9th TRIENNIAL SYMPOSIUM ON TRANSPORTATION ANALYSIS (TRISTAN IX), Aruba

Data-driven characterization of pedestrian traffic

Marija Nikolić, Michel Bierlaire

June 14, 2016

Outline

Introduction

Related research

- Methodology 3
 - Discretization framework
 - Definitions of the indicators

Outline

Introduction

2 Related research

- Methodology
 - Discretization framework
 - Definitions of the indicators
- 4 Empirical analysis
- 5) Conclusion and future work

Motivation

Importance

• Understanding, reproducing and forecasting phenomena that characterize pedestrian traffic is necessary in order to provide services related to pedestrian safety and convenience

Vehicular traffic

- Well-established theory
- Regulated and separated by directions

Pedestrian traffic

- Multidirectional, without strict rules for pedestrian to follow
- Pedestrians can occupy any part of the walkable area

Indicators

- Density $k \ (ped/m^2)$, speed $v \ (m/s)$ and flow $q \ (ped/ms)$
- Used to observe and to model the flows of pedestrians
- Consistent and unified approach to the definitions of the indicators is missing

Outline

Introduction

2 Related research

Methodology

- Discretization framework
- Definitions of the indicators
- 4 Empirical analysis
- 5) Conclusion and future work

Grid-based (GB) method

$$egin{aligned} & v_i = \sqrt{\left(rac{\Delta x_i}{\Delta t}
ight)^2 + \left(rac{\Delta y_i}{\Delta t}
ight)^2} \ & \Delta x_i = x_i(t+\Delta t) - x_i(t), \ & \Delta y_i = y_i(t+\Delta t) - y_i(t) \end{aligned}$$

Range-based (RB) method

$$k(A_r) = \frac{N}{|A_r|}$$
$$v(A_r) = \frac{\sum v_i}{N}$$
$$q(A_r) = k(A_r)v(A_r)$$

$$egin{aligned} &v_i = \sqrt{\left(rac{\Delta x_i}{\Delta t}
ight)^2 + \left(rac{\Delta y_i}{\Delta t}
ight)^2} \ &\Delta x_i = x_i(t+\Delta t) - x_i(t), \ &\Delta y_i = y_i(t+\Delta t) - y_i(t) \end{aligned}$$

[Duives et al., 2015]

Exponentially Weighted (EW) method

$$k(x, y, t) = \sum_{i=1}^{\infty} f\left(\begin{pmatrix} x_i(t) \\ y_i(t) \end{pmatrix} - \begin{pmatrix} x \\ y \end{pmatrix} \right)$$
$$\vec{v}(x, y, t) = \frac{\sum_{i=1}^{\infty} \vec{v}_i(x, y, t) f\left(\begin{pmatrix} x_i(t) \\ y_i(t) \end{pmatrix} - \begin{pmatrix} x \\ y \end{pmatrix} \right)}{\sum_{i=1}^{\infty} f\left(\begin{pmatrix} x_i(t) \\ y_i(t) \end{pmatrix} - \begin{pmatrix} x \\ y \end{pmatrix} \right)}$$
$$\vec{q}(x, y, t) = k(x, y, t) \vec{v}(x, y, t)$$

$$f\left(\left(\begin{array}{c} x_{i}(t) \\ y_{i}(t) \end{array}\right) - \left(\begin{array}{c} x \\ y \end{array}\right)\right) = \frac{1}{\pi R^{2}} \exp\left(-\frac{\left\|\begin{pmatrix} x_{i}(t) \\ y_{i}(t) \end{pmatrix} - \begin{pmatrix} x \\ y \end{array}\right\|}{R^{2}}\right)$$

[Helbing et al., 2007], [Duives et al., 2015]

XY-T method

[van Wageningen-Kessels et al., 2014], [Saberi and Mahmassani, 2014]

Voronoi-based (VB) method

A personal region A_i is assigned to each pedestrian *i*: each point *p* in the personal region of pedestrian *i* is closer to *i* than to any other, with respect of d_E

 $A_i = \{ p | d_F(p, p_i) < d_F(p, p_i), \forall i \}$

$$k(A_i) = \frac{1}{|A_i|}$$

$$v(A_i) = \sqrt{\left(\frac{\Delta x_i}{\Delta t}\right)^2 + \left(\frac{\Delta y_i}{\Delta t}\right)^2}$$

$$q(A_i) = k(A_i)v(A_i)$$

$$\Delta x_i = x_i(t + \Delta t) - x_i(t), \ \Delta y_i = y_i(t + \Delta t) - y_i(t)$$

[Steffen and Seyfried, 2010], [Duives et al., 2015]

Arbitrary discretization

Sensitivity of results

The results might be very sensitive to minor changes

Unrealistic results

Velocity and flow vectors may cancel out when 2 equally sized streams of pedestrians walk with the same speed but in the opposite directions

How to define the discretization...

