
Some challenges in route choice modeling

Michel Bierlaire and Emma Frejinger

transp-or.epfl.ch

Transport and Mobility Laboratory, EPFL

Some challenges in route choice modeling – p.1/63



Route choice modeling

Given a transportation network composed of nodes, links,
origin and destinations.
For a given transportation mode and origin-destination
pair, which is the chosen route?
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Applications

• Intelligent transportation systems

• GPS navigation

• Transportation planning
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Challenges

• Alternatives are often highly correlated due to
overlapping paths

• Data collection

• Large size of the choice set
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Publication

Frejinger, Emma (2008) Route choice analysis : data, models,
algorithms and applications. PhD thesis EPFL, no 4009
http://library.epfl.ch/theses/?nr=4009
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Dealing with correlation

Frejinger, E. and Bierlaire, M. (2007). Capturing correlation with

subnetworks in route choice models, Transportation Research

Part B: Methodological 41(3):363-378.
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Existing Approaches

• Few models explicitly capturing correlation have been
used on large-scale route choice problems

• C-Logit (Cascetta et al., 1996)

• Path Size Logit (Ben-Akiva and Bierlaire, 1999)

• Link-Nested Logit (Vovsha and Bekhor, 1998)

• Logit Kernel model adapted to route choice
situation (Bekhor et al., 2002)

• Probit model (Daganzo, 1977) permits an arbitrary
covariance structure specification but cannot be
applied in a large-scale route choice context
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Existing Approaches

• Link based path-multilevel logit model (Marzano and
Papola, 2005)

• Illustrated on simple examples and not estimated
on real data
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Subnetworks

How can we explicitly capture the most
important correlation structure without

considerably increasing the model complexity?
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Subnetworks

How can we explicitly capture the most
important correlation structure without

considerably increasing the model complexity?

• Which are the behaviorally important decisions?
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Subnetworks

How can we explicitly capture the most
important correlation structure without

considerably increasing the model complexity?

• Which are the behaviorally important decisions?

• Our hypothesis: choice of specific parts of the network
(e.g. main roads, city center)

• Concept: subnetwork
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Subnetworks

• Subnetwork approach designed to be behaviorally
realistic and convenient for the analyst

• Subnetwork component is a set of links corresponding
to a part of the network which can be easily labeled

• Paths sharing a subnetwork component are assumed
to be correlated even if they are not physically
overlapping
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Subnetworks - Example
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Subnetworks - Methodology

• Factor analytic specification of an error component
model (based on model presented in Bekhor et al.,
2002)

Un = βT
Xn + FnTζn + νn

• Fn (JxQ): factor loadings matrix

• (fn)iq =
√

lniq

• T(QxQ) = diag (σ1, σ2, . . . , σQ)

• ζn (Qx1): vector of i.i.d. N(0,1) variates

• ν(Jx1): vector of i.i.d. Extreme Value distributed
variates
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Subnetworks - Example
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Empirical Results

• The approach has been tested on three datasets:
Boston (Ramming, 2001), Switzerland, and Borlänge

• Deterministic choice set generation
Link elimination

• GPS data from 24 individuals
2978 observations, 2179 origin-destination pairs

• Borlänge network
3077 nodes and 7459 links

• BIOGEME (biogeme.epfl.ch, Bierlaire, 2007) has been
used for all model estimations
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Borlänge Road Network
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Model Specifications

• Six different models: MNL, PSL, EC1, EC′
1, EC2 and

EC′
2

• EC1 and EC′
1 have a simplified correlation structure

• EC′
1 and EC′

2 do not include a Path Size attribute

• Deterministic part of the utility

Vi = βPS ln(PSi) + βEstimatedTimeEstimatedTimei+

βNbSpeedBumpsNbSpeedBumpsi + βNbLeftTurnsNbLeftTurnsi+

βAvgLinkLengthAvgLinkLengthi
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Estimation Results

• Parameter estimates for explanatory variables are
stable across the different models

• Path size parameter estimates

Parameter PSL EC1 EC2

Path Size -0.28 -0.49 -0.53

Scaled estimate -0.33 -0.53 -0.56

Rob. T-test 0 -4.05 -5.61 -5.91

• All covariance parameters estimates in the different
models are significant except the one associated with
R.50 S
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Estimation Results

