Impact analysis of a flexible air transportation system: Clip-Air

Bilge Atasoy, Matteo Salani, Michel Bierlaire, Claudio Leonardi

Transport and mobility laboratory EPFL

January 23, 2013

Outline

- 2 Schedule Planning Model
- 3 Comparative Analysis

Outline

- 2 Schedule Planning Model
- 3 Comparative Analysis

Flexibility

- Flexibility in transportation systems
 - Robustness
 - Demand responsiveness

- Rail transportation \Rightarrow modularity in fleet
- Maritime transportation \Rightarrow standard unit loads, multi-modality
- Air transportation \Rightarrow decision support systems

Flexibility of Clip-Air

- Decoupling of wing and capsules:
 - Modularity
 - Multi-modality
- Mixed passenger and cargo transportation
- ... and can be combined with intelligent decision support tools:
 - Demand management
 - Disruption management

Flexibility of Clip-Air

- Decoupling of wing and capsules:
 - Modularity
 - Multi-modality
- Mixed passenger and cargo transportation
- ... and can be combined with intelligent decision support tools:
 - Demand management
 - Disruption management

Illustration - Modularity

Illustration - Modularity

Outline

1 Flexibility

2 Schedule Planning Model

3 Comparative Analysis

Model framework

Decisions

- Fleet assignment
 - Assignment of wings to the flights
 - Assignment of capsules to the wings
- Schedule selected optional flights
- Seat allocation to economy and business class
- The spilled number of passengers
- Supply-demand interactions demand model
 - Spill and recapture
 - Itinerary choice model

Model framework

Decisions

- Fleet assignment *Modularity*
 - Assignment of wings to the flights
 - Assignment of capsules to the wings
- Schedule selected optional flights
- Seat allocation to economy and business class
- The spilled number of passengers
- Supply-demand interactions (demand model
 - Spill and recapture
 - Itinerary choice model *Demand management*

$$Min\sum_{f\in F} (C_f^w x_f^w + \sum_{k\in K} C_{k,f} x_{k,f}) + \sum_{h\in H} \sum_{s\in Sh} \sum_{i\in (l_S\setminus l_S')} (\sum_{j\in l_S} t_{i,j} - \sum_{j\in (l_S\setminus l_S')} t_{j,i} b_{j,i}) p_i \text{ op. costs } + \text{ loss of pax.}$$
(1)

s.t.
$$\sum_{k \in K} x_{k,f} = 1$$
 mandatory flights $\forall f \in F^M$ (2)

$$\sum_{k \in K} x_{k,f} \le x_f^w \text{ wing-capsules} \qquad \qquad \forall f \in F \quad (3)$$

$$y_{a,t^{-}}^{w} + \sum_{f \in In(a,t)} x_{f}^{w} = y_{a,t^{+}}^{w} + \sum_{f \in Out(a,t)} x_{f}^{w} \text{ flow cons. wings} \qquad \forall [a,t] \in N \quad (4)$$

$$\sum_{a \in A} y^{w}_{a,\min \in a^{-}} + \sum_{f \in CT} x^{w}_{f} \le R_{w} \text{ available wings}$$

$$\tag{5}$$

$$y_{a,minE_{a}}^{w} = y_{a,maxE_{a}}^{w} \text{ cyclic wings} \qquad \forall a \in A$$
(6)

$$y_{a,t}^{k} + \sum_{\substack{f \in In(a,t) \\ k \in K}} k x_{k,f} = y_{a,t+}^{k} + \sum_{\substack{f \in Out(a,t) \\ k \in K}} k x_{k,f} \text{ flow cons. capsules} \qquad \forall [a,t] \in N$$
(7)

$$\sum_{a \in A} y_{a,\min \mathbf{E}_a^-}^k + \sum_{\substack{k \in K \\ k \in K}} k \; x_{k,f} \le R_k \text{ available capsules} \tag{8}$$

$$y_{a,minE_a^-}^k = y_{a,maxE_a^+}^k$$
 cyclic capsules $\forall a \in A$ (9)

$$\operatorname{Min}_{f \in F} \left(C_{f}^{w} x_{r}^{w} + \sum_{k \in K} C_{k,f} x_{k,f} \right) + \sum_{h \in H} \sum_{s \in Sh} \sum_{i \in (I_{S} \setminus I_{S}')} (\sum_{j \in I_{S}} t_{i,j} - \sum_{j \in (I_{S} \setminus I_{S}')} t_{j,i} b_{j,i}) p_{i} \text{ op. costs } + \operatorname{loss of } pax.$$
(1)

