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Ambushes

Avoiding the ambush
“The best way to survive an ambush is not to encounter it. In order for
this to happen, vehicle movement mustn’t be predictable in timing or
route, and should avoid the most obvious routes.”
Lt. Col. Kevin Stoddard, Soldiers handbook



Valuables distribution/collection

Urban environment, street network

Stable (ambush not pursuit)

Depot and banks are safe locations

Ambushes are prepared at nodes

Un-escorted armored vehicle, multiple
stops

Both deterministic and stochastic in nature.
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Data

Relevant information is:

d : the depot

B: set of banks

V : set of nodes V = N ∪B ∪{d}
E : set of edges (i , j), i ∈ N, j ∈ N

αj , j ∈ N: success rate of an ambush prepared at j

cij , (i , j) ∈ E : length of edge (i , j)



Modeling the attacker

The attacker as a feature of the environment (adaptation of Hazardous
material transportation concepts) Erkut and Verter (1998) and List et al.
(1991).

Model the risk as an accumulating metric over the course of a
vehicles route.

Search for dissimilar routes, Carotenuto et al. (2007)



Risk function

Risk

Occurrence Relevance

Attack Exposed value

Exposition Predictability

Location Duration Repetitions Sequences

.

Given a vehicle’s route r
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Predictability - time
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Predictability - ordering

Given two routes r1, r2, similarity is measured by the Levenshtein
distance Sr1,r2

The higher the distance the more“dissimilar” the orderings

Model by β4 ·1/Sr1,r2



Advantages and critics of the environment-based
modeling

(+) All state-of-the-art techniques can be adopted from classic VRP.

(+-) The model is deterministic.

(-) Hazmat based predictability metrics are in fact predictable.



Modeling the attacker

Risk minimization models are acceptable against regular thieves



Modeling the attacker

ocean’s 11 - ambush planning

What about a smart robber? We assume full knowledge!



Modeling the attacker’s incentive

We explicitly model the robber as a player in a 2-player non-cooperative
game.
Assumptions:

Complete information on the network, including the access to
planning algorithms.

Ambush sites and vehicle paths are chosen before the vehicle departs
from the depot.

The robber is rational, and will maximize payoff.

One ambush site (a lonely gangster).

Bell (2004), Joseph (2005).



Modeling the attacker’s incentive - single OD

Let pij : flow over the link (i , j) ∈ E .
Success of ambush at node j :

rj = ∑
i∈N

(pij) αj

Robber’s payoff at j :

Rj = ∑
i∈N

(pij) αj ·$j

Robber’s goal:

Zr = max
j∈N

∑
i∈N

(pij) αj ·$j



MinMax formulation - single OD

Our goal:

Zp = min
P

{
max
j∈N

∑
i∈N

(pij) αj ·$j

}
p is a flow:

∑
i∈N

(pij) = ∑
k∈N

(pjk) ∀j ∈ N

∑
i∈V

(pib) = 1 ∑
j∈V

(pdj) = 1

0 ≤ pij ≤ 1 ∀(i , j) ∈ E



MinMax formulation - single OD

Given the optimal solution p∗:

p∗ij is used as probability of traversing edge (i , j).

A random path construction procedure is used to dynamically
determine the vehicle’s route: no critically vulnerable node
exploitable by an intelligent robber.

Flow circulation does not affect optimality (Joseph, 2005).
Implementation: add ε · ∑i∈N ∑j∈N pijcij to the objective.



Modeling multiple destinations

Flows on network do not model temporal considerations.

Route based formulation quickly explode in size w.r.t the size of the
street network and loose one level of “stochasticity”.

Two steps approach:

Decide the order of the banks to be visited

Adapt the flow-based model to multiple destinations
(multi-commodity flow or layered network)



Multi-commodity flow

Given an ordering O for the banks to be visited, we define |B|+1 commodities, one for each
OD pair in the vehicle’s journey.
As ambushes at j in different segments of the vehicle’s journey are mutually exclusive events,
the robber’s goal can be modeled as:

Zr = max
j∈N

∑
b∈B

∑
i∈N

(pb
ij ) α

p
j ·$

p
j

The minmax game is as follows:

Zp = min
P

{
max
j∈N

∑
b∈B

∑
i∈N

(pb
ij ) α

p
j ·$

p
j

}
s.t. p is a multicommodity flow

∑
i∈N

(pb
ij ) = ∑

k∈N

(pb
jk ) ∀j ∈ N,∀b ∈ B

∑
i∈V

(pb−1
ij ) = 1, ∑

i∈V

(pb
ji ) = 1 ∀b ∈ B, j ∈ Ob

∑
j∈V

(p0
dj ) = 1, ∑

j∈V

(p
|B|
id ) = 1

0 ≤ pb
ij ≤ 1 ∀(i , j) ∈ E ,∀b ∈ B



Layered network

|B| copies of the network are
created

Linked with directed links, where
pjj ′ = 1, j ∈ O

Terminal arc pjd = 1, j ∈ O|B|, to
impose flow circulation

Both formulations have similar complexity



MinMax formulation

Given the optimal solution p∗:

pb
ij is used as probability of using edge (i , j) in the b-th part of the

vehicle’s journey.