Model Nb. σ Nb. Estimated Final Adjusted

Estimates Parameters L-L Rho-Square

MNL - 12 -4186.07 0.152

PSL - 13 -4174.72 0.154

EC1 (with PS) 1 14 -4142.40 0.161

EC′
1 1 13 -4165.59 0.156

EC2 (with PS) 5 18 -4136.92 0.161

EC′
2 5 17 -4162.74 0.156

1000 pseudo-random draws for Maximum Simulated Likelihood estimation

2978 observations

Null log likelihood: -4951.11

BIOGEME (biogeme.epfl.ch) has been used for all model estimations.
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Forecasting Results

• Comparison of the different models in terms of their
performance of predicting choice probabilities

• Five subsamples of the dataset

• Observations corresponding to 80% of the origin
destination pairs (randomly chosen) are used for
estimating the models

• The models are applied on the observations
corresponding to the other 20% of the origin
destination pairs

• Comparison of final log-likelihood values
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Forecasting Results

• Same specification of deterministic utility function for
all models

• Same interpretation of these models as for those
estimated on the complete dataset

• Coefficient and covariance parameter values are stable
across models
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Forecasting Results
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Conclusion - Subnetworks

• Models based on subnetworks are designed for route
choice modeling of realistic size

• Correlation on subnetwork is explicitly captured within
a factor analytic specification of an Error Component
model

• Estimation and prediction results clearly shows the
superiority of the Error Component models compared
to PSL and MNL

• The subnetwork approach is flexible and the model
complexity can be controlled by the analyst
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Network-free data
Bierlaire, M., and Frejinger, E. (to appear). Route choice modeling with network-free data,
Transportation Research Part C: Emerging Technologies (accepted for publication on July
23, 2007) doi:10.1016/j.trc.2007.07.007
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Data collection and processing

• Link-by-link descriptions of chosen routes necessary
for route choice modeling but never directly available

• Data processing in order to obtain network compliant
paths

• Map matching of GPS points

• Reconstruction of reported paths

• Difficult to verify and may introduce bias and errors
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Modeling with network-free data

• An observation i is a sequence of individual pieces of
data related to an itinerary. Examples: sequence of
GPS points or reported locations

• For each piece of data we define a Domain of Data
Relevance (DDR) that is the physical area where it is
relevant

• The DDRs bridge the gap between the network-free
data and the network model
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Example - GPS data
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Example - Reported trip
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Domain of Data Relevance

• For each piece of data d we generate a list of relevant
network elements e (links and nodes)
We define an indicator function

δ(d, e) =





1 if e is related to the DDR of d

0 otherwise
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Model estimation

• We aim at estimating the parameters β of route choice
model P (p|Cn(s);β)

• We have a set Si of relevant od pairs

• The probability of reproducing observation i of traveler
n, given Si is defined as

Pn(i|Si) =
∑

s∈Si

Pn(s|Si)
∑

p∈Cn(s)

Pn(i|p)Pn(p|Cn(s);β)
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Model estimation

• Measurement equation Pn(i|p)

• Reported trips

Pn(i|p) =





1 if i corresponds to p

0 otherwise

• GPS data
Pn(i|p) = 0 if i does not correspond to p

If i corresponds to p then Pn(i|p) is a function of the
distance between i and p
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Model estimation

• Measurement equation Pn(i|p) for GPS data

• Distance between i and a the closest point on a link ℓ

is D(d, p) = minℓ∈Apd
∆(d, ℓ)

4

(2,
4)

(4,
5)

(4, 6)

d4

∆(d4, (2, 4))

∆(d4, (4, 5))
∆(d4, (4, 6))
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Model estimation
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Pn(i|Si) =
∑

s∈Si

Pn(s|Si)
∑

p∈Cn(s)

Pn(i|p)Pn(p|Cn(s);β)

P (i|s) = P (i|p1)P (p1|C(s);β) + P (i|p2)P (p2|C(s);β)

Some challenges in route choice modeling – p.32/63



Empirical Results

• Simplified Swiss network (39411 links and 14841
nodes)

