Real Time Recovery in Berth Allocation Problem in Bulk Ports

Swiss Transport Research Conference, 2nd May, 2012

Nitish Umang
Michel Bierlaire
Contents

- Motivation and Research Objectives
- Literature Review
- Deterministic Berth Allocation Problem
- Real Time Recovery in BAP
 - Problem Definition
 - Solution Algorithms
- Preliminary Results
- Conclusions and Future Work
Schematic Diagram of a Bulk Terminal

- **YARD SPACE**
 - Cargo blocks
 - Sections along the quay

- **QUAY SPACE**
 - Vessel berthed at section k=5 carrying cement

- **Rock Factory**
 - Silica Sand
 - Clay
 - Animal Feed
 - Grain
 - Rock Aggregates
 - Soda Ash
 - Cement
 - Feldspar
 - Limestone
 - Oil Tank Terminal

- **Vessels**
 - Vessel 1
 - Vessel 2
 - Vessel 3
Motivation

• High level of uncertainty in bulk port operations due to weather conditions, mechanical problems etc.

 • Actual arrival times of vessels can deviate from expected values making the baseline schedule infeasible

 • Disrupt the normal functioning of the port and require quick real time action.

• Very few studies address the problem of real time recovery using in port operations, while the problem has not been studied at all in context of bulk ports.

• Our research problem derives from the realistic requirements at the SAQR port, Ras Al Khaimah, UAE
Research Objectives

• Develop real time algorithms for disruption recovery in berth allocation problem (BAP)

• For a given baseline berthing schedule, minimize the total realized costs of the updated schedule as actual arrival data is revealed. The total realized costs include

 • The total service cost of all vessels berthing at the port which is the sum total of the handling times and berthing delays of all vessels berthing in the planning horizon.

 • Inconsistent cost of rescheduling over space and time to account for the cost of re-allocating human labor, handling equipment and availability of cargo.
Literature Review

- Very scarce literature on the use of operations research methods in context of bulk ports.

- Comprehensive literature surveys on BAP in container terminals can be found in Steenken et al. (2004), Stahlobock and Voss (2007), Bierwirth and Meisel (2010).

- OR literature related to BAP under uncertainty in container terminals

 - **Pro-active Robustness**

 - Stochastic programming approach used by Zhen et al. (2011), Han et al. (2010)

 - Define surrogate problems to define the stochastic nature of the problem: Moorthy and Teo (2006), Zhen and Chang (2012), Xu et al. (2012) and Hendriks et al. (2010)

 - **Reactive approach or disruption management**

 - Zeng et al. (2012) and Du et al. (2010) propose reactive strategies to minimize the impact of disruptions.
Deterministic BAP: Problem Definition

- **Find**
 - Baseline berthing assignment and schedule of vessels along the quay without accounting for any uncertainty in information

- **Given**
 - Expected arrival times of vessels
 - Handling times dependent on
 - **Cargo type** on the vessel (the relative location of the vessel along the quay with respect to the cargo location on the yard)
 - Number of cranes operating on the vessel

- **Objective**
 - Minimize total service times (waiting time + handling time) of vessels berthing at the port
BAP Solution

Quay length

Length of vessel

Berthing location

Vessel 1

Vessel 2

Vessel 3

Vessel 4

Handling Time

Berthing Time

Time Horizon
GSPP Model

- Used in context of container terminals by Christensen and Holst (2008)

- Generate set P of columns, where each column $p \in P$ represents a feasible assignment of a single vessel in both space and time

- Generate two matrices

 - Matrix $A = (A_{ip})$; equal to 1 if vessel $i \in N$ is the assigned vessel in the feasible assignment represented by column $p \in P$

 - Matrix $B = (b_{pt}^{st})$; equal to 1 if section $s \in M$ is occupied at time $t \in H$ in column $p \in P$

Note: Assume integer values for all time measurements
GSPP Formulation: A simple example

Vessel 1 cannot occupy section 3 owing to spatial constraints (does not have conveyor facility), vessel 2 arrives at time $t = 1$

Constraint matrix P has 4 feasible assignments:

