Validation of a discrete choice model in the context of pedestrian walking behavior

Thomas Robin

Michel Bierlaire

Gianluca Antonini

Javier Cruz

Objectives

- Model the pedestrian behavior at **operational** level
- Develop a specification with 'constrained' and 'unconstrained' parameters
- Estimate the model
- Validate the model
- Implement the model in a **simulator**

Outline

Introduction

•

•	Model specification :	 The space discretization The choice set Cross nested structure Utility specification
•	-	The Japanese data set General diagnosis Parameters values

- Model validation : Methodology
 Validation of the specification
 - The Dutch data set
 - Validation of the model
- Model simulator
 - Conclusion

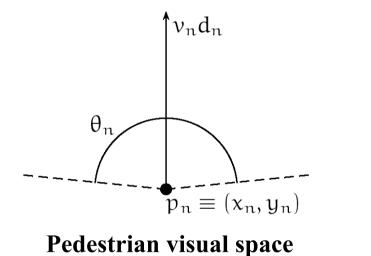
•

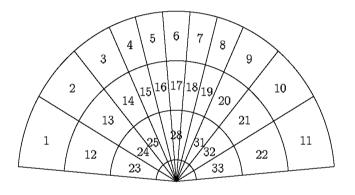
Introduction

- Microscopic model : capture the behavior of each pedestrian
- Different behavioral levels :

Strategical : destination Tactical : route choice Fixed Operational level : short range behavior instantaneous decisions

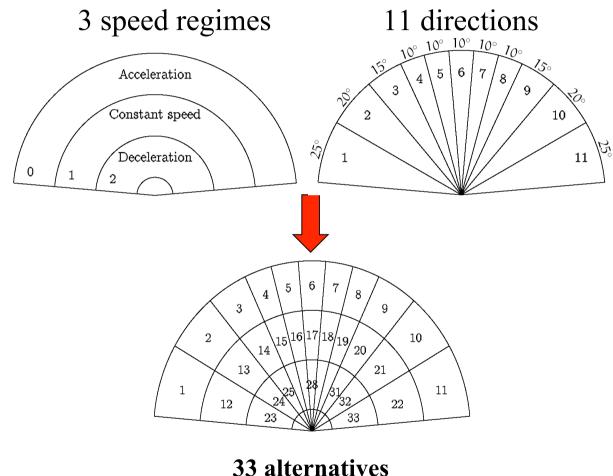
• Concept of **personal space** : interactions with other pedestrians


Leader follower Collision avoidance



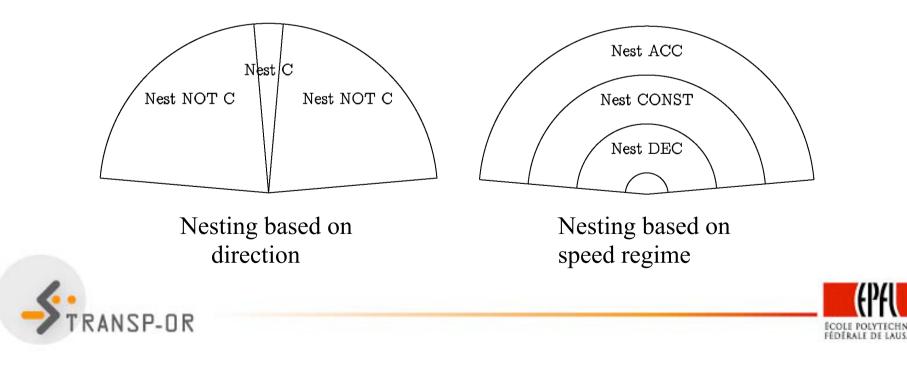
Model specification : the space discretization

• Discrete choice model : at each step, the pedestrian has to choose the next step in the choice set