It is all about adjustments...

Outline

2 Related research

${\sf Methodology}$

- Discretization framework
- Definitions of the indicators

Empirical analysis

5 Conclusion and future work

Data-driven approach

Keep calm and let data speak!

Outline

2 Related research

Methodology

- Discretization framework
- Definitions of the indicators

Data-driven discretization framework

Pedestrian trajectories

$$\Gamma_i : \{p_i(t) | p_i(t) = (x_i(t), y_i(t), t)\}$$

3D Voronoi diagrams associated with trajectories

Each trajectory Γ_i is associated with a 3D Voronoi 'tube' V_i

 $V_i = \{p|\min\{d_*(p,p_i)|p_i \in \Gamma_i\} \le \min\{d_*(p,p_j)|p_j \in \Gamma_j\}, \forall j\}$

 $d_*(p,p_i)$ - spatio-temporal assignment rule

Data-driven discretization framework

Sample of points

$$\Gamma_i : \{p_{is} | p_{is} = (x_{is}, y_{is}, t_s)\}, t_s = [t_0, t_1, ..., t_f]$$

3D Voronoi diagrams associated with the points

Sequences of 3D Voronoi cells V_{is} are assigned to the sequence of points for each pedestrian

$$V_i = \{V_{is} | V_{is} = \{p | d_*(p, p_{is}) \le d_*(p, p_{js})\}, \forall j\}$$

 $d_*(p, p_i)$ - spatio-temporal assignment rule

Naive assignment rule (N-3DVoro)

$$d_N(p,p_i) = \begin{cases} \sqrt{(p-p_i)^T(p-p_i)}, & \Delta t = 0 \\ \infty, & otherwise \end{cases}$$

Time-Transform assignment rules $(TT_{\{1,2,3\}}-3DVoro)$

$$d_{TT_1}(p, p_i) = \sqrt{(x - x_i)^2 + (y - y_i)^2 + \alpha^2 (t - t_i)^2}$$
$$d_{TT_2}(p, p_i) = \sqrt{(x - x_i)^2 + (y - y_i)^2} + \alpha_i(t_i)|(t - t_i)|$$
$$d_{TT_3}(p, p_i) = \sqrt{(x - x_i)^2 + (y - y_i)^2 + \alpha_i^2(t_i)(t - t_i)^2}$$

lpha and $lpha_i$ - conversion constants expressed in meters per second

Predictive assignment rule (P-3DVoro)

$$d_P(p,p_i) = \left\{ egin{array}{c} \sqrt{(x_i(t)-x)^2+(y_i(t)-y)^2}, & t-t_i \geq 0 \ \infty, & otherwise, \end{array}
ight.$$

The anticipated position of pedestrian *i* at time *t*: $x_i(t) = x_i(t_i) + (t - t_i)v_i^x(t_i), y_i(t) = y_i(t_i) + (t - t_i)v_i^y(t_i)$ The speed of pedestrian *i* at t_i in x and y directions: $v_i^x(t_i), v_i^y(t_i)$

Mahalanobis assignment rule (M-3DVoro)

$$d_M(p,p_i) = \sqrt{(p-p_i)^T M_i(p-p_i)}$$

 M_i - symmetric, positive-definite matrix that defines how distances are measured from the perspective of pedestrian i

Outline

2 Related research

${\sf Methodology}$

- Discretization framework
- Definitions of the indicators

$$V_i(t) = \{(x(t), y(t), t) \in V_i\} \sim [m^2]$$

Density indicator

$$k(x,y,t) = rac{1}{|V_i(t)|}, ext{ for } x,y \in V_i(t)$$

The set of all points in V_i corresponding to a given location x and y

$$V_i(x) = \{(x, y, t) \in V_i\} \sim [ms]$$

 $V_i(y) = \{(x, y, t) \in V_i\} \sim [ms]$

Flow indicator

$$ec{q}(x,y,t) = \left(egin{array}{c} q^x(x,y,t)\ q^y(x,y,t) \end{array}
ight) = \left(egin{array}{c} rac{1}{|V_i(x)|}\ rac{1}{|V_i(y)|} \end{array}
ight)$$