Determine the bank ordering

We use an enumerative approach:

Let Θ be the set of possible orderings, |Θ| = |B|!

In real world |B| is hardly bigger than 6, thus 6! = 720

Using a path based approach, as in Bell (2004) with Ω the set of possible paths,
|Ω| = |V |!, where |V | can be easily order of hundreds or thousands.

We add a stochastic decision level using a mixed strategy for the orderings with
pr , r ∈ Θ the probability of selecting the ordering r :

p∗r =
1− Z̃p(r)

∑
Θ
k=1(1− Z̃p(k))

where Z̃p(r) is the normalized payoff



Preliminary results on Cambridge network

Considered by Joseph (2005), 50 nodes and 91 edges, LPs solved by
GLPK, algorithm coded in C

Performed experiments with 3 up to 6 banks, max runtime 120 seconds on
a laptop



Preliminary results on Cambridge network

Equal αj

Payoffs between 0.333 and 0.376

72.3 (63, 80) edges with positive flow

47.1 (43, 49) nodes with positive inflow, 27.0 (20, 32) with max payoff



Preliminary results on Cambridge network

αj increasing with distance from banks and depot

Payoffs between 0.262 and 0.504

62.0 (51, 70) edges with positive flow

43.6 (38, 48) nodes with positive inflow, 17.1 (11, 23) with max payoff



Advantages and critics of the minmax flow based
approach

(+) Unpredictable.

(+) Does not suffer from dimensionality.

(-) Deterministic constraints are difficult to model.



Conclusions and Outlook

Two models to deal with ambush avoidance for valuable transfer.

Direct modeling of robber’s incentives.

Applicable approach to real world.

Outlook

Relax restrictive hypoteses (rational robber, full information)

Consider multiple vehicles

Consider multiple ambush points

Model restrictions on vehicle routes



Value shading

The minmax approach limits the max payoff but this value shades the
“magnitude”of the total payoff.
Multi-objective optimization, solved in two steps:

Compute Z ∗
p , with minmax

Redistribute the flow:

Up = min
P

∑
j∈N

∑
b∈B

∑
i∈N

(pb
ij) α

p
j ·$

p
j

s.t. ∑
b∈B

∑
i∈N

(pb
ij) αj ·$p

j ≤ Z ∗
p ∀j ∈ N,b ∈ B

p is a flow



Selecting the bank ordering

The formula proposed only approximates the best mixed strategy.
Indeed, a 2-player game for bank ordering, would be better.
We set up the following matrix game:

V
R S1 . . . Sr

S1 Z (S1) . . . U(S1,Sr )
. . . . . . . . . . . .
Sr U(Sr ,S1) . . . Z (Sr )

with U(S1,Sr ) ≤ Z (S1) and U(Sr ,S1) ≤ Z (Sr ).
The game results in a system of linear equations order with |B|2 variables.



Reconsidering the assumption of mutual exclusive events

If ambushes at j are not mutually exclusive, then robber incentive is:

Zr = max
j∈N

B

∑
k=1

(
(−1)k−1

∑
1≤i1<i2<···<ik≤n

ik

∏
i1

(pb
j ) α

p
j ·$

p
j

)

Unfortunately no more a nice LP!



Alternative formulation

Let:

α̃j = 1−αj as the failure rate

p̃ij = 1−pij as probability of not passing by (i , j)

The robber will select j that minimize the failure

Zr = min
j∈N

(p̃j) α̃j

thus, for the multicommodity formulation,

Zr = min
j∈N

∏
B

(p̃b
j ) α̃j

or, using“non”flow variables:

Zr = min
j∈N

∏
B

∑
i∈N

(p̃b
ij ) α̃j



Alternative formulation

We obtain nash-equilibrium by maximizing the minimal failure

Zp = max
P

{
min
j∈N

∏
B

∑
i∈N

(p̃b
ij) α̃j

}
todo what if we approximate Zp by the following LP?

Zp = max
P

z

s.t. z ≤ ∑
i∈N

(p̃b
ij) α̃j ∀j ∈ N,b ∈ B

p is a flow
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