Choice set : discretization of the visual space

Model specification : the choice set



Model specification : cross nested structure

• Hypothesis : alternatives correlated along speed regimes and directions

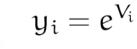
Cross Nested Logit model

• Cross Nested structure : each alternative belongs to 2 nests

Model specification : cross nested structure

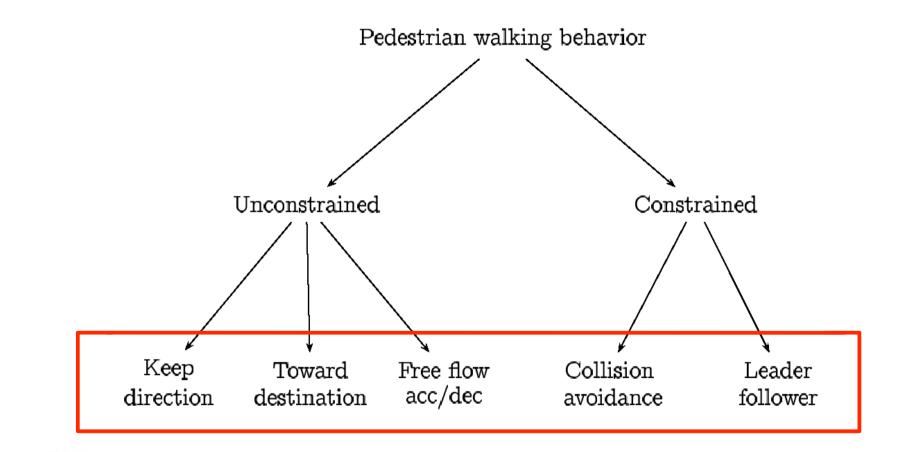
• Probability of choosing the alternative i :

$$P(i|C) = \sum_{m=1}^{M} \frac{\left(\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}\right)^{\frac{\mu}{\mu_{m}}}}{\sum_{n=1}^{M} \left(\sum_{j \in C} \alpha_{jn}^{\mu_{n}/\mu} y_{j}^{\mu_{n}}\right)^{\frac{\mu}{\mu_{n}}}} \frac{\alpha_{im}^{\mu_{m}/\mu} y_{i}^{\mu_{m}}}{\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}}$$


