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Outline

• Data
• Challenges
• Opportunities

• Models: route choice
• the chosen route
• the non chosen routes
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Nokia data collection campaign

Using smartphone data for travel demand analysis: challenges and opportunities – p. 3/36



Nokia data collection campaign

• Funding source: Nokia Research Center (NRC) at EPFL.

• Participants: About 185.

• Since: September 2009.

• Phone: Nokia N95.

• Collaborators: NRC Lausanne, IDIAP (Switzerland).
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Recruitment
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Participants

• About 185 participants.

• Mostly from Lausanne area.

• ∼ 1/3 females.

• < 1/4 students.
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Software design

Phone software (EPFLSCOPE)

• written in python Symbian S60;

• starts with the operating system, runs in backend;

• cannot be turned off by users;

• records data constantly;

• uploads data automatically to DB A via wireless network (WIFI,
3G), every 2 hours.

Databases

• are administrated by Nokia;

• a remote database (DB A) with data access API (httprequest,
JSON format);

• another geographical database (DB B) copies data from DB A
with ∼ 12 hours lag (SQL access).
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Energy performance

The original software was developed by Nokia.

• With GPS on, one fully charged battery lasts less than 4 hours.

The energy performance was improved by TRANSP-OR, IDIAP and
NRC Lausanne.

• Turn off GPS if stationary.

• Determines stationary/moving: GPS, known WLAN, cell ID,
accelerometer.

• One fully charged battery can last ∼ 10 hours.
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Privacy and security

• Data is owned by participants. They can delete their data from
DB A.

• The campaign is permitted and controlled by an ethical
committee.

• Nokia and authorized research partners (in CH) get access to
the data.

It took ONE YEAR for EPFL to get data access (although data had
already been in Nokia’s databases).
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Data volume

∼ 150k-entries/100MB of data per user per month

Number of GPS points 11,531,652
Number of calls 247,448
Duration of calls 6,903h
Number of sms 179,358

Number of video made 3,890
Number of pictures taken 54,537

Number of unique BT 543,517
Number of unique WIFI 572,910

Number of unique cell towers (63 countries) 100,505
Number of unique cell towers (CH) 28,945

Number of acceleration samples 1,344,198
Number of application events captures 8,280,554

Number of phone book entries 115,134
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Calendar: number of entries
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Media play
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Number of Bluetooth devices

0 50 100 150 200
user

0

5000

10000

15000

20000

25000

n
u
m

b
e
r 

o
f 

B
T

Using smartphone data for travel demand analysis: challenges and opportunities – p. 13/36



Mobility patterns: car
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Mobility patterns: train
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Data

Challenges

• Technological: battery life

• Legal: privacy

• Technical: huge volume of date

Opportunities

• Complex mobility patterns

• Mode

• Route

• Activities
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Route choice: the chosen route

• Focus on GPS data from
smartphone

• Objective: reconstruct actual
paths
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Issues
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Issues
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Issues

• Low data collection rate to save battery (every 10 seconds)

• Inaccuracy due to technological constraints

• Smartphone carried in bags, pockets: weaker signal

• Map matching algorithms do not work with this data
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Measurement equations

Objective (derivation in the appendix):

• Given a path p

• Given a sequence of GPS data (x̂1, . . . , x̂T )

• What is the likelihood that the sequence has been generated by
a smartphone moving along path p?

• Note: different approach from map matching, which is
essentially a projection procedure.

• We derive
Pr(x̂1, . . . , x̂T |p),

• ... recursively

Pr(x̂1, . . . , x̂T |p) = Pr(x̂T |x̂1, . . . , x̂T−1, p) Pr(x̂1, . . . , x̂T−1|p).
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Case study: true path — [-11.3]
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Case study: path with a deviation (1) — [-12.9]
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Case study: path with a deviation (2) — [-13.2]
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Case study: log likelihood from measurement equations

True path -11.3
Deviation 1 -12.9
Deviation 2 -13.2

• Results are consistent with intuition
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Route choice: the non chosen routes

• Choice model: Pn(i|Cn)

• Route choice: what is Cn?

• Many “behaviorally motivated” heuristics proposed in the
literature.

• Most of the time, the chosen route is not included.

• Frejinger, Bierlaire and Ben-Akiva (2009)
propose an econometric approach.

• Idea:

• Assumption: all paths connecting the OD pair are relevant.
• Issue: enumeration is prohibitive.
• Solution: sampling of alternatives.
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Sampling of alternatives

• Sample Cn with replacement from C according to {q(i)}i∈C

• Add the chosen alternative

• kin is the number of times alternative i is contained in Cn

• Correct for sampling when estimating logit model

P (i|Cn) =
e
µVin+ln

(

kin
b(i)

)

∑
j∈Cn

e
µVjn+ln

(

kjn

b(j)

)

where {b(i)}i∈C is such that q(i) = b(i)/
∑

j∈C
b(j)

Objective: sample paths according to pre-specified {b(i)}i∈C
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Metropolis-Hastings algorithm

• Given

• a finite state space,
• positive weights {b(i)}i,
• and irreducible Markov process

• the Metropolis-Hastings algorithm generates a Markov chain
that converges to

q(i) = b(i)/
∑

j

b(j).
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Using MH for path sampling

• State space comprises all possible paths

• Weights b(i) favor plausible paths (importance sampling)

• Typically, paths with length close to the shortest path have high
probability to be sampled

• Based on a Markov process creating local path modifications
• too little variability: slow convergence
• too much variability: random search

• a great deal of technical details must be addressed to obtain a
valid algorithm.
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Simple example
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Simple example

• Target weights:
b(i) = exp[−µδ(Γ)]

where δ(Γ) is the length of path Γ.

• Note: µ = 0 means equal probability.
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Scatter plots
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Tel-Aviv example
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Conclusion

• Route choice modeling is difficult.

• Data: smartphones

• Identify the chosen route
• Deal with inaccuracy and low rate
• Probabilistic map matching

• Identify the non chosen routes
• Sampling of paths
• Markov Chain Monte-Carlo method
• The devil is in the details...
• but it works!
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