A new dynamic facial expression recognition framework

Thomas Robin, Michel Bierlaire, Javier Cruz

28th august 2009

The context

- Recent interest for emotion recognition in transportation
 - Driving assistance

 - SafetyMobility

- Well-being measuring of users
 - Improve public transportation offers
 - Improve car comfort

The context

- Emotion: **mental** and **physiological** state associated with a wide variety of feelings, thoughts and behavior.
- Emotions signs easy to measure with non-intrusive techniques for transportation users:

BehaviorFace expression

- Voice intonation

The context

Driving assistance

Well being measuring

Objectives

- Model the facial expression recognition made by a person looking at a face video sequence
- Model explicitely the **dynamic process**
- No classification
- Estimate the model on **behavioural** data (relax ground truth assumptions)

Outline

- . Introduction
- . Data: video
- . Features extraction
- . Data: behavioral data
- Model framework
- . Model estimation
- Model predictions

Conclusion and Perspectives

Introduction

• Static version of the work:

M.Sorci, M.Bierlaire, J-P.Thiran, J.Cruz, Th.Robin and G.Antonini (2008) Modeling human perception of static facial expressions, paper presented at 8th IEEE Int'l Conference on Automatic Face and Gesture Recognition.

- Images: Cohn-Kanade database - Behavioral data: internet survey

Introduction

- Dynamic framework inspired from dynamic model:
 - Hidden Markov Model
 - State transition processMeasurement equation

- Behavioral modelsLatent decisions

Introduction

• Model overview:

Data: video database

• The Technical University Munich database (TUM) Facial Expression and Emotion Database (FEED)

Students faced to a video, natural expressions recorded

138 sequences, 18 subjects

Features extraction: Active Appearance Model

• Video = succession of images, called frames

information extracted on each frame

- Hypothesis: individual perception evolves at regular time step (1 s)
 - a video contains 25 frames per second
 first frame of each second retained

Features extraction: Active Appearance Model

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Features: Facial Action Coding System

- FACS developped by Ekman and Friesen (1978)
- Mesurement units, called "Action Units" (AUs) associated to expressions
 leading standard for measuring facial expressions

AU1	AU2	AU4	AU5	AU6	AU7
100	6	36	0	0	
Inner Brow Raiser	Outer Brow Raiser	Brow Lowerer	Upper Lid Raiser	Cheek Raiser	Lid Tightener
AU9	AU10	AU12	AU15	AU16	AU17
Children of the second	in the	de	30	(A)	3
Nose Wrinkler	Upper Lip	Lip Corner	Lip Corner	Lower Lip	Chin Raiser
	Raiser	Puller	Depressor	Depressor	
AU20	AU23	AU24	AU25	AU26	AU27
3	3	3	Ē	ē	
Lip Stretcher	Lip Tightener	Lip Pressor	Lips part	Jaw Drop	Mouth Stretch

Features: C vectors

 Direct output of the Principal Component Analysis (PCA) conducted in the AAM

It characterises both **face shape** and **face shadows**

 \longrightarrow C vector: 100 elements

Data: internet survey

- Survey conducted at the address below(English, French, Italian, Spanish): http://transp-or2.epfl.ch/videosurvey/
- Respondents have to: | create an account

Socioeconomics attributes

- label some video sequences with expressions
 observations
- 1 database of video is used:

- Facial Expression and Emotion Database (FEED)

Data: socio-economics

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Data: labels

Model: introduction

• Combination of 2 DCMs

Instantaneous expression perception sub-model

- Similar to static model
- Choice set: expressions
- Attributes: facial features

➡ Video frames weighting sub-model

- Capture influence of each frame on final expression perception
- Choice set: frames (depend on the video)
- Attributes: dynamic features, such as facial features derivatives

Model: general framework

- $P_n(i/t, o)$: Instantaneous expression perception sub-model.
- $P_n(t/o)$: Video frames weighing sub-model.
- $P_n(t/o)$: Model.

Model: expression perception sub-model

- Choice set: 9 expressions (Happiness, Surprise, Fear, Disgust, Sadness, Anger, Neutral, Other, Don't know)
- Logit model
- Memory effect : captured in expression utilities

Model: expression perception sub-model

• Memory effect : captured in expression utilities

$$V_n(i/t, o) = Vgeneric_n(i/t, o) + \underbrace{a_{i,n}}_{\text{Estimated parameter}} Vgeneric_n(i/t - 1, o)$$

- Utility specification:
 - Alternative Specific Constants (ASC)
 - Measures corresponding to AUs (FACS)
 - Elements of C vectors (outputs of AAM)

Model: frames weighting sub-model

- Choice set: Frames of the videos (it depends on *o*)
- Logit model
- Utility specification: Derivatives of facial features