C : choice set

M: number of nests

 V_i : utility of alternative i


 α_{jm} : membership degree of alternative j in the nest n

 $\mu_m\;$: parameter of the nest m

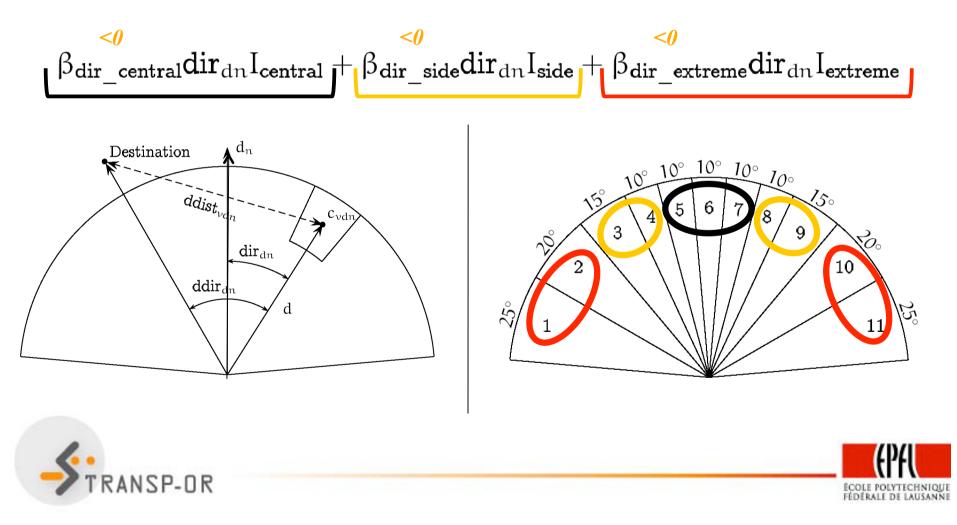
SP-OR

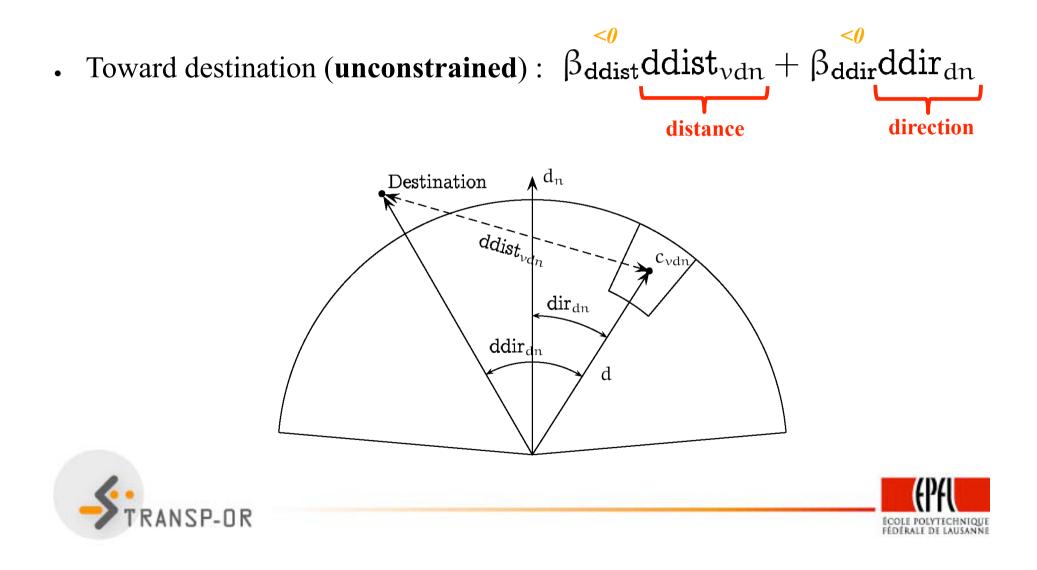
 $V_{vdn} = \beta_{dir central} dir_{dn} I_{central}$ + $\beta_{dir side} dir_{dn} I_{side}$ $\beta_{dir} extreme dir_{dn} I_{extreme}$ $\beta_{ddist} ddist_{vdn}$ $\beta_{ddir} ddir_{dn}$ + $\beta_{\text{dec}} I_{v,\text{dec}} (\nu_n / \nu_{\text{max}})^{\lambda_{\text{dec}}}$ $\beta_{accLS}I_{LS}I_{v,acc}(\nu_n/\nu_{maxLS})^{\lambda_{accLS}} +$ $\beta_{\text{accHS}} I_{\text{HS}} I_{\text{v,acc}} (\nu_n / \nu_{\text{max}})^{\lambda_{\text{accHS}}}$ + $I_{v,acc}I_{acc}^{L}\alpha_{acc}^{L}D_{L}^{\rho_{acc}^{L}}\Delta\nu_{L}^{\gamma_{acc}^{L}}\Delta\theta_{L}^{\delta_{acc}^{L}} + \right)$ $I_{\mathtt{v},\mathtt{dec}}I_{\mathtt{dec}}^{L}\alpha_{\mathtt{dec}}^{L}D_{L}^{\rho_{\mathtt{dec}}^{L}}\Delta\nu_{L}^{\gamma_{\mathtt{dec}}^{L}}\Delta\theta_{I}^{\delta_{\mathtt{dec}}^{L}} \hspace{0.1 in} + \hspace{0.1 in}$ $I_{d,d_n}I_C\alpha_C e^{-\rho_C D_C} \Delta v_C^{\gamma_C} \Delta \theta_C^{\delta_C}$

