

STRC ^{8 th} Swiss Transport Research Conference Monte Verità / Ascona, October 15-17, 2008

Specification, estimation and validation of a pedestrian walking behavior model

Thomas Robin

Michel Bierlaire

Gianluca Antonini

Javier Cruz

Objectives

- Model the pedestrian behavior at **operational** level
- Develop a specification with 'constrained' and 'unconstrained' parameters
- Estimate the model
- Validate the model
- Implement the model in a **simulator**

Outline

- . Introduction
- Model specification
- Model estimation
- . Model validation
- Simulator
- Conclusion

- . Introduction
- Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion

Introduction

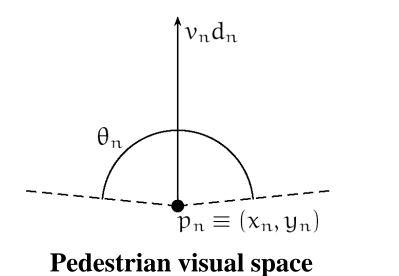
- Microscopic model : capture the behavior of each pedestrian
 Discrete choice model
- Different behavioral levels :

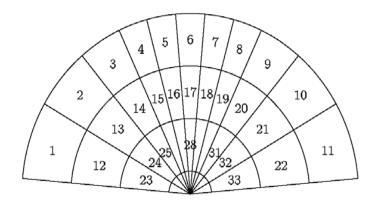
Strategical : destination Tactical : route choice Fixed Operational level : short range behavior instantaneous decisions

• Concept of **personal space** : interactions with other pedestrians

Leader follower

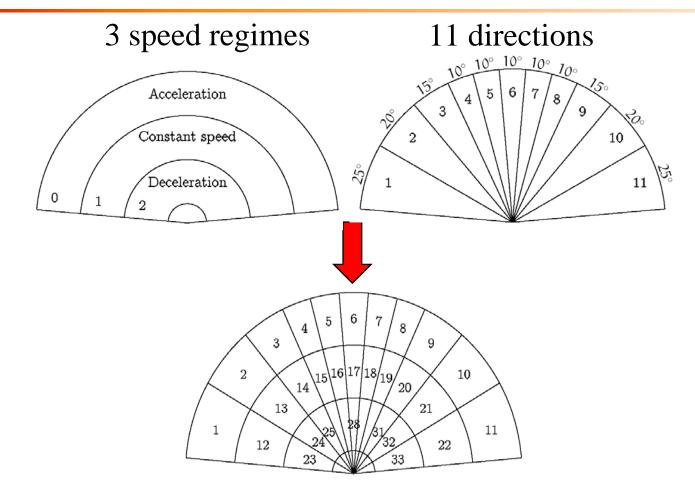
Collision avoidance


- Introduction
- Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion



Model specification : the space discretization

• Discrete choice model : at each step, the pedestrian has to choose the next step in the choice set