Model: frames weighting sub-model

to label the video

Model: likelihood function

Vector of parameters

Model estimation: general results

- Likelihood maximization
- Behavioral data: labels on the FEED videos (natural videos)
- Simultaneous sub-models estimation
- Estimation program based on the BIOGEME software
- General model fit:

Nb of observations:	294
Nb of parameters:	44
Null log-likelihood:	-645.98
Final log-likelihood:	-358.82
$ar{ ho}^2$:	0.38

Model estimation: parameters values

Expression perception sub-model Parameter name Value Std-error t-test 0 Id ASC A -7.835.31-1.47ASC D6.901.6824.103 ASC DK -0.540.39-1.40ASC F-31.908.89 -3.59**ASCs** ASC H 24.235.314.56ASC O 5.311.693.14ASC SA 8.70 6.851.27 ASC_SU -13.332.97-4.48b broweye 12 SA 570.49134.494.24b broweye 13 SU 1070.7319.543.62b broweye r2 A D F SA SU11 -99.2426.90-3.69b eye angle below l F6.24122.462.5413 b eye angle l F SA17.333.465.0114 b eye angle r F SA-10.173.08-3.30 $b_eye_brow_angle_l_SA$ -16.583.9515 -4.20b eye mouth dist l2 D 16-49.5424.91-1.99b eye mouth dist l H O SA 17 -97.2036.70-2.65AUs 18 b eye nose dist l A 248.0236.426.8119b eye nose dist l D F O SA 101.1622.254.5520b eye nose dist r D F O SA A-131.0919.88-6.5921 b leye h F660.84 145.334.5522b leye h SU 340.5762.415.46b mouth $h_A_D_H_SA_F_SU$ 2379.7125.323.1524 b mouth nose dist2 A SA -283.3056.02-5.0625b mouth nose dist H-324.7152.45-6.1926b mouth w A D F H O36.4015.422.36b C 1 SU2790.3520.634.3828b C 1 F153.4728.595.3729b C 1 D115.2819.575.89C vector b C 1 A30170.9927.176.29b C 2 H31 10.472.2223.2332b C 2 SU33.9413.282.5633 A H -0.700.13-5.2534A D -0.150.10-1.49**Memory effect** 35 A SA -0.490.11-4.2836A A -0.150.09 -1.58NSP-OR

Frames weighting sub-model

	Id	Parameter name	Value	Std-error	t-test 0
C vector deriv -	1	$b_FRAME_C_1_deriv$	-45.46	25.41	-1.79
	2	$b_FRAME_C_2_deriv$	-224.99	72.18	-3.12
	3	$b_FRAME_C_3_deriv$	240.01	79.08	3.04
	4	b_FRAME_C_5_deriv	-73.34	27.28	-2.69
	5	b_FRAME_eye_h_deriv	-805.69	226.21	-3.56
AUs deriv_	6	b_FRAME_eye_brow_angle_deriv	43.97	14.33	3.07
	7	b FRAME mouth h deriv	1309.91	399.85	3.28
	8	b FRAME mouth w deriv	-184.44	56.81	-3.25

Model predictions: introduction

- Check model validity
- Prediction display example:

Model predictions: example 1

• Expressions order: H, SU, F, D, SA, A, N, O, DK

Model predictions: example 2

• Expressions order: H, SU, F, D, SA, A, N, O, DK

Model predictions: example 3

• Expressions order: H, SU, F, D, SA, A, N, O, DK

Video=anger_0002_2

Model pre-validation

- Comparison with simplier model: ASC model
 - Only ASCs in expression perception sub-model

Proposed model

Nb of observations:	294
Nb of parameters:	44
Null log-likelihood:	-645.98
Final log-likelihood:	-358.82
$ar{ ho}^2$:	0.38

ASC model

Nb of observations:294Nb of parameters:8Null log-likelihood:-645.98Final log-likelihood:-572.437 $\bar{\rho}^2$:0.10

• Aggregated prediction results on estimation data : Outliers percentage Outlier: observation with choice probability less than $\frac{1}{9}$

Model pre-validation: outliers

• Outlier: observation with choice probability less than $\frac{1}{9}$

Proposed model	ASC model
16.33%	33.33%

• Choice probabilities histogram

Conclusions and Perspectives

- <u>Conclusion</u>:
 - database of face video annotations
 - new model framework
 - model estimated using behavioral data
 - pre-validated model
- <u>Perspectives</u>:
 - implement the panel data effect
 - estimate the model on more data (both videos and labels)
 - use of another video database for validation

Thanks for your attention

http://transp-or2.epfl.ch/videosurvey/