<table>
<thead>
<tr>
<th></th>
<th>Vessel 1</th>
<th>Vessel 2</th>
<th>Section 1, Time 1</th>
<th>Section 1, Time 2</th>
<th>Section 1, Time 3</th>
<th>Section 2, Time 1</th>
<th>Section 2, Time 2</th>
<th>Section 2, Time 3</th>
<th>Section 3, Time 1</th>
<th>Section 3, Time 2</th>
<th>Section 3, Time 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vessel 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Section 1, Time 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Section 1, Time 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Section 1, Time 3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Section 2, Time 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Section 2, Time 2</td>
<td>1</td>
</tr>
<tr>
<td>Section 2, Time 3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Section 3, Time 1</td>
<td>0</td>
</tr>
<tr>
<td>Section 3, Time 2</td>
<td>0</td>
</tr>
<tr>
<td>Section 3, Time 3</td>
<td>0</td>
</tr>
</tbody>
</table>
GSPP Model Formulation

Objective Function:

$$\min \sum_{p \in P} \left(d_{p} \lambda_{p} + h_{p} \lambda_{p} \right)$$

Constraints:

$$\sum_{p \in P} \left(A_{i_{p} p} \lambda_{p} \right) = 1 \quad \forall \ i \in N$$

$$\sum_{p \in P} \left(b_{st_{p}} \lambda_{p} \right) \leq 1 \quad \forall \ s \in M, \forall \ t \in H$$

d_{p}: delay in service associated with assignment $p \in P$

h_{p}: handling time associated with assignment $p \in P$

λ_{p}: binary parameter, equal to 1 if assignment $p \in P$ is part of the optimal solution
Problem Definition: Real time recovery in BAP

- **Objective:** For a given baseline berthing schedule, minimize the total realized costs including the total actual service costs and total cost of rescheduling in space and time

\[
\min Z = \sum_{i \in N_u} (m_i - A_i + h_i) + \sum_{i \in N_u} (c_1 |b_i(k') - b_i(k)| + c_2 \mu_i |e_i' - e_i|)
\]
Problem Definition: Real time recovery in BAP

To maximize revenues earned by the port while guaranteeing a minimum level of service, we propose that the bulk terminal managers adopt and implement certain strategic measures.

- **Handling Time Restrictions**: Impose an upper bound on the maximum handling time of a vessel $i \in N$ if it arrives within a pre-defined arrival time window $[A_i - U_i, A_i + U_i]$.
Problem Definition: Real time recovery in BAP

- **Penalty Cost on late arriving vessels:** Impose a penalty fees on vessels arriving beyond the right end of the arrival window, $A_i + U_i$
Problem Definition: Real time recovery in BAP

- **Key Assumptions**

 - **Vessel Priorities:** In practice, if a vessel with higher priority arrives late, it may still be given preference over a vessel with low service priority.

 - **Release of information:** Each incoming vessel updates its exact arrival time a certain fixed time period τ before its actual arrival time, and once updated it does not change again.

 - **Future vessel arrivals:** At any time instant t, the arrival time of an unassigned vessel $i \in N_j$ that is not updated is assumed equal to the expected arrival time A_i if current time t is less than $A_i - \tau$, or otherwise assumed equal to $t + \tau$. (The handling time restrictions are imposed accordingly.)
Solution Algorithms

- **Optimization based recovery algorithm**
 - re-optimize the berthing schedule every time the arrival time of any vessel is updated and it deviates from its expected value.
 - the berthing assignment of a vessel determined after its arrival update is frozen and unchangeable

- **Heuristic based recovery algorithm**
 - once a vessel has arrived, assign it to the section(s) at or after its estimated berthing time (as per the baseline schedule) at which the total realized cost of all unassigned vessels is minimized (assuming all other unassigned vessels are assigned to the estimated berthing sections as per the baseline schedule)

\[
\min Z = \sum_{i \in N_u} (m_i - A_i + h_i) + \sum_{i \in N_u} (c_1 |b_i(k') - b_i(k)| + c_2 \mu_i |e'_i - e_i|)
\]
Optimization based Recovery Algorithm