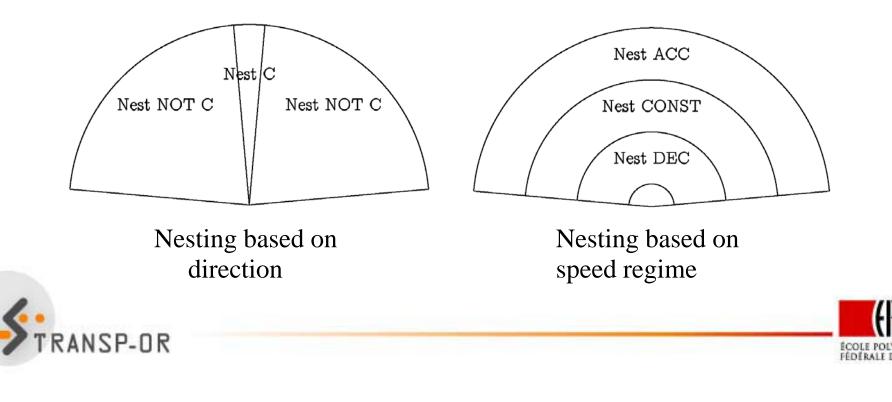


Choice set : discretization of the visual space

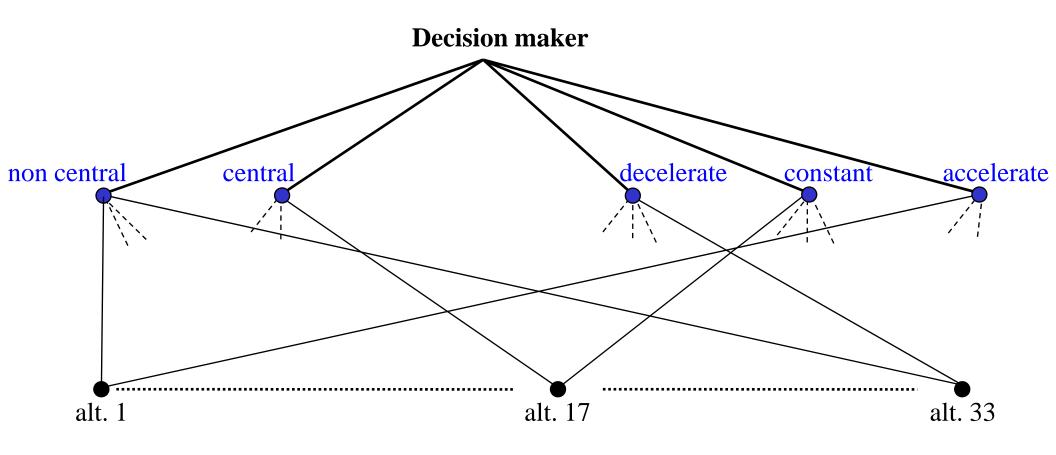
At each step the **choice set** depends on the pedestrian **speed** and **direction**

Model specification : the choice set

33 alternatives



Model specification : cross nested structure


• Hypothesis : alternatives correlated along speed regimes and directions

Cross Nested Logit model

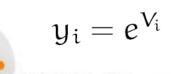
• Cross Nested structure : each alternative belongs to 2 nests

Model specification : cross nested structure

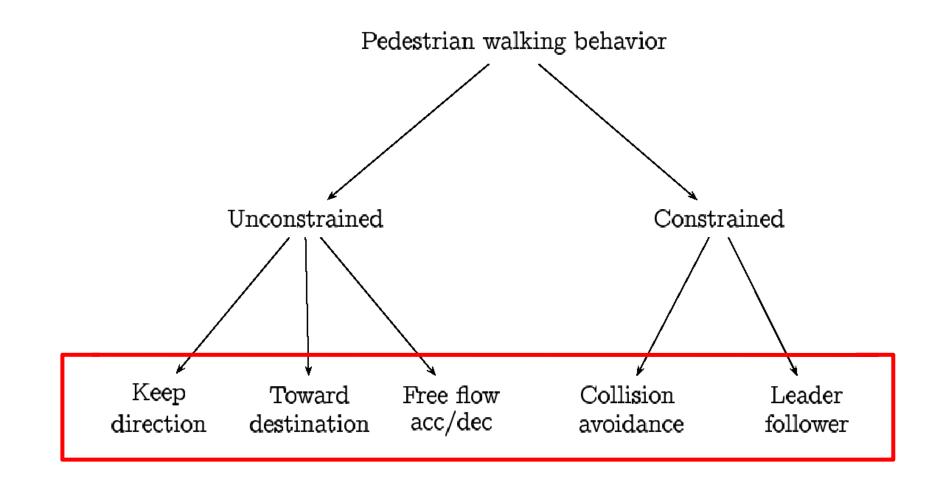
Model specification : cross nested structure

• Probability of choosing the alternative i :

$$P(i|C) = \sum_{m=1}^{M} \frac{\left(\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}\right)^{\frac{\mu}{\mu_{m}}}}{\sum_{n=1}^{M} \left(\sum_{j \in C} \alpha_{jn}^{\mu_{n}/\mu} y_{j}^{\mu_{n}}\right)^{\frac{\mu}{\mu_{n}}}} \frac{\alpha_{im}^{\mu_{m}/\mu} y_{i}^{\mu_{m}}}{\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}}$$