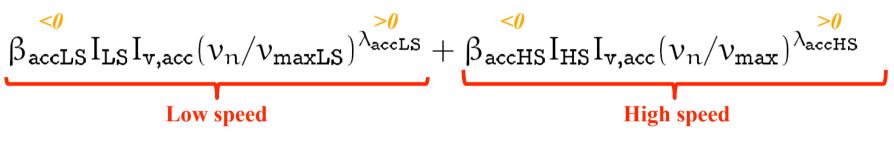
 $keep \ direction$

toward destination

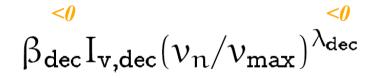
free flow acceleration


leader-follower

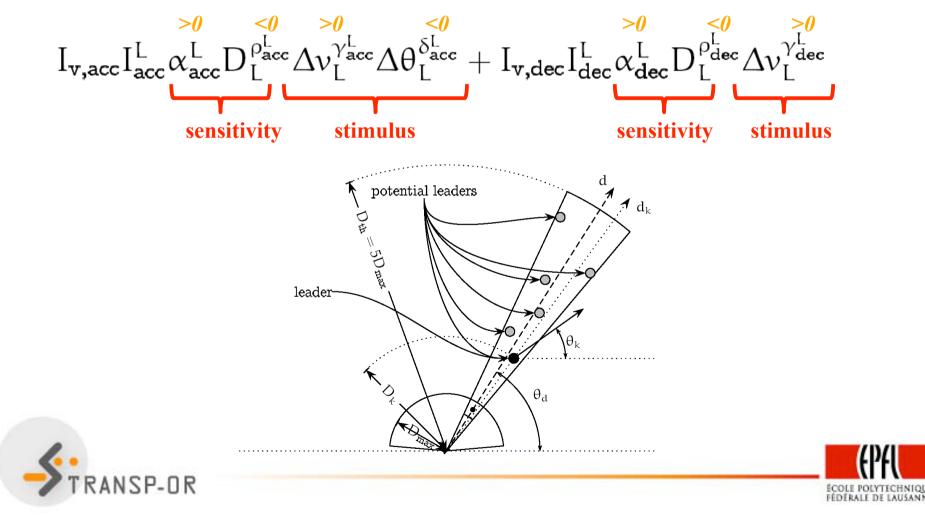

collision avoidance

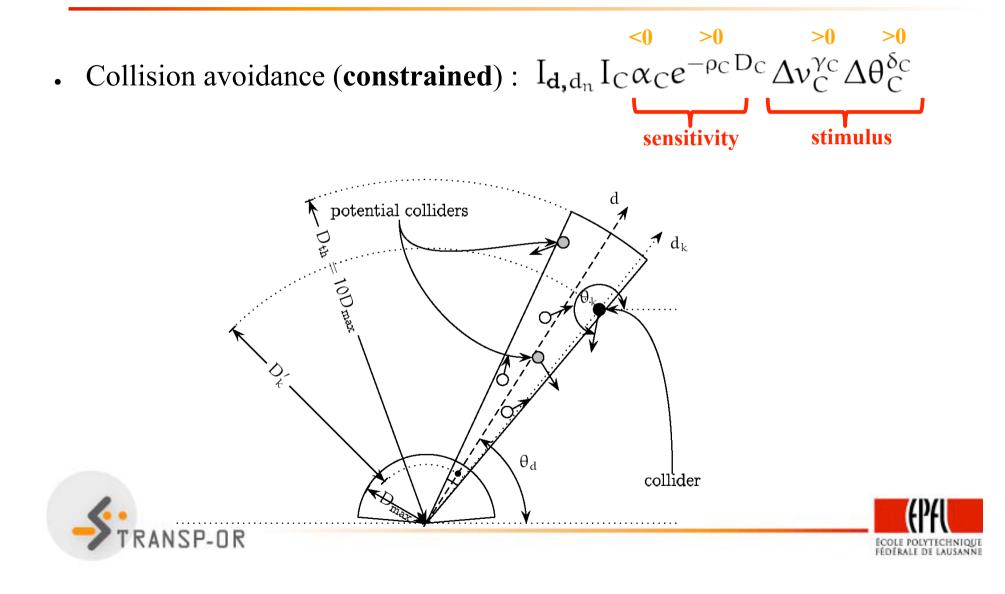


• Keep direction (unconstrained) :



- Free flow acceleration (unconstrained) :
 - Acceleration :

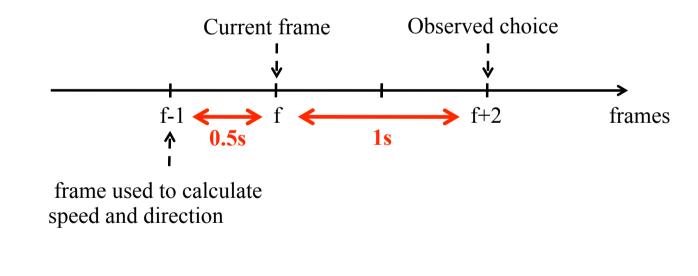

- Deceleration :



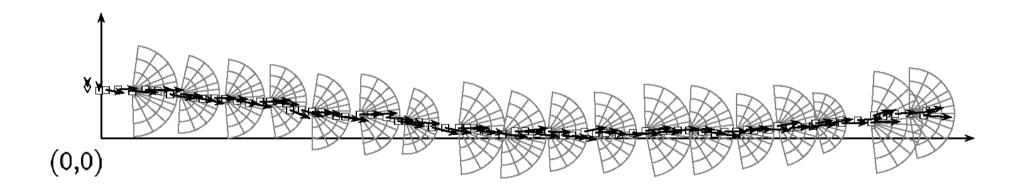
• Leader follower (constrained) :

The Japanese data set : video sequence

• Collected in Sendaï, Japan, on August 2000, large pedestrian crossing road



The Japanese data set : data processing


- Tracking from video sequence: 2 observations per second
- Pedestrians trajectories extracted using 3D-calibration (DLT algorithm)
- For each pedestrian trajectory :

The Japanese data set : pedestrian trajectory

• 4 alternatives are never chosen: 1, 12, 23, 33

Model estimation : general diagnosis

- Estimation made using the free Biogeme package (biogeme.epfl.ch)
- Estimation results :

```
Number of estimated parameters : 24
Init log-likelihood : -32451
Final log-likelihood : -13944.74
Likelihood ratio test : 37013
\overline{\rho}^2 = 0.570
```

• Parameters values consistent with hypothesis

Variable	Coefficient	t test 0	Variable	Coefficient	t test 0	t test 1
name	estimate		name	estimate		
β _{ddir}	-0.0793	-24.14	ρ_{acc}^{L}	-0.465	-1.78	
β_{ddist}	-1.52	-11.63	γ^{L}_{acc}	0.552	1.98	
β_{dir} extreme	-0.0343	-9.71	α_{dec}^{L}	3.78	5.41	
$\beta_{dir side}$	-0.0553	-22.71	ρ_{dec}^{L}	-0.654	-6.70	
β _{dir central}	-0.0320	-13.90	γ_{dec}^{L}	0.658	5.48	
BaccLS	-4.94	-25.20	δ^{L}_{acc}	-0.179	-2.22	
β _{accHS}	-7.41	-5.10	α _C	-0.00730	-10.84	
β_{dec}	-0.0645	-2.46	ρς	-0.212	-8.38	
λ_{accLS}	4.37	20.06	μ_{acc}	1.66	9.97	3.95
λ_{accHS}	0.354	2.02	µ _{const}	1.45	16.99	5.25
λ_{dec}	-2.40	-8.50	µ _{central}	5.76	2.84	2.34
α_{acc}^{L}	0.735	1.87	µnot_central	1.82	13.12	5.91