• RP data collection through telephone interviews

• Long distance car travel

• The chosen routes are described with the origin and
destination cities as well as 1 to 3 cities or locations
that the route pass by

• 940 observations available after data cleaning and
verification
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Empirical Results

Some challenges in route choice modeling – p.34/63



Empirical Results

• No information available on the exact origin destination
pairs

P (s|i) =
1

|Si|
∀s ∈ Si

• P (r|i) is modeled with a binary variable

δri =





1 if r corresponds to i

0 otherwise
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Empirical Results

• Two origin-destination pairs are randomly chosen for
each observation

• 46 routes per choice set are generated with a choice
set generation algorithm

• After choice set generation 780 observations are
available

• 160 observations were removed because either all
or none of the generated routes crossed the
observed zones
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Empirical Results

• Probability of an aggregate observation i

P (i) =
∑

s∈Si

1

|Si|

∑

r∈Cs

δriP (r|Cs)

• We estimate Path Size Logit (Ben-Akiva and Bierlaire,
1999) and Subnetwork (Frejinger and Bierlaire, 2007)
models

• BIOGEME (biogeme.epfl.ch) used for all model
estimations
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Empirical Results - Subnetwork

• Subnetwork: main motorways in Switzerland

• Correlation among routes is explicitly modeled on the
subnetwork

• Combined with a Path Size attribute

• Linear-in-parameters utility specifications
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Empirical Results - Subnetwork
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Parameter PSL Subnetwork
ln(path size) based on free-flow time 1.04 (0.134) 7.81 1.10 (0.141) 7.78

Scaled Estimate 1.04 1.04
Freeway free-flow time 0-30 min -7.12 (0.877) -8.12 -7.45 (0.984) -7.57

Scaled Estimate -7.12 -7.04
Freeway free-flow time 30min - 1 hour -1.69 (0.875) -1.93 -2.26 (1.03) -2.19

Scaled Estimate -1.69 -2.14
Freeway free-flow time 1 hour + -4.98 (0.772) -6.45 -5.64 (1.00) -5.61

Scaled Estimate -4.98 -5.33
CN free-flow time 0-30 min -6.03 (0.882) -6.84 -6.25 (0.975) -6.41

Scaled Estimate -6.03 -5.91
CN free-flow time 30 min + -1.87 (0.331) -5.64 -2.16 (0.384) -5.63

Scaled Estimate -1.87 -2.04
Main free-flow travel time 10 min + -2.03 (0.502) -4.05 -2.46 (0.624) -3.95

Scaled Estimate -2.03 -2.33
Small free-flow travel time -2.16 (0.685) -3.16 -2.75 (0.804) -3.42

Scaled Estimate -2.16 -2.60
Proportion of time on freeways -2.2 (0.812) -2.71 -2.31 (0.865) -2.67

Scaled Estimate -2.2 -2.18
Proportion of time on CN 0 fixed 0 fixed

Proportion of time on main -4.43 (0.752) -5.88 -4.40 (0.800) -5.51
Scaled Estimate -4.43 -4.16

Proportion of time on small -6.23 (0.992) -6.28 -6.02 (1.03) -5.83
Scaled Estimate -6.23 -5.69

Covariance parameter 0.217 (0.0543) 4.00
Scaled Estimate 0.205



Empirical Results

PSL Subnetwork

Covariance parameter 0.217

(Rob. Std. Error) Rob. T-test (0.0543) 4.00

Number of simulation draws - 1000

Number of parameters 11 12

Final log-likelihood -1164.850 -1161.472

Adjusted rho square 0.145 0.147

Sample size: 780, Null log-likelihood: -1375.851
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Empirical Results

• All parameters have their expected signs and are
significantly different from zero

• The values and significance level are stable across the
two models

• The subnetwork model is significantly better than the
Path Size Logit (PSL) model
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Concluding remarks

• Network-free data are more reliable

• Data processing may bias the result

• We prefer to model explicitly the relationship between
the data and the model
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Choice set generation
Frejinger, E. and Bierlaire, M. (2007). Stochastic Path Generation Algorithm for Route
Choice Models. Proceedings of the Sixth Triennial Symposium on Transportation Analysis
(TRISTAN) June 10-15, 2007.
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Path enumeration

• Dial’s approach avoids path enumeration

• Computationally convenient but behaviorally incorrect

• MNL inappropriate due to significant path overlap

• Generalized cost must be link-additive

• Heterogeneity in terms of behavior, equipments, etc. cannot be
accounted for.