s.t.
$$\sum_{k \in K} x_{k,f} = 1$$
 mandatory flights $\forall f \in F^M$ (2)

$$\sum_{k \in K} x_{k,f} \le x_f^{w} \text{ wing-capsules} \qquad \qquad \forall f \in F \quad (3)$$

$$y_{a,t^{-}}^{w} + \sum_{f \in In(a,t)} x_{f}^{w} = y_{a,t^{+}}^{w} + \sum_{f \in Out(a,t)} x_{f}^{w} \text{ flow cons. wings} \qquad \forall [a,t] \in N \quad (4)$$

$$\sum_{a \in A} y^{w}_{a,\min \in a^{-}} + \sum_{f \in CT} x^{w}_{f} \le R_{w} \text{ available wings}$$

$$\tag{5}$$

$$y_{a,minE_{a}}^{w} = y_{a,maxE_{a}}^{w} \text{ cyclic wings} \qquad \forall a \in A$$
(6)

$$y_{a,t^{-}}^{k} + \sum_{\substack{f \in In(a,t) \\ k \in K}} k x_{k,f} = y_{a,t^{+}}^{k} + \sum_{\substack{f \in Out(a,t) \\ k \in K}} k x_{k,f} \text{ flow cons. capsules} \qquad \forall [a,t] \in N$$
(7)

$$\sum_{a \in A} y_{a,\min E_a^-}^k + \sum_{\substack{f \in CT \\ k \in K}} k x_{k,f} \le R_k \text{ available capsules}$$
(8)

$$y_{a,minE_a^-}^k = y_{a,maxE_a^+}^k$$
 cyclic capsules $\forall a \in A$ (9)

$\sum_{s \in S^h} \sum_{i \in (I_s \setminus I'_s)} \delta'_i D_i - \sum_{j \in I_s} \delta'_j t_{i,j} + \sum_{j \in (I_s \setminus I'_s)} \delta'_j t_{j,i} b_{j,i} \leq \pi_{f,h} \text{ demand-supply}$	$\forall f \in F, h \in H$	(10)
$\sum\limits_{h\in \mathcal{H}} \pi_{f,h} \leq \sum\limits_{k\in \mathcal{K}} \mathcal{Q}$ k x _{k,f} available seats	$\forall f \in F$	(11)
$\sum\limits_{j \in I_{\mathcal{S}}} t_{i,j} \leq D_i$ spilled passengers	$\forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I'_{s})$	(12)
$\mathbf{x}_{f}^{w} \in \{0,1\}$	$\forall f \in F$	(13)
$x_{k,f} \in \{0,1\}$	$\forall k \in K, f \in F$	(14)
$y_{a,t}^{w} \ge 0$	$\forall [a,t] \in N$	(15)
$y_{a,t}^k \ge 0$	$\forall [a,t] \in N$	(16)
$\pi_{f,h} \ge 0$	$\forall f \in F, h \in H$	(17)
$t_{i,j} \ge 0$	$\forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I'_{s}), j \in I_{s}$	(18)

$\sum_{s \in \mathbb{S}^h} \sum_{i \in (I_s \setminus I_s')} \delta_i^i D_i - \sum_{j \in I_s} \delta_{i_j}^i t_{i,j} + \sum_{j \in (I_s \setminus I_s')} \delta_{i_j}^j t_{j,i} b_{j,i} \leq \pi_{f,h} \text{ demand-supply}$	$\forall f \in F, h \in H$	(10)
$\sum\limits_{h\in \mathcal{H}} \pi_{f,h} \leq \sum\limits_{k\in \mathcal{K}} Q \; k \; x_{k,f}$ available seats	$\forall f \in F$	(11)
$\sum_{j \in I_{\mathcal{S}}} t_{i,j} \leq D_i$ spilled passengers	$\forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I'_{s})$	(12)
$x^w_f \in \{0,1\}$	$\forall f \in F$	(13)
$x_{k,f} \in \{0,1\}$	$\forall k \in K, f \in F$	(14)
$y_{a,t}^{w} \ge 0$	$\forall [a,t] \in N$	(15)
$y_{a,t}^k \ge 0$	$\forall [a,t] \in N$	(16)
$\pi_{f,h} \ge 0$	$\forall f \in F, h \in H$	(17)
$t_{i,j} \ge 0$	$\forall h \in H, s \in S^h, i \in (I_s \setminus I'_s), j \in I_s$	(18)