Require: Baseline schedule of set N of vessels, set M of sections
- Initialize set N_u of unassigned vessels to N
- Initialize boolean array arrivalUpdated of size $N = \text{false for all } i \in N$
- Initialize counter $= 0$

while $|N_u| > 0$ and counter $\leq |H|$ **do**
 - Initialize boolean $\text{shouldOptimize} = \text{false}$
 - **for** $i = 1$ to N **do**
 - **if** $\text{arrivalUpdated}[i] = \text{false}$ and counter $\geq a_i - \tau$ and $a_i \neq A_i$ **then**
 - Set $\text{arrivalUpdated}[i] = \text{true}$
 - Set $A_i = a_i$
 - Set $\text{shouldOptimize} = \text{true}$
 - **end if**
 - **end for**
 - **if** shouldOptimize **then**
 - Re-optimize for all $i \in N_u$
 - **end if**
 - **for** $i = 1$ to N_u **do**
 - **if** counter $= \text{latest updated start time } m'i$ **then**
 - Assign vessel i to latest updated location $b_i(k')$
 - Set N_u to $N_u \setminus \{i\}$
 - **end if**
 - **end for**
 - counter $++$
end while
Heuristic based Recovery Algorithm

Require: Baseline schedule of set N of vessels, set M of sections
- Initialize set N_u of unassigned vessels to N
- Initialize boolean array $arrivalUpdated$ of size $N = false \; \forall i \in N$
- Initialize counter = 0

while $|N_u| > 0$ and counter $\leq |H|$ do
 for berthing Schedule: b do
 if $b.hasArrived$ AND $!b.isAssigned$ then
 Set boolean $foundSection = false$
 for $k = 1$ to M do
 if $isStartSectionAvailable(b.vessel,k)$ then
 $foundSection = true$;
 break;
 end if
 end for
 if $foundSection$ AND counter $\geq b.estimatedBerthingTime$ then
 Scan the entire quay and assign the vessel to the set of sections with minimum total cost $forall \; i \in N_u$
 end if
 end if
 end for
 counter++
end while
Preliminary Results

- \(|N| = 25\) vessels, \(|M| = 10\) sections, congested scenario, \(c_1 = 1.0, c_2 = 0.02, U_i = 8\) hours, \(\tau = 5\) hours, \(\eta = 1.2\)

<table>
<thead>
<tr>
<th>(D_v)</th>
<th>Optimization based algorithm</th>
<th>Heuristic Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Realized cost</td>
<td>Time</td>
</tr>
<tr>
<td>0</td>
<td>586.0</td>
<td>0.07</td>
</tr>
<tr>
<td>2</td>
<td>645.0</td>
<td>48.5</td>
</tr>
<tr>
<td>6</td>
<td>745.0</td>
<td>56.5</td>
</tr>
<tr>
<td>10</td>
<td>842.3</td>
<td>85.7</td>
</tr>
<tr>
<td>14</td>
<td>871.5</td>
<td>108.6</td>
</tr>
<tr>
<td>18</td>
<td>904.3</td>
<td>115.8</td>
</tr>
</tbody>
</table>

- Results averaged over 10 arrival disruption scenarios
- Optimization based algorithm outperforms the heuristic based approach, but computationally much more expensive
Preliminary Results

- Results averaged over 100 arrival scenarios for every instance

- Higher values of η do not significantly increase the total realized costs of the berthing schedule for different delay scenarios

- Scope to earn more revenue from the late arriving vessels for arrival beyond the permissible arrival window of the vessels
Conclusions

- Addressed the problem of recovering a baseline berthing schedule in bulk ports in real time as actual arrival data is revealed.

- Discussed strategies that the port can adopt and implement to maximize their revenues while ensuring a desired level of service.

- Developed two alternate solution algorithms to solve the BAP in real time in bulk ports with the objective to minimize the total realized costs of the updated schedule.

- Conducted simple numerical experiments to validate the efficiency of the algorithms. Optimization based approach outperforms the heuristic approach, but is computationally much more expensive.
Ongoing and Future Work

- More extensive numerical analysis to determine parameter values related to rescheduling of vessels including cost of shifting the vessel along the quay and cost of departure delay of a vessel.
- Bounds on the maximum handling times for vessels arriving within the prescribed arrival window.
- Penalty cost function dependent on the late arriving vessels for arrival delay beyond the prescribed arrival window of the vessel.

- Develop a robust formulation of the berth allocation problem in bulk ports with a certain degree of anticipation of variability in information.
Thank you!