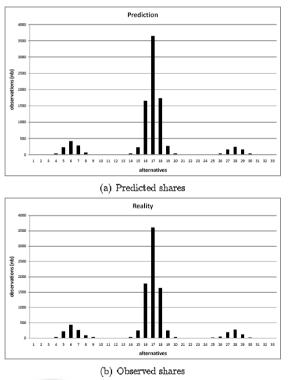
Model validation : methodology

- Validation of the specification :
 - Developpment of a model with constants only (ASC model)
 - Simulation on the Japanese data set
 - Cross validation on the Japanese data set
- Validation of the model :
 - Simulation on an experimental Dutch data set, **not used for model** estimation
 - Comparison of the proposed model with the ASC model

Model validation : model constants-only

- The simplest model : utility of each alternative represented only by an alternative specific constant (ASC)
- This model with only constants (ASC model) estimated on the Japanese data set.

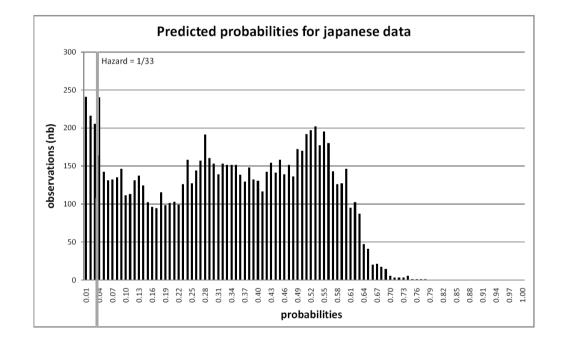
28 parameters (33, minus 4 never chosen, minus 1 for normalization)

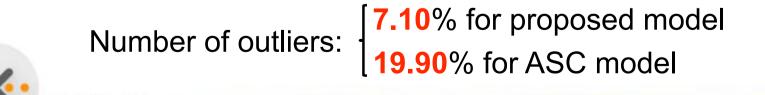

- It reproduces the aggregated observations proportions of the Japanese data set
- The ASC model **used for comparison** (for example the number of outliers)

Model validation : simulation on the Japanese data set (Aggregate level)

• The proposed model is applied to the Japanese data set (used for estimation)

	6 T
1	
-	TRANSP-OR


Cone	Г	M _Γ	RΓ	$(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$
Front	5-7,16-18,27-29	8486.16	8481	0.0006
Left	3, 4, 14, 15, 25, 26	348.86	367	-0.0494
Right	8, 9, 19, 20, 30, 31	419.29.	407	0.0302
Extreme left	1, 2, 12, 13, 23, 24	12.29	10	0.2292
Extreme right	10, 11, 21, 22, 32, 33	14.39	16	-0.1004


Area	Г	M_{Γ}	RΓ	$(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$
acceleration	1 – 11	1059.85	1065	-0.0048
constant speed	12 - 22	7588.28	7565	0.0031
deceleration	23 - 33	632.87	651	-0.0279

Model validation : simulation on the Japanese data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)

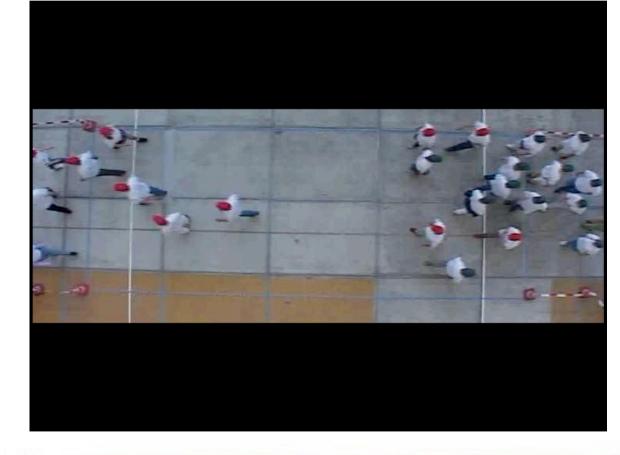
Model validation : Cross-validation on the Japanese data set

• Japanese data splited into 5 subsets, each containing 20% of the observations

5 experiments : **1** subset saved for **validation estimation** of the model on the 4 remaining

• Number of **outliers** (compared with the ASC model cross validation)