• With other DCM models, choice sets must be explicitly defined

• Path enumeration heuristics have been proposed:
• Deterministic approaches: link elimination (Azevedo et al.,

1993), labeled paths (Ben-Akiva et al., 1984)
• Stochastic approaches: simulation (Ramming, 2001) and

doubly stochastic (Bovy and Fiorenzo-Catalano, 2006)
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Path enumeration

• Underlying assumption in existing approaches: the actual
choice set is generated

• Empirical results suggest that this is not always true

• Our approach:
• Choice set contains all paths
• Too large for computation
• Solution: sampling of alternatives
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Sampling of Alternatives

• Multinomial Logit model (e.g. Ben-Akiva and Lerman, 1985):

P (i|Cn) =
q(Cn|i)P (i)∑

j∈Cn

q(Cn|j)P (j)
=

eVin+ln q(Cn|i)

∑

j∈Cn

eVjn+ln q(Cn|j)

Cn: set of sampled alternatives
q(Cn|j): probability of sampling Cn given that j is the chosen
alternative

• If purely random sampling, q(Cn|i) = q(Cn|j) and

P (i|Cn) =
eVin+ln q(Cn|i)

∑

j∈Cn

eVjn+ln q(Cn|j)
=

eVin

∑

j∈Cn

eVjn
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Importance Sampling of Alternatives

• Attractive paths have higher probability of being sampled than
unattractive paths

• In this case, q(Cn|i) 6= q(Cn|j)

P (i|Cn) =
eVin+ln q(Cn|i)

∑

j∈Cn

eVjn+ln q(Cn|j)
6=

eVin

∑

j∈Cn

eVjn

• Path utilities must be corrected in order to obtain unbiased
estimation results
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Stochastic Path Enumeration

• Key feature: we must be able to compute q(Cn|i)

• One possible idea: a biased random walk between so and sd

which selects the next link at each node v.

• Initialize: v = so

• Step 1: associate a weight with each outgoing link ℓ = (v, w):

ω(ℓ|b1) = 1 − (1 − xℓ
b1)

where

xℓ =
SP (v, sd)

C(ℓ) + SP (w, sd)
,

is 1 if ℓ is on the shortest path, and decreases when ℓ is far
from the shortest path
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Stochastic Path Enumeration
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Stochastic Path Enumeration

• Step 2: normalize the weights to obtain a probability distribution

q(ℓ|Ev, b1) =
ω(ℓ|b1, b2)∑
m∈Ev

ω(m|b1)

• Random draw a link (v, w∗) based on this distribution and add it
to the current path

• If w∗ = sd, stop. Else, set v = w∗ and go to step 1.

Probability of generating a path j:

q(j) =
∏

ℓ∈Γj

q(ℓ|Ev, b1).
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Sampling of Alternatives

• Following Ben-Akiva (1993)

• Sampling protocol

1. A set C̃n is generated by drawing R paths with replacement
from the universal set of paths U

2. Add chosen path to C̃n

• Outcome of sampling: (k̃1, k̃2, . . . , k̃J) and
∑J

j=1 k̃j = R

P (k̃1, k̃2, . . . , k̃J) =
R!

∏
j∈U k̃j !

∏

j∈U

q(j)
ekj

• Alternative j appears kj = k̃j + δcj in C̃n

Some challenges in route choice modeling – p.51/63



Sampling of Alternatives

• Let Cn = {j ∈ U | kj > 0}

q(Cn|i) = q(C̃n|i) =
R!

(ki − 1)!
∏

j∈Cn

j 6=i

kj !
q(i)ki−1

∏

j∈Cn

j 6=i

q(j)kj = KCn

ki

q(i)

KCn
= R!Q

j∈Cn
kj !

