Optimization of the network design of a futuristic transport system based on accelerated moving walkways

Riccardo Scarinci	Bastien Rojanawisut
lliya Markov	Michel Bierlaire
Guillaume Lopez	Jianghang Chen

Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

"On the road" LAB-U, 31 October 2014 – EPFL

TRANSP-OR

Scarinci

Context

Post-Car World

No use of private car

Redistribute the "future" demand on a mix of transport systems

Traditional

Innovative

Futuristic

Research idea

Accelerated Moving Walkway (AMW)

A network of Accelerated Moving Walkway in urban area

ANSP-OR

Scarinci

Contents

- Accelerated Moving Walkway (AMW)
 - Implementation examples
 - System description
- Optimization of a network of AMW
 - Decision variables
 - System parameters
 - Objective function and constraints
- Results
- Conclusions

ECOLE POLYTECHNIQUE FÉDERALE DE LAUSANNE

Implementation examples

TurboTrack Toronto

- Entry speed: 2.3 km/h
- High speed: 7.2 km/h
- Length: 270 m

Gateway Paris

- Entry speed: 2.2 km/h
- High speed: 9 km/h
- Length: 185 m

AMW could be competitive with urban public transport and private cars (average speed of 15 km/h)

System description in a quantitative form

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Conceptual example

Intersection design

Practicality Preferred directions

Permeability Urban integration Accessibility Perception etc..

Images: Rojanawisut

Decision variables and criteria

Decision variables:

- y_i equipped or not
- x_i^a acceleration section
- z_i width of the walkway

Objectives:

- Min. travel time
- Max. speed
- Max. comfort
- Min. energy consumption

Criteria – mathematical formulation example

• Travel time
$$TT_i = 2t_a + t_c = \frac{1}{a} \left(\sqrt{v_0^2 + 2ax_i^a} - v_0 \right) + \frac{l_i - 2x_i^a}{\sqrt{v_0^2 + 2ax_i^a} + v^w}$$

Optimization concept

Locate the highest top while blindfolded.

Space: all possible configurations of AMW network Elevation: objective, i.e. max speed

Objective function

Objective function:

$$f_i = y_i(w_1TT_i + w_2d_i + w_3e_i + w_4c_i^c + w_5c_i^o) + (1 - y_i)w_6l_i/v^w$$

Subject to constraints:

Scarinci

$$v_i^1 \le v^{\max}$$
 $\sqrt{v_0^2 + 2ax_i^a} \le v^{\max}$ $x_i^a \le l_i/2$

City network

Nodes Links

Scarinci

RANSP-OR

Optimization algorithm

Objective: Min. Total Travel Time

Constraint: Budged for 10 AMW

ANSP-OR Scarinci

Optimization algorithm

Initial solution

Assignment

- O/D
- Path
- Flow

Objective evaluation

ANSP-OR

Scarinci

Optimization algorithm

Intelligent searching algorithm

2nd iteration

RANSP-OR Scarinci

Optimization algorithm

3rd iteration

Convergence

RANSP-OR

Scarinci

Optimization algorithm

Iteration

Conclusions

Conclusions

Assumption: a world without private cars

free to investigate innovative mean of transport as part of the future modal mix (reusing urban space)

- Review of Accelerated Moving Walkway (AMW)
- Definition of the optimization problem, decision variables, system parameters, objective function and constraints
- Investigation on the practicality of this system from a transportation point of view

Thank you for your attention

Riccardo Scarinci riccardo.scarinci@epfl.ch

Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