C : choice set

M: number of nests


 V_i : utility of alternative i

 α_{jm} : membership degree of alternative j in the nest n

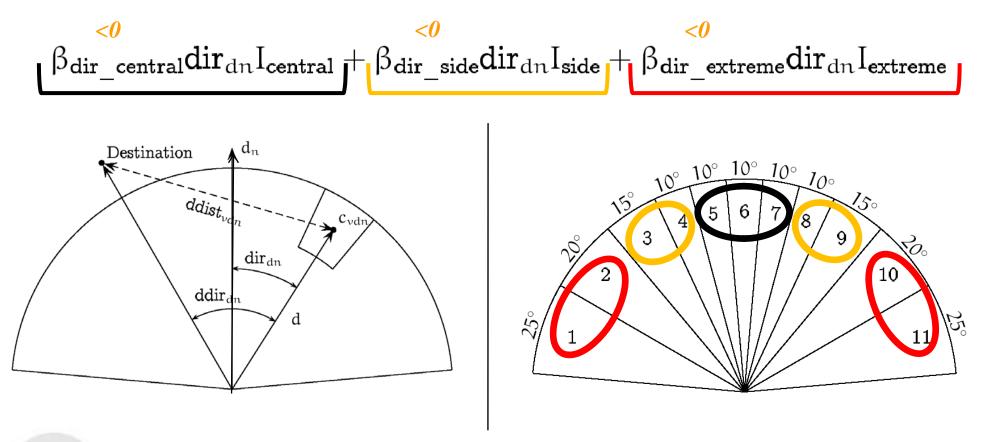
 μ_m : parameter of the nest m

 $V_{\nu dn} = \beta_{dir central} dir_{dn} I_{central}$ $\beta_{dir side} dir_{dn} I_{side}$ $\beta_{dir} extreme} dir_{dn} I_{extreme}$ $\beta_{ddist}ddist_{vdn}$ $\beta_{ddir}ddir_{dn}$ $\beta_{\text{dec}} I_{v,\text{dec}} (v_n / v_{\text{max}})^{\lambda_{\text{dec}}}$ $\beta_{\text{accLS}} I_{\text{LS}} I_{\text{v,acc}} (\nu_n / \nu_{\text{maxLS}})^{\lambda_{\text{accLS}}} +$ $\beta_{\text{accHS}} I_{\text{HS}} I_{\text{v,acc}} (\nu_n / \nu_{\text{max}})^{\lambda_{\text{accHS}}}$ $I_{v,acc}I_{acc}^{L}\alpha_{acc}^{L}D_{L}^{\rho_{acc}^{L}}\Delta\nu_{L}^{\gamma_{acc}^{L}}\Delta\theta_{L}^{\delta_{acc}^{L}} + \Big)$ $I_{v,dec}I_{dec}^{L}\alpha_{dec}^{L}D_{I}^{\rho_{dec}^{L}}\Delta\nu_{I}^{\gamma_{dec}^{L}}\Delta\theta_{I}^{\delta_{dec}^{L}} + \\$ $I_{d,d_n}I_C\alpha_C e^{-\rho_C D_C} \Delta \nu_C^{\gamma_C} \Delta \theta_C^{\delta_C}$