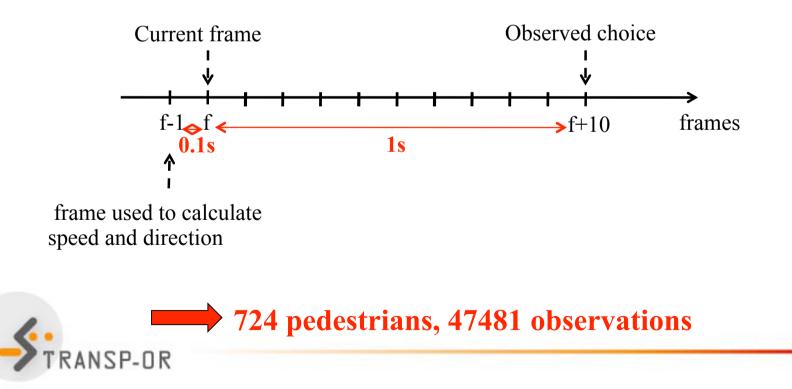
Model	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5
Proposed spec.	8.62%	6.52%	7.44%	7.87%	5.87%
Constant only	20.79%	20.70%	17.13%	19.88%	18.64%



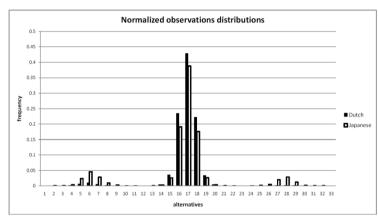
Robust specification

The Dutch data set : video sequence

• Collected at Delft university, in 2000-2001, 2 pedestrians crossing flows



The Dutch data set : general information


- Experimental data set
- Video sequence recorded at 10 frames per second
- Pedestrians trajectories extracted from the video sequence
- For each pedestrian trajectory :

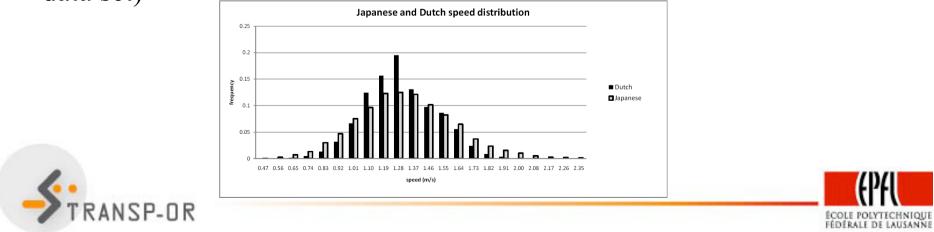
The Dutch data set : comparison with the Japanese data set

• Normalized observations distribution among alternatives

• Observations repartitions inside the nest (Japanese / Dutch)

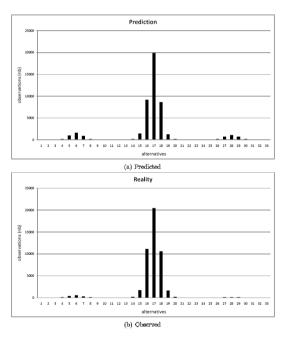
Nest	# steps	% of total
acceleration	1065	11.48%
constant speed	7565	81.51%
deceleration	651	7.01%
central	4297	46.30%
not central	4984	53.70%

Nest	# steps	% of total
acceleration	1273	2.68%
constant speed	45869	96.61%
deceleration	339	0.71%
central	20950	44.12%
not central	26531	55.88%


ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

The Dutch data set : comparison with the Japanese data set

• Quite similar observations proportions in the **direction's cones** (not for speed regime)

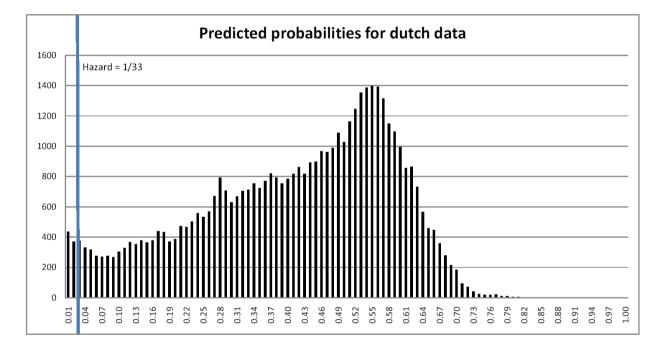

Dataset	extremeleft	left	front	\mathbf{right}	extremeright
Japanese	0.11%	3.95%	91.38%	4.39%	0.17%
Dutch	0.06%	4.40%	91.35%	4.15%	0.04%

• Speed distributions have different shapes (experimental design of Dutch data set)

Model validation : simulation on the Dutch data set (Aggregate level)

• The proposed model is applied to the **Dutch** data set (**NOT** used for estimation)