Outline

Flexibility

2 Schedule Planning Model

3 Comparative Analysis

Configuration - Comparison with Airbus A320

		Clip-Air	A320
Maximum Capacity		3x150(450 seats)	150 seats
Engines		3 engines	2 engines
Maximum	1 (plane/capsule)	139t (+78%)	78t
Aircraft Weight	2 (planes/capsules)	173.5t (+11%)	2×78t (156t)
	3 (planes/capsules)	208t (-11%)	3x78t (234t)

Operating costs for Clip-Air

- Based on standard flight operating costs
- Adjustment based on weight differences:
 - Fuel costs ¹ (25.3%)
 - Airport and air navigation charges² (6%)
- Crew cost ¹ (24.8%) is separated between wing (flight crew) and capsules (cabin crew):
 - flight crew constitutes a 60% of the total crew cost
 - gain of 30% with 2 capsules
 - gain of 40% with 3 capsules

¹IATA,2010 ²Castelli and Ranieri, 2007; ICAO, 2012

Comparative Analysis

Conclusions

Conservative Assumptions

• Fleet composition

• Fleet composition

• Standard fleet optimizes the fleet composition

• Fleet composition

- Standard fleet optimizes the fleet composition
- Clip-Air capsules are of same size

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher
- The repositioning of capsules is ignored

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher
- The repositioning of capsules is ignored
- Other cost figures are also expected to be reduced: maintenance, number of engines

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher
- The repositioning of capsules is ignored
- Other cost figures are also expected to be reduced: maintenance, number of engines
- Only passenger transportation

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher
- The repositioning of capsules is ignored
- Other cost figures are also expected to be reduced: maintenance, number of engines
- Only passenger transportation
- Total fleet investment cost is ignored

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher
- The repositioning of capsules is ignored
- Other cost figures are also expected to be reduced: maintenance, number of engines
- Only passenger transportation
- Total fleet investment cost is ignored
- The schedule and the demand is assumed to remain the same

Towards results

- Input: data from a major European airline company
 - set of optional and mandatory flights
 - set of airports
 - set of itineraries: demands and fares
 - set of aircraft for the standard fleet
- Performance measures
 - ASK: available seat kilometers
 - TPASK: transported pax. per available seat kilometers
- Tests:
 - Network effect
 - Fleet composition
 - Available capacity
 - Sensitivity analysis on the costs

Network effects - Airport pair

Data				
Airports		2		
Flights		38		
Density (Flights/route)		19		
Passengers		13,965		
Itineraries		45		
Standard fleet types	A320(150), A33	D(293), B747-200(452)		
	Results			
	Standard fleet	Clip-Air		
Operating cost	1,607,166	1,725,228		
Spill costs	604,053	448,140		
Revenue	2,419,306	2,575,219		
Profit	812,140	849,991 (+4.66 %)		
Transported pax.	10,276	11,035 (+7.39 %)		
Flight count	38	38		
Total flight duration	3135 min	3135 min		
Used fleet	2 A320	7 wings		
	5 A330	12 capsules		
Used aircraft	7	7		
Used seats	1765	1800		
ASK	78,388,063	79,942,500		
TPASK ($\times 10^{-5}$)	13.11	13.80		

Clip-Air does not have any advantage in terms of the aircraft size

Network effects - Hub and spoke

Data				
Airports		5		
Flights		26		
Density (Flights/route)		3.25		
Passengers		9,573		
Itineraries		37		
Standard fleet types	A320(150), A330	D(293), B747-200(452)		
	Results			
	Standard fleet	Clip-Air		
Operating cost	817,489	938,007		
Spill costs	484,950	393,677		
Revenue	1,247,719	1,338,992		
Profit	430,230	400,985 (- 6.80 %)		
Transported pax.	5,031	5,721 (+ 13.71 %)		
Flight count	24	22		
Total flight duration	1850 min	1700 min		
Used fleet	5 A320	6 wings		
	2 A330	12 capsules		
	1 B747			
Used aircraft	8	6		
Used seats	1788	1800		
ASK	46,860,500	43,350,000		
TPASK ($\times 10^{-5}$)	10.74	13.20		

Network effects - Peer-to-peer network

Data				
Airports		4		
Flights		98		
Density (Flights/route)		8 17		
Passengers		28 465		
Itineraries		150		
Standard fleet types	A320(150), A3	30(293), B747-200(452)		
	Results			
	Standard fleet	Clip-Air		
Operating cost	3 189 763	3 117 109		
Spill costs	082 556	078 683		
Boyonuo	502,550	570,003		
Desfit	5,050,909	1 042 672 (+ 4 1 9/)		
T	1,007,140	1,943,073 (+ 4.1 %)		
Transported pax.	20,840	21,424 (+ 2.8 %)		
Flight count	91	84		
Total flight duration	6650 min	6160 min		
Used fleet	7 A320	13 wings		
	10 A330	28 capsules		
	3 B747			
Used aircraft	20	13		
Used seats	5336	4200 (- 21.3 %)		
ASK	502,695,667	366,520,000		
TPASK ($\times 10^{-5}$)	4.15	5.85		