Velocity indicator

$$\vec{v}(x,y,t) = \begin{pmatrix} \frac{q^x(x,y,t)}{k(x,y,t)} \\ \frac{q^y(x,y,t)}{k(x,y,t)} \end{pmatrix} = \begin{pmatrix} \frac{|V_i(t)|}{|V_i(x)|} \\ \frac{|V_i(t)|}{|V_i(y)|} \end{pmatrix}$$

Outline

Introduction

2 Related research

Methodolog

- Discretization framework
- Definitions of the indicators

🕘 Empirical analysis

Conclusion and future work

Performance of the approach

Synthetic data - unidirectional flow

NOMAD simulation tool [Campanella, 2010] Scenario I: low congestion, homogenous population

Scenario II: high congestion, heterogeneous population

Indicators

Robustness w.r.t. the aggregation Robustness w.r.t. the sampling frequency

Robustness with respect to the aggregation

• Ability of tolerating perturbations in data

- 100 sets of pedestrian trajectories synthesized per scenario
- Indicators k, v and q calculated for each set

Standard deviation (1000 points) - Scenario I

Standard deviation (1000 points) - Scenario II

Characterization based on sampled data

Robustness with respect to the sampling frequency

• Ability of tolerating missing data

- Synthetic trajectories sampled using different sampling frequencies
- Indicators calculated via
 - 1. 3D Voro applied to the interpolated trajectories
 - 2. 3D Voro applied directly to the samples
- Comparison of the indicators at 1000 randomly selected points to the corresponding values obtained utilizing true trajectories

High sampling frequency: $3.33s^{-1}$

Method	Mean		Mode		Median		90% quantile	
Wiethou	IT	So P	IT	SoP	IT	SoP	IT	SoP
N-3DVoro	1.17E-02	/	0	/	0	/	3.96E-02	/
TT ₁ -3DVoro	2.70E-03	6.70E-03	0	0	3.00E-04	2.30E-03	7.30E-03	1.02E-02
TT ₂ -3DVoro	5.80E-03	3.50E-02	0	2.80E-03	6.00E-04	2.08E-02	1.50E-02	6.69E-02
TT ₃ -3DVoro	5.40E-03	4.34E-02	0	8.00E-03	6.00E-04	2.83E-02	1.32E-02	9.22E-02
P-3DVoro	8.20E-03	5.36E-02	0	6.10E-03	2.40E-03	3.03E-02	1.30E-02	1.14E-01
M-3DVoro	4.50E-03	5.65E-02	0	6.80E-03	1.10E-03	4.55E-02	1.28E-02	1.04E-01

Low sampling frequency: $0.5s^{-1}$

Method	Mean		M	ode	Median		90% quantile	
	IT	SoP	IT	SoP	IT	SoP	IT	SoP
N-3DVoro	1.64E-01	/	0	/	1.46E-01	/	3.02E-01	/
TT ₁ -3DVoro	2.54E-01	1.27E-01	1.35E-02	9.00E-03	1.16E-01	8.97E-02	3.41 E-01	2.25 E-01
TT ₂ -3DVoro	1.64E-01	1.22E-01	1.44E-02	1.06E-02	1.21E-01	7.30E-02	3.52E-01	2.33E-01
TT ₃ -3DVoro	1.89E-01	1.24E-01	1.84E-02	1.09E-02	1.24E-01	7.88E-02	3.40E-01	2.31 E-01
P-3DVoro	3.19E-01	1.21E-01	3.26E-02	6.20E-03	1.43E-01	7.43E-02	3.36E-01	2.10E-01
M-3DVoro	1.97E-01	1.24E-01	3.48E-02	9.90E-03	1.41E-01	7.72E-02	3.21 E-01	2.31 E-01

High sampling frequency: $3.33s^{-1}$

Method	Mean		Mode		Median		90% quantile	
Wiethou	IT	So P	IT	SoP	IT	SoP	IT	SoP
N-3DVoro	1.43E-02	/	0	1	0	/	2.64E-02	/
TT ₁ -3DVoro	8.00E-03	4.55E-02	0	0	8.00E-04	1.75E-02	2.36E-02	8.52E-02
TT ₂ -3DVoro	1.49E-02	1.07E-01	0	0	3.20E-03	5.72E-02	3.33E-02	2.21E-01
TT ₃ -3DVoro	1.24 E-02	1.60E-01	0	0	3.50E-03	9.62E-02	2.98E-02	3.41E-01
P-3DVoro	2.10E-02	1.66E-01	0	0	4.20E-03	1.16E-01	5.27E-02	3.64E-01
M-3DVoro	1.31E-02	2.40E-01	0	0	2.50E-03	1.75E-01	2.91E-02	5.58E-01