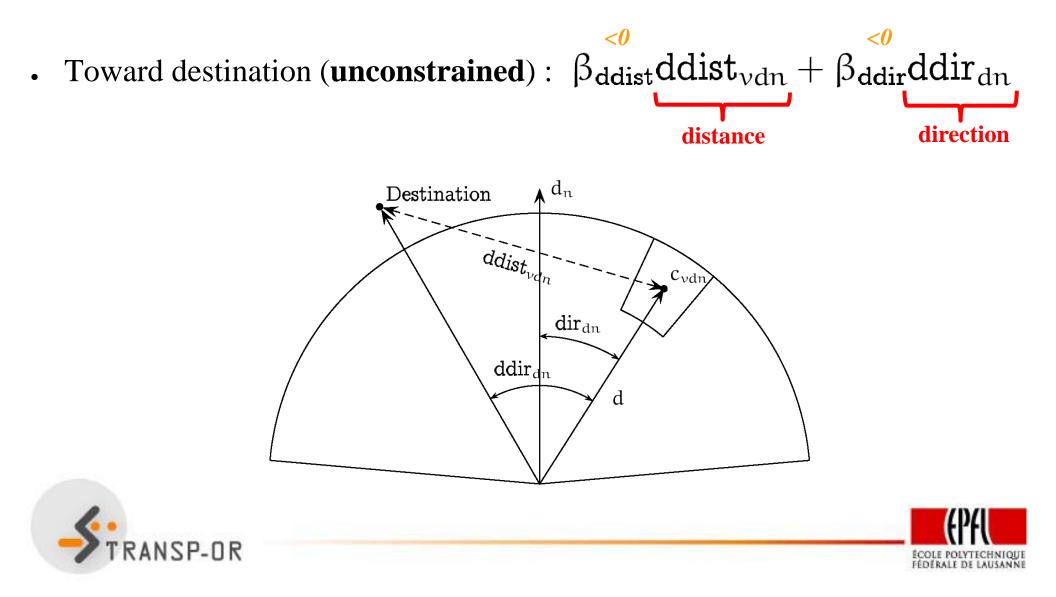
 $keep \ direction$

toward destination

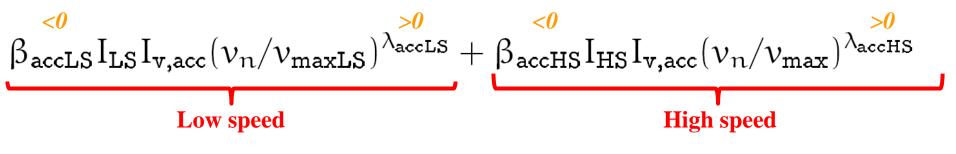
free flow acceleration

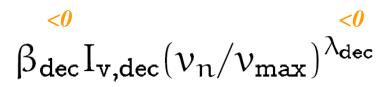

leader-follower

collision avoidance

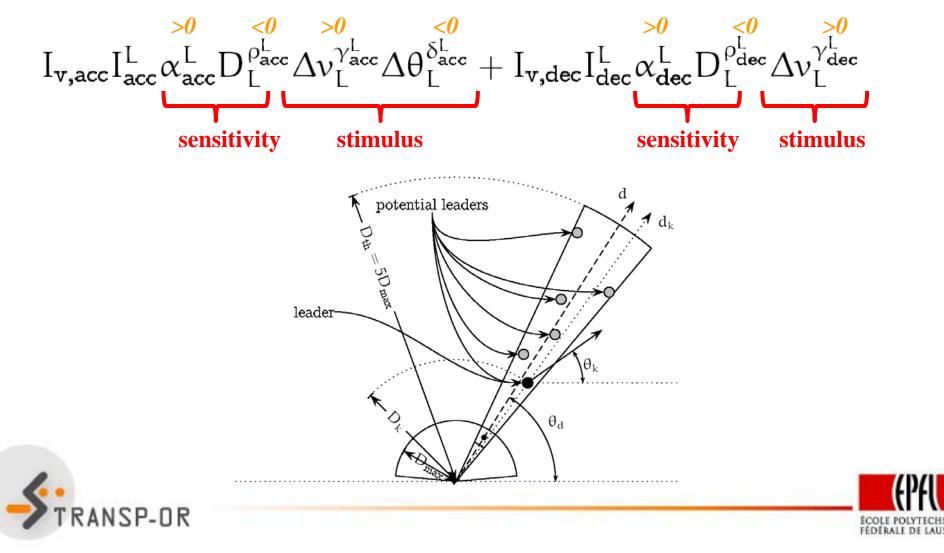


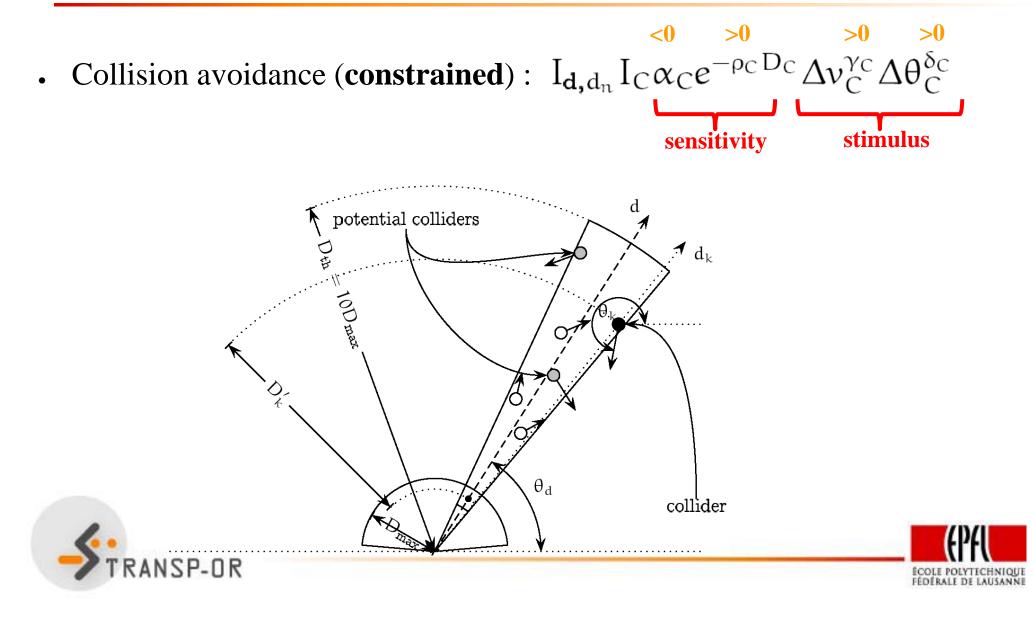
• Keep direction (**unconstrained**) :





