9th TRIENNIAL SYMPOSIUM ON TRANSPORTATION ANALYSIS (TRISTAN IX), Aruba

Multi-class speed-density relationship for pedestrian traffic

Marija Nikolić, Michel Bierlaire, Matthieu de Lapparent, Riccardo Scarinci

June 14, 2016

Outline

Introduction

2 Methodology

3 Case study

- Empirical analysis
- Model specification and estimation

Conclusion and future work

Outline

Introduction

2 Methodology

Case study

- Empirical analysis
- Model specification and estimation

Conclusion and future work

Fundamental relationships

- Play an important role in the filed: design and planing; model input or calibration criterion
- Modeling assumption: the traffic system is at equilibrium homogenous and stationary

Speed-density relationships for pedestrian traffic

Deterministic approach

- Empirically derived models [Older, 1968; Tregenza, 1976; Weidmann, 1993; Rastogi et al., 2013]
- Simulation-based models [Blue and Adler, 1998]
- Theory-based models [Flötteröd and Lämmel, 2015]

Empirical observations

• Scatter: violation of the equilibrium assumptions

Probabilistic approach

- Data-driven PedProb-vk [Nikolić et al., 2016]
- Superior compared to deterministic approaches from the literature

Outline

Methodology

Case study

- Empirical analysis
- Model specification and estimation

Conclusion and future work

Behavioral approach

Assupmtions

- Pedestrian population is heterogeneous (e.g. trip purpose, age, gender, etc.)
- Heterogeneity leads to the existence of multiple pedestrian classes
- Classes are characterized by different types of behavior
- Latent class modeling approach to capture unobserved heterogeneity

Multi-class speed-density relationship (MC-vk)

Model structure

$$P(v_i|k_i) = \sum_{c=1}^{C} P(v_i|k_i, c) P(c|X_i)$$

 $P(v_i|k_i, c)$: class-specific model $P(c|X_i)$: class membership model

- *i*: pedestrian identifier, i = 1, ..., N
- vi: speed of pedestrian i
- k_i : density for pedestrian i
- c: class identifier, C number of classes
- X_i : characteristics associated to pedestrian i

Class-specific speed-density relationship

Social Force Model

$$\vec{a}_i = \frac{\vec{v}_i^f - \vec{v}_i}{\tau_i} - C_i \sum_j \exp(-\frac{R_{ij}}{B_i}) \vec{n}_{ij} (\lambda_i + (1 - \lambda_i) \frac{1 + \cos(\phi_{ij})}{2})$$

[Helbing and Molnar, 1995]

Class-specific speed-density relationship

sotropy
$$(\lambda_i = 1)$$

$$a_i = \frac{v_i^f - v_i}{\tau_i} - C_i \sum_j \exp(-\frac{R_{ij}}{B_i}) = \frac{v_i^f - v_i}{\tau_i} - C_i k_i$$

Stationatity $(a_i = 0)$

$$\mathbf{v}_i = \mathbf{v}_i^f - \gamma_i \mathbf{k}_i$$

Homogeneity (all pedestrians have the same movement parameters)

$$v_i = v = v_f - \gamma k_i$$

Class membership model

- It cannot be deterministically identified to which class a pedestrian belongs
- Probability that a pedestrian *i*, associated with characteristics X_i (e.g. trip purpose, age, gender, etc.), belong to a latent class *c*: for each pedestrian there is a utility associated to each class *c*

Specification of utilities

$$U_i^c = \underbrace{ASC^c + \beta^c X_i}_{V_i^c} + \xi_i^c$$

 V_i^c : deterministic part of utilities ξ_i^c : error term

Multi-class speed-density relationship (MC-vk)

Class-specific model: $P(v_i|k_i, c)$

$$v_i^c = v_f^c - \gamma^c k_i + \epsilon_i^c$$

 $P(v_i|k_i, c)$ is determined by ϵ_i^c

Class membership model: $P(c|X_i)$

$$U_i^c = \underbrace{ASC^c + \beta^c X_i}_{V_i^c} + \xi_i^c$$

 $P(c|X_i)$ is determined by ξ_i^c

Likelihood of the sample

$$\mathcal{L} = \prod_{i=1}^{N} P(v_i|k_i) = \prod_{i=1}^{N} \sum_{c=1}^{C} P(v_i|k_i, c) P(c|X_i)$$