Cone	Г	M _Γ	RΓ	$(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$
Front	5 - 7, 16 - 18, 27 - 29	43552.36	43374	0.0041
Left	3, 4, 14, 15, 25, 26	1948.77	2089	-0.0671
Right	8, 9, 19, 20, 30, 31	1853.34	1972	-0.0602
Extreme left	1, 2, 12, 13, 23, 24	43.91	27	0.6261
Extreme right	10, 11, 21, 22, 32, 33	82.62	19	3.3485


Area	Г	M_{Γ}	RΓ	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 – 11	4022.32	1273	2.1597
constant speed	12 - 22	40581.06	45869	-0.1153
deceleration	23 - 33	2877.62	339	7.4886

• Overprediction of acceleration and deceleration

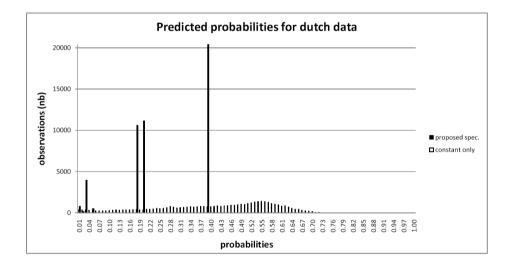
Model validation : simulation on the Dutch data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)

Number of outliers: **2.41**%

Model validation : Comparison with the ASC model on the Dutch data set (Aggregate level)

• The ASC model is applied to the Dutch data set and compared to the proposed model)


<u>ASC model</u>									Proposed model								
Cone		Г		MΓ		Rг	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$		Cone		Г			lΓ	RΓ	$(M_{\Gamma} -$	$R_{\Gamma})/R_{\Gamma}$
Front	5 –	7,16 – 18,	27 — 29	43386.	.42 4	3374	0.0003		Front	5 –	7,16-18,2	27 – 29	4355	2.36	43374		0.0041
Left	3	, 4, 14, 15, 2	5,26	1877.	.47	2089	-0.1013		Left	3	3, 4, 14, 15, 25	5,26	194	8.77	2089		-0.0671
Right	8	8, 9, 19, 20, 3	0,31	2082.	.10	1972	0.0558		Right	8	3, 9, 19, 20, 30	0,31	185	3.34	1972		-0.0602
Extreme left	1	, 2, 12, 13, 2	3,24	51.	.16	27	0.8947		Extreme left	1	1, 2, 12, 13, 23, 24		3,24 43		27		0.6261
Extreme right	10	, 11, 21, 22,	32, 33	81.	.85	19	3.308		Extreme right	10	10, 11, 21, 22, 32, 33			82.62			3.3485
Area		Г	MΓ	-	R_{Γ}	(M	$(\Gamma - R_{\Gamma})/R_{\Gamma}$		Area		Г	M	-	R	· (1	$M_{\Gamma} - R_{I}$	r)/Rr
acceleration	n	1 - 11	5448	.24	1273		3.2798		acceleration	n	1 - 11	4022	32	2 1273		2	.1597
constant speed		12 - 22	38700	.42 4	5869		-0.1563		constant spe	ed	12 - 22 40581.00		.06	4586	59	-0	.1153
deceleration		23 - 33	3330	.34	339		8.824		deceleration	n	23 - 33	2877	.62	33	39	7	.4886

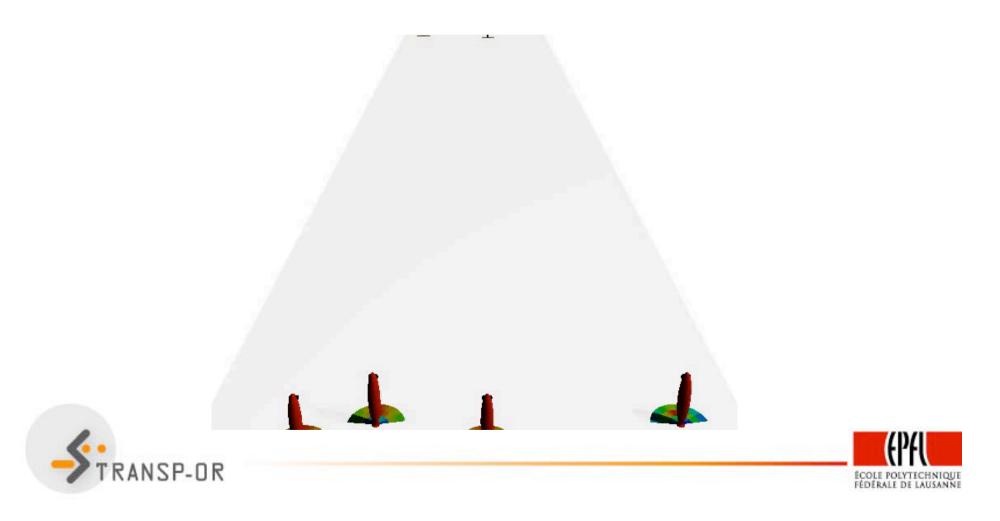
Model validation : simulation on the Japanese data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)