- Free flow acceleration (**unconstrained**) :
 - Acceleration :


- Deceleration :

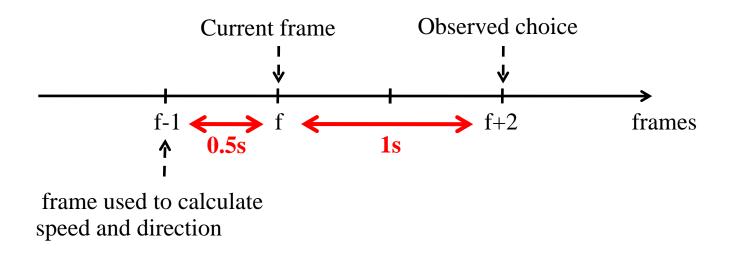


• Leader follower (constrained) :

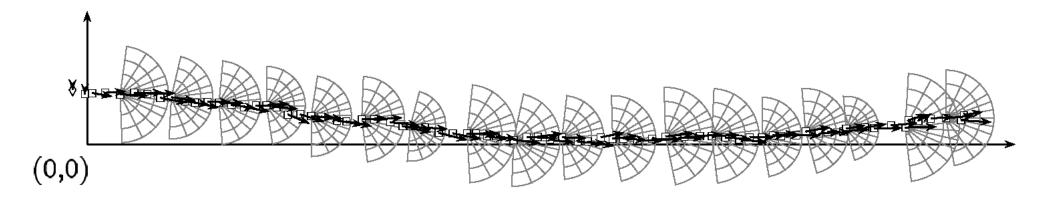
- Introduction
- Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion

The Japanese data set : video sequence

• Collected in Sendaï, Japan, on August 2000, large pedestrian crossing road



The Japanese data set : data processing


- Tracking from video sequence: 2 observations per second
- Pedestrians trajectories extracted using 3D-calibration (DLT algorithm)
- For each pedestrian trajectory :

The Japanese data set : pedestrian trajectory

• 4 alternatives are never chosen: 1, 12, 23, 33

Model estimation : general diagnosis

- Estimation made using the free Biogeme package (biogeme.epfl.ch)
- Estimation results :

```
Number of estimated parameters : 24
Init log-likelihood : -32451
Final log-likelihood : -13944.74
Likelihood ratio test : 37013
\bar{\rho}^2 = 0.570
```

• Parameters values consistent with hypothesis

Model estimation : parameters values

Variable	Coefficient	t test 0	Variable	Coefficient	t test 0	t test 1
name	estimate		name	estimate		
β _{ddir}	-0.0793	-24.14	ρ_{acc}^{L}	-0.465	-1.78	
β_{ddist}	-1.52	-11.63	γ^{L}_{acc}	0.552	1.98	
$\beta_{dir extreme}$	-0.0343	-9.71	α_{dec}^{L}	3.78	5.41	
$\beta_{dir side}$	-0.0553	-22.71	ρ_{dec}^{L}	-0.654	-6.70	
$\beta_{dir central}$	-0.0320	-13.90	$\gamma^{\rm L}_{ m dec}$	0.658	5.48	
BaccLS	-4.94	-25.20	δ^{L}_{acc}	-0.179	-2.22	
β _{accHS}	-7.41	-5.10	α _C	-0.00730	-10.84	
β_{dec}	-0.0645	-2.46	ρς	-0.212	-8.38	
λ_{accLS}	4.37	20.06	μ _{acc}	1.66	9.97	3.95
λ_{accHS}	0.354	2.02	µ _{const}	1.45	16.99	5.25
λ_{dec}	-2.40	-8.50	µ _{central}	5.76	2.84	2.34
α_{acc}^{L}	0.735	1.87	µnot_central	1.82	13.12	5.91

- Introduction
- Model specification
- Model estimation
- . Model validation
- Simulator
- Conclusion

Model validation : methodology

- Validation of the specification :
 - Developpment of a model with constants only (ASC model)
 - Simulation on the Japanese data set
 - Cross validation on the Japanese data set
- Validation of the model :
 - Simulation on an experimental Dutch data set, **not used for model** estimation
 - Comparison of the proposed model with the ASC model