Low sampling frequency: $0.5s^{-1}$

Method	Mean		Mo	odle	Median		90% quantile	
Wiethou	IT	SoP	IT	SoP	IT	SoP	IT	SoP
N-3DVoro	4.02E-01	/	0	/	2.49E-01	/	1.03E+00	/
TT ₁ -3DVoro	4.06E-01	2.90E-01	3.10E-01	2.48E-02	2.64E-01	1.65E-01	9.21 E-01	7.12E-01
TT ₂ -3DVoro	3.92E-01	4.58E-01	2.85E-01	2.34E-01	2.48E-01	2.34E-01	9.30E-01	1.11E+00
TT ₃ -3DVoro	4.41E-01	5.07E-01	2.89E-01	5.89E-02	2.37E-01	3.06E-01	9.81 E-01	1.17E+00
P-3DVoro	4.31E-01	3.71E-01	1.40E-03	0	2.58E-01	1.80E-01	9.43E-01	7.29E-01
M-3DVoro	4.34E-01	5.01E-01	3.16E-01	1.36E-01	2.75E-01	3.52E-01	9.96E-01	9.80E-01

Outline

- - Discretization framework
 - Definitions of the indicators

(5) Conclusion and future work

Conclusion and future work

Conclusion

- A novel approach to pedestrian traffic characterization: data-driven discretization via 3D Voronoi diagrams
- Superior to existing methods w.r.t. robustness to the aggregation
- Robustness to the sampling frequency
 - TT₁-3DVoro: high sampling frequency or higher congestion
 - P-3DVoro: low sampling frequency and lighter traffic conditions

Future work

- Analysis of the performance for different scenarios
- Weighted assignment rules

9th TRIENNIAL SYMPOSIUM ON TRANSPORTATION ANALYSIS (TRISTAN IX), Aruba: Data-driven characterization of pedestrian traffic Marija Nikolić, Michel Bierlaire

Help by S. S. Azadeh and F.Hänseler is appreciated.

- marija.nikolic@epfl.ch

Spread/point - Scenario I

Spread/point - Scenario II

Smoothness/point - Scenario I

Smoothness/point - Scenario II

Directions of interest

$$p_{is} = (x_{is}, y_{is}, t_s), \ v_i(t_s) = \frac{1}{t_{(s+1)} - t_s} \begin{pmatrix} x_{i(s+1)} - x_{is} \\ y_{i(s+1)} - y_{is} \\ 1 \end{pmatrix}$$

$$d^{2}(t_{s}) = \frac{1}{||v_{i}(t_{s})||}, ||d^{2}(t_{s})|| = 1$$

$$\left(d^{1}_{s}(t_{s}) \right)$$

$$d^{2}(t_{s}) = \begin{pmatrix} a_{x}(t_{s}) \\ d_{y}^{2}(t_{s}) \\ 0 \end{pmatrix}, \ d^{1}(t_{s})^{T}d^{2}(t_{s}) = 0, \ ||d^{2}(t_{s})|| = 1$$
$$d^{3}(t_{s}) = \begin{pmatrix} 0 \\ 0 \\ t_{(s+1)} - t_{s} \end{pmatrix}, \ ||d^{3}(t_{s})|| = t_{(s+1)} - t_{s}$$

Change of coordinates

$$S_{1}(t_{s},\delta) = p_{is} + (t_{(s+1)} - t_{s})v_{i}(t_{s}) + \delta d^{1}(t_{s})$$

$$S_{2}(t_{s},\delta) = p_{is} - (t_{(s+1)} - t_{s})v_{i}(t_{s}) - \delta d^{1}(t_{s})$$

$$S_{3}(t_{s},\delta) = p_{is} + \delta d^{2}(t_{s})$$

$$S_{4}(t_{s},\delta) = p_{is} - \delta d^{2}(t_{s})$$

$$S_{5}(t_{s},\delta) = p_{is} - \delta d^{3}(t_{s})$$

$$S_{6}(t_{s},\delta) = p_{is} - \delta d^{3}(t_{s})$$

$$d_{M} = \sqrt{(S_{j}(t_{s},\delta) - p_{is})^{T}M_{is}(S_{j}(t_{s},\delta) - p_{is})} = \delta, j = 1, .., 6$$