Network effects

- Enhanced performance when...
 - High flight density
 - Well connected network

Fleet composition

The same data as peer-to-peer network

Available capacity

Airports	5
Flights	100
Density (Flights/route)	6.25
Passengers	35,510
Itineraries	140
Standard fleet types	A319(124), A320(150), A321(185),
	A330(293), A340(335), B737-300(128),
	B737-400(146), B737-900(174),
	B747-200(452), B777(400)

Available capacity

Sensitivity analysis on the cost of Clip-Air

The same data used for the test on the available capacity

Outline

Flexibility

- 2 Schedule Planning Model
- 3 Comparative Analysis

• Clip-Air better utilizes the capacity

• Clip-Air better utilizes the capacity

• More passengers...

• Clip-Air better utilizes the capacity

- More passengers...
- ... with less allocated capacity

• Clip-Air better utilizes the capacity

- More passengers...
- ... with less allocated capacity
- Clip-Air deals better with the insufficient capacity

- Clip-Air better utilizes the capacity
 - More passengers...
 - ... with less allocated capacity
- Clip-Air deals better with the insufficient capacity
- Results are robust to the cost values of Clip-Air

- Clip-Air better utilizes the capacity
 - More passengers...
 - ... with less allocated capacity
- Clip-Air deals better with the insufficient capacity
- Results are robust to the cost values of Clip-Air

- Clip-Air better utilizes the capacity
 - More passengers...
 - ... with less allocated capacity
- Clip-Air deals better with the insufficient capacity
- Results are robust to the cost values of Clip-Air
- Atasoy, B., Salani, M., Bierlaire, M., and Leonardi, C. (to appear in 2013 April). Impact analysis of a flexible air transportation system, European Journal of Transport and Infrastructure Research 13(2).

Different wing and capsule sizes

- Clip-Air has a strength with one single wing/capsule type
- Different sizes can be studied
- Small wings/capsules: easier transport

Multi-modality of Clip-Air capsules

- Clip-Air capsules can be transfered via other means of transport
- Empty capsule management
- Demand fluctuations
- Unbalanced demand
- European market railways

Thank you very much for your attention!

.

RANSP-OR

Spill and recapture Model

$$\begin{split} V_i &= -[2.23(-3.48) \times \text{nonstop}_i + 2.17(-3.48) \times \text{stop}_i] \times \ln(p_i/100) \\ &- [0.102(-2.85) \times \text{nonstop}_i + 0.0762(-2.70) \times \text{stop}_i] \times \text{time}_i \\ &+ 0.0283(1.21) \times \text{morning} \\ \end{split}$$

$$\begin{split} V_i &= -[1.97(-3.64) \times \text{nonstop}_i + 1.96(-3.68) \times \text{stop}_i [\times \ln (p_i/100) \\ &- [0.104(-2.43) \times \text{nonstop}_i + 0.0821(-2.31) \times \text{stop}_i] \times \text{time}_i \\ &+ 0.0790(1.86) \times \text{morning} \qquad \forall i \in I_s, s \in S^{bus.}, \end{split}$$

$$b_{i,j} = \frac{\exp(V_j)}{\sum_{k \in I_s \setminus \{i\}} \exp(V_k)} \quad \forall h \in H, s \in S^h, i \in (I_s \setminus I'_s), j \in I_s,$$

Spill and recapture

ANSP-OR

	clas	s nons	top n	norning	time	price	V
A-B ₁		E	0	1	250	300	-2.67
A-B ₂	2	E	0	0	250	300	-2.70
A-B3	3	E	1	0	80	200	-1.68
A-B4	r	E	1	1	80	200	-1.65
A-B		E	1	1	80	225	-1.92
		A-B ₁	A-B ₂	A-B ₃	A-B ₄	A-E	3′
_	$A-B_1$	-	0.113	0.314	0.323	0.25	0
	$A-B_2$	0.116	-	0.314	0.322	0.24	.8
	$A-B_3$	0.146	0.141	-	0.403	0.31	0
	A-B ₄	0.147	0.143	0.396	-	0.31	4