∏
j∈Cn

q(j)kj

P (i|Cn) =
e
Vin+ln

“
ki

q(i)

”

∑

j∈Cn

e
Vjn+ln

“
kj

q(j)

”
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Numerical Results

• Estimation of models based on synthetic data generated with a
postulated model

• Evaluation of
• Sampling correction
• Path Size attribute
• Biased random walk algorithm parameters
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Numerical Results
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Numerical Results

• True model: Path Size Logit
Uj = βPS ln PSU

j + βLLengthj + βSBSpeedBumpsj + εj

βPS = 1, βL = −0.3, βSB = −0.1
εj distributed Extreme Value with scale 1 and location 0

PSU
j =

∑
ℓ∈Γj

Lℓ

Lj

1P
p∈U

δℓp

• 3000 observations
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Numerical Results

• Four model specifications

Sampling Correction
Without With

Path
Size

C MNoCorr
PS(C) MCorr

PS(C)

U MNoCorr
PS(U) MCorr

PS(U)

PSU
i =

∑
ℓ∈Γi

Lℓ

Li

1P
j∈U

δℓj

PSC
in =

∑
ℓ∈Γi

Lℓ

Li

1P
j∈Cn

δℓj
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Numerical Results

• Model MNoCorr
PS(C) :

Vin = µ
“
βPS ln PSC

in − 0.3Lengthi + βSBSpeedBumpsi

”

• Model MCorr
PS(C):

Vin = µ
“
βPS ln PSC

in − 0.3Lengthi + βSBSpeedBumpsi

”
+ ln( ki

q(i)
)

• Model MNoCorr
PS(U) :

Vin = µ
“
βPS ln PSU

in − 0.3Lengthi + βSBSpeedBumpsi

”

• Model MCorr
PS(U):

Vin = µ
“
βPS ln PSU

in − 0.3Lengthi + βSBSpeedBumpsi

”
+ ln( ki

q(i)
)
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Numerical Results

True MNoCorr
P S(C)

MCorr
P S(C)

MNoCorr
P S(U)

MCorr
P S(U)

PSL PSL PSL PSL PSL

βL fixed -0.3 -0.3 -0.3 -0.3 -0.3

bµ 1 0.182 0.923 0.141 0.977

standard error 0.0277 0.0246 0.0263 0.0254

t-test w.r.t. 1 -29.54 -3.13 -32.64 -0.91

bβPS 1 1.94 0.308 -1.02 1.02

standard error 0.428 0.0736 0.383 0.0539

t-test w.r.t. 1 2.20 -9.40 -5.27 0.37

bβSB -0.1 -1.91 -0.139 -2.82 -0.0951

standard error 0.25 0.0232 0.428 0.024

t-test w.r.t. -0.1 -7.24 -1.68 -6.36 0.20
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Numerical Results

True MNoCorr
P S(C)

MCorr
P S(C)

MNoCorr
P S(U)

MCorr
P S(U)

PSL PSL PSL PSL PSL

Final log likelihood -6660.45 -6147.79 -6666.82 -5933.62

Adj. rho-square 0.018 0.093 0.017 0.125

Null log likelihood: -6784.96, 3000 observations

Algorithm parameters: 10 draws, b1 = 5, b2 = 1, C(ℓ) = Lℓ

Average size of sampled choice sets: 9.66

BIOGEME (Bierlaire, 2007 and Bierlaire, 2003) has been used for all

model estimations
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Extended Path Size

• Compute Path Size attribute based on an extended choice set
Cextended

n

• Simple random draws from U\Cn so that |Cn| ≤ |Cextended
n | ≤ |U|

Some challenges in route choice modeling – p.60/63



Extended Path Size
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Extended Path Size

• Assume that the true choice set is the set of all paths

• Draw a subset for estitating the choice probability

• Draw a larger subset to compute the path size

• Various heuristics based on the same definition of the link
weights can be used
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Conclusions

• New point of view on choice set generation and route choice
modeling

• Path generation is considered an importance sampling
approach

• We present a path generation algorithm and derive the
corresponding sampling correction

• Path Size should be computed on largest possible sets

• Numerical results are very promising
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