Outline

3 Case study

- Empirical analysis
- Model specification and estimation

Conclusion and future work

Lausanne railway station

Pedestrian underpass

- A large-scale network of smart sensors: a sparsity driven tracking framework [Alahi et al., 2014]
- Dataset: 25,603 trajectories, collected between 07:00 and 08:00 on February 12, 13, 14, 15 and 18, 2013
- The average length of the trajectories: 78 meters
- The duration of a pedestrians' stay: from 15 seconds to 2.2 minutes

Outline

3 Case study • Empirical analysis

• Model specification and estimation

Conclusion and future work

Speed-density relationship

Pedestrian types

Classification based on origins and destinations

 $1:\ \mbox{Arriving passenger}$ - pedestrians originating from a platform and exiting the station

 $2\colon$ Departing passenger - pedestrians walking to a platform to embark on their trains

3: Transferring passenger - pedestrians whose origin and destination are different platforms

4: Non-passenger - pedestrians whose origin and destination are different from a platform (e.g. pedestrians that go shopping in the station)

Number of pedestrians per pedestrian type

Speed distribution per pedestrian type

Train timetable

Time to departure

Outline

3 Case study • Empirical analysis

• Model specification and estimation

Conclusion and future work

Specification issues

Panel data

• Data collected over multiple time periods for the same sample of individuals

Serial correlation

- The observations across time for a single pedestrian are likely to be correlated, due to the unobserved factors related to a pedestrian that exist over time
- $\epsilon^{c}_{i(t-1)}$ cannot be assumed independent from ϵ^{c}_{it}
- If ignored consistent but not efficient estimators

Multi-class speed-density relationship (MC-vk)

Class-specific model: $P(v_i|k_i, c)$

$$\mathbf{v}_{it}^{c} = \mathbf{v}_{f}^{c} - \gamma^{c} \mathbf{k}_{it} + \alpha_{i}^{c} + \epsilon_{it}^{'c}$$

 $P(v_i|k_i, c)$ is determined by $\epsilon_{it}^{\prime c}$, α_i^c is an agent effect

Class membership model: $P(c|X_i)$

$$U_i^c = \underbrace{ASC^c + \beta^c X_i}_{V_i^c} + \xi_i^c$$

 $P(c|X_i)$ is determined by ξ_i^c

Likelihood of the sample

$$\mathcal{L} = \prod_{i=1}^{N} \sum_{c=1}^{C} \{ \frac{1}{R} \sum_{r}^{R} exp(\sum_{t=1}^{T} \log P(v_i | k_i, c, \alpha_r^c)) \} P(c | X_i)$$

Assumptions

Number of classes

- 1. Pedestrians sensitive to congestion
- 2. Rushing pedestrians
- 3. Pedestrians non-sensitive to congestion

Class membership model

- Explanatory variables: time to diparture, type of pedestrian
- Logit model

Class specific model

- The same functional form of v-k for each class
- $\epsilon_{it}^{'c} \sim \mathcal{N}(o, \sigma^c)$
- $\alpha_i^{\prime c} \sim \mathcal{N}(o, \eta^c)$

Class membership model

Parameter	Value	Std.err.
ASC ^S	2.37	$5.18e^{-06}$
β_{TTD}^{S}	5.12e ⁻⁰⁶	7.54e ⁻⁰⁶
β_{AP}^{S}	0.445	$1.03e^{-05}$
$\beta_{DP}^{3'}$	0.820	$2.11e^{-05}$
$\beta_{TP}^{S'}$	-0.466	$1.73e^{-05}$
$\beta_{TTD}^{R'}$	-0.0159	$1.57e^{-05}$
β_{AP}^{R}	-0.575	$1.54e^{-05}$
β_{DR}^{R}	0.701	1.93e ⁻⁰⁵
β_{TP}^{R}	-0.790	$1.20e^{-05}$
ASC ^{NS}	0.402	$1.84e^{-05}$

Class specific model

		<u> </u>
Parameter	Value	Std.err.
v _f ^S	0.991	$1.32e^{-05}$
γ^{S}	0.197	$1.73e^{-05}$
v_f^R	1.797	9.37e ⁻⁰⁶
$\gamma^{\prime R}$	0.0549	$1.28 e^{-0.5}$
v_f^{NS}	1.298	$1.21e^{-0.5}$
α^{S}	0.421	2.67e ⁻⁰⁶
α^R	0.811	1.40e ⁻⁰⁵
α^{NS}	0.139	$1.66e^{-05}$
σ^{S}	0.439	$1.94e^{-05}$
σ^R	0.745	$2.72e^{-0.5}$
σ^{NS}	0.0401	$1.38 e^{-0.5}$