Number of outliers: **2.41%** for proposed model **10.31%** for ASC model

- Simulation of 2 pedestrian crossing flows with the model
- Example : | 10 pedestrians entering on the scene per second
 - Simulation of 300s
 - Random initial speed, entry and destination

• 2 pedestrians entering on the scene per second



• 5 pedestrians entering on the scene per second

• 10 pedestrians entering on the scene per second

Conclusions and Perspectives

<u>Conclusions</u> :

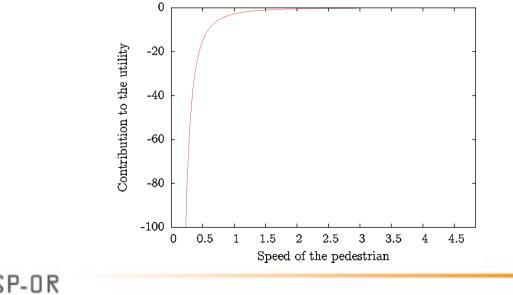
- Discrete choice model for pedestrian walking behavior with '**unconstrained**' and '**constrained**' parameters
- Model **estimated** on a real data set, parameters values consistent with hypothesis
- Model validated on a real data set, not used for estimation
- Operating **Simulator**
- Perspectives :
 - Improve the **acceleration** and **deceleration** patterns
 - Incorporate **physical characteristics** of the pedestrians
 - Model the **strategical** and **tactical** behavioural levels

Thanks for your attention

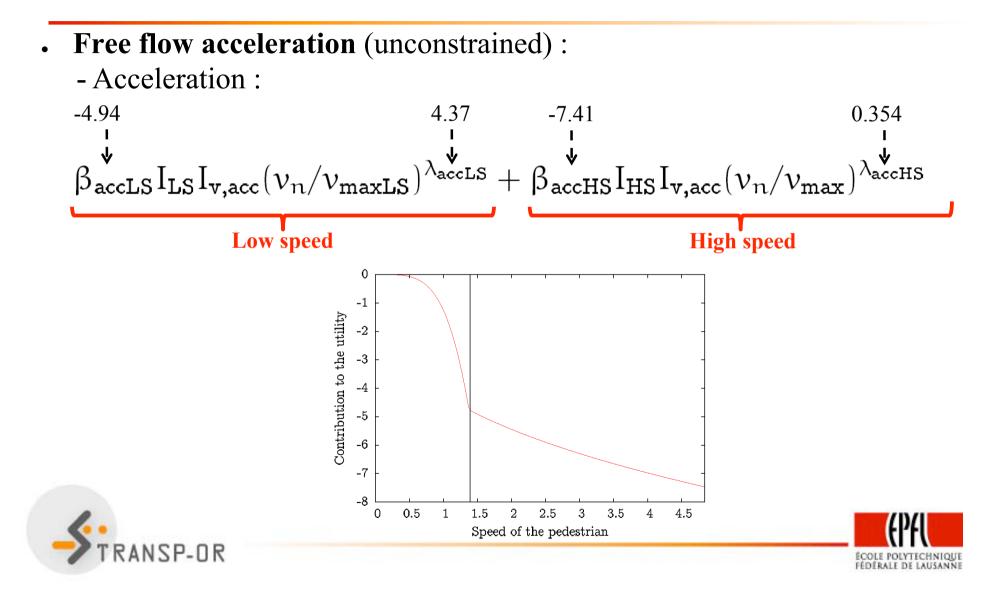
Robin, T., Antonini, G., Bierlaire, M. and Cruz, J. (2009). Specification, estimation and validation of a pedestrian walking behavior model, *Transportation Research Part B: Methodological* **43**(1): 36-56.

• Keep direction (unconstrained) :

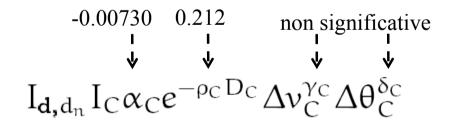
$$\begin{array}{cccc} -0.0320 & & -0.0553 & & -0.0343 \\ & & & & & & \\ & & & & & & \\ \beta_{dir_central}dir_{dn}I_{central} + \beta_{dir_side}dir_{dn}I_{side} + \beta_{dir_extreme}dir_{dn}I_{extreme} \end{array}$$


• Toward destination (unconstrained) :

 $\frac{-1.52}{\checkmark} + \frac{-0.0793}{\checkmark} \\ \beta_{ddist} ddist_{vdn} + \beta_{ddir} ddir_{dn}$



• Free flow acceleration (unconstrained) :



• Leader-Follower (constrained) :

• Collision avoidance (constrained) :

