \qquad \text{otherwise} \end{array} \right.$$



-

# 3D Voronoi diagram

#### Distance

$$D(p,\Gamma_i)=\min_{p_i\in\Gamma_i}\{d(p,p_i)\},\$$

- Various definitions of d(·, ·) are possible. [Nikolic and Bierlaire, 2016]
- Voronoi cell for trajectory *i*:

$$V_i = \{ p \in \Omega | \delta_{\Gamma}(p, \Gamma_i) = 1 \}$$





Indicators

### Intersection with a plane

#### Notation

### $\mathcal{P}_{(a,b,c),p_0}$ : plane through $p_0$ with normal vector (a,b,c)



Indicators

# Intersection with a plane

#### Intersections

Intersection with  $\mathcal{P}_{(0,0,1),p_0}$ 



#### Intersection with $\mathcal{P}_{(a,b,0),p_0}$

Bierlaire, Nikolic & Scarinci (EPFL) Pedestr

Pedestrians: the new kings of smart cities

# Voronoi-based traffic indicators

ļ

Consider  $(x, y, t) \in \Omega$ , and *i* such that  $(x, y, t) \in V_i$ .

Density indicator

$$k(x, y, t) = \frac{1}{|V_i \cap \mathcal{P}_{(0,0,1),(x,y,t)}|}$$

Flow indicator

$$ec{q}_{(a,b,0)}(x,y,t) = rac{1}{|V_i \cap \mathcal{P}_{(a,b,0),(x,y,t)}|}$$

Velocity indicator

$$\vec{v}_{(a,b,0)}(x,y,t) = \frac{\vec{q}_{(a,b,0)}(x,y,t)}{k(x,y,t)} = \frac{|V_i \cap \mathcal{P}_{(0,0,1),(x,y,t)}|}{|V_i \cap \mathcal{P}_{(a,b,0),(x,y,t)}|}$$

3

# Main findings

- Data driven discretization.
- Well defined and flexible.
- Robust to noise in the data.
- Robust to sampling of trajectories.
- Details in [Nikolic and Bierlaire, 2016].



### Outline

#### 1 Motivation

Fundamental quantities

- Discretization
- 3D Voronoi
- Indicators





### Cars: kings of our cities



#### Surface used by streets and parkings

- Houston, TX: 64.7%
- Little Rock, AR: 61.2%
- Milwaukee, WI: 54.1%
- Washington, DC: 44.4%

Source: [Gardner, 2011]



# What about a "post car" world?

- Cars are banned from cities.
- The surface of streets is claimed for pedestrians.
- Problem: speed.
- Possible solution: moving walkways



### Paris, 1900





### Moving walkways



#### Sustainable

- Electric
- No local emission
- Energy efficient

#### Functional

- Continuous flow
- Speed: accelerated moving walkways



### Toronto Airport, today





#### Costs

| System     | Capital cost | Typical costs | Operational cost |
|------------|--------------|---------------|------------------|
|            | [M EUR/km]   | [EUR/pax-km]  | [EUR/pax-km]     |
| Bus        | 0.1- 6.7     | 1500          | 0.09-0.95        |
| Light rail | 8.5-83.5     | 2800          | 0.07-0.28        |
| PRT        | 6.7-25.4     | 3500          | 0.07-0.28        |
| AMW        | 34.8-54.4    | 7300          | 0.08-0.42        |

- ✗ High capital costs
- ✗ High typical costs
- Competitive operational costs



### Efficiency

| System     | Average speed | Capacity     | Corridor width |
|------------|---------------|--------------|----------------|
|            | [km/h]        | [pax/h]      | [m]            |
| Bus        | 15-20         | 1,000-4,500  | 3.0-4.2        |
| Light rail | 15-45         | 1,000-30,000 | 2.5-3.2        |
| PRT        | 20-25         | 1,800-7,200  | 2.5-3.2        |
| AMW        | 5-12          | 4,500-7,500  | 1.2-2.3        |

- Competitive speed
- ✓ High capacity
- ✓ Low space usage



### Energy

| System     | Energy use  | Noise level |
|------------|-------------|-------------|
|            | [MJ/pax-km] | [dB(A)]     |
| Bus        | 0.30-1.56   | 70-84       |
| Light rail | 0.70-2.50   | 60-74       |
| PRT        | 0.55        | 35-65       |
| AMW        | 0.11        | 54          |

- Low energy consumption
- Low noise level



### Network design



#### Case study; Geneva

- Two objectives: mobility and costs.
- Good trade off with 44 AMWs.
- Details in [Scarinci et al., 2014] and [Scarinci et al., 2016].

### Pedestrians: new kings of smart cities?

![](_page_28_Picture_2.jpeg)

#### Data

Pedestrian trajectories

#### Technology

Accelerated moving walkways

#### Models

Specification, validation, prediction

#### Urban Systems Integration

Bierlaire, Nikolic & Scarinci (EPFL)

November 20, 2016

29 / 31

# Bibliography I

![](_page_29_Picture_2.jpeg)

#### Gardner, C. (2011).

We are the 25%: Looking at street area percentages and surface parking.

![](_page_29_Picture_5.jpeg)

#### LTA Academy (2011).

Passenger transport mode shares in world cities. *Journeys*, 7:60–70.

 Nikolic, M. and Bierlaire, M. (2016).
Data-driven characterization of pedestrian flows.
Technical Report TRANSP-OR 160815, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne.

Nikolic, M., Bierlaire, M., Farooq, B., and de Lapparent, M. (2016).
Probabilistic speed-density relationship for pedestrian traffic.
Transportation Research Part B: Methodological, 89:58–81.

・ 同 ト ・ ヨ ト ・ ヨ ト

November 20, 2016

30 / 31

# **Bibliography II**

Scarinci, R., Bahrami, F., Ourednik, A., and Bierlaire, M. (2016). An exploration of moving walkways as a transport system in urban centers.

Technical Report TRANSP-OR 160810, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne.

Scarinci, R., Lopez, G., Hang, C. J., and Bierlaire, M. (2014).
Optimization of the network design of a futuristic transport system based on moving walkways.
In Proceedings of the Swiss Transportation Research Conference,

Ascona, Switzerland.

31 / 31

< 回 > < 回 > < 回 >