- S Pedestrians sensitive to congestion
- R Rushing pedestrians
- NS Pedestrians non-sensitive to congestion

Bayesian information criterion - <i>BIC</i>			
Model	1 class	2 classes	3 classes
$\log \mathcal{L}$	588534.224	562655.524	534569.219
#observations	828018	828018	828018
#parameters	3	13	21
BIC	1177109.329	1125488.196	1069424.602

Class profiling

Shares

Average time to departure

Model comparison

Model	Weidmann	Tregenza	Rastogi	Linear	PedProb-vk	MC-vk
MSE	5.34e ⁻⁰³	4.82e ⁻⁰³	4.42e ⁻⁰³	5.59e ⁻⁰³	4.02e ⁻⁰³	$1.72e^{-03}$
\bar{R}^2	2.38e ⁻⁰¹	3.12e ⁻⁰¹	3.69e ⁻⁰¹	2.02e ⁻⁰¹	4.29e ⁻⁰¹	7.54e ⁻⁰¹

Outline

- Empirical analysis
- Model specification and estimation

4 Conclusion and future work

Conclusion and future work

Conclusion

- MC-vk: latent class modeling approach to capture heterogeneity in pedestrian population
- Satisfying behavioral interpretation
- Good performance at the aggregate level

Future work

- Additional factors
 - Walking in groups
 - Peak intervals
 - Attractiveness of origins/destinations

9th TRIENNIAL SYMPOSIUM ON TRANSPORTATION ANALYSIS (TRISTAN IX), Aruba: Multi-class speed-density relationship for pedestrian traffic Marija Nikolić, Michel Bierlaire, Matthieu de Lapparent, Riccardo Scarinci

- marija.nikolic@epfl.ch

Pedestrian underpass West

- 1: South entrance
- 2 4: Stairs (resp. ramp) to platform 9
- 3: Coop Pronto Supermarket
- 5 6: Stairs (resp. ramp) to platform 7 and 8
- 7 8: Stairs (resp. ramp) to platform 5 and 6
- 9 10: Stairs (resp. ramp) to platform 3 and 4
- 11: Stairs to platform 1 and out of the station
- 12: Access ramp
- 13: Stairs to or out of the train station and to buses
- 14: Pathway leading to buses and metro (M2)

Group behavior

A group of pedestrians walking together

Given spatial threshold ε , speed threshold θ , directional threshold φ and temporal threshold k a group of at least 2 pedestrians that are density-connected w.r.t. ε , θ , φ during at least k time periods (not necessarily consecutive time periods) represent a group of pedestrians walking together

Spatial clustering

Density-based clustering - grouping of data into categories based on ε (2.1336m), θ (0.1524m/s), φ (3°)

Temporal clustering

Frequent pattern analysis - finds sets of density-based clusters that are frequently observed together (w.r.t k - temporal threshold, relative to the total time a pedestrian travels in the corridor)

Peak periods during morning rush hour

Number of pedestrians over time

Peak periods per day

February 12 07:10 - 07:15, 07:25 - 07:30, 07:50 - 07:55

February 13 07:15 - 07:20, 07:40 - 07:45

February 14 07:10 - 07:15, 07:40 - 07:45

February 15

07:10 - 07:15, 07:25 - 07:30, 07:40 - 07:45

February 18

07:10 - 07:15, 07:40 - 07:45

Day	Temperature	Rain/Sun
12 February	0.4°C	Sun
13 February	-1.6°C	Rain
14 February	-3.2°C	Rain
15 February	$0.5^{\circ}\mathrm{C}$	Sun
18 February	-0.3°C	Sun

OD pattern

Number of pedestrians per origin

Number of pedestrians per destination

OD distances

OD distances analysis

Indicators

Trajectory - a finite collection of triples $p_{is} = (x_{is}, y_{is}, t_s), t_s = (t_0, t_1, \dots, t_f)$

Indicators

Trajectory - a finite collection of triples $p_{is} = (x_{is}, y_{is}, t_s), t_s = (t_0, t_1, \dots, t_f)$

Speed

$$v_{is} = \sqrt{\left(\frac{\Delta x_{is}}{\Delta t}\right)^2 + \left(\frac{\Delta y_{is}}{\Delta t}\right)^2}$$

$$\Delta x_{is} = x_{i,s+1} - x_{i,s-1}, \ \Delta y_{is} = y_{i,s+1} - y_{i,s-1}$$

$$\Delta t = t_{s+1} - t_{s-1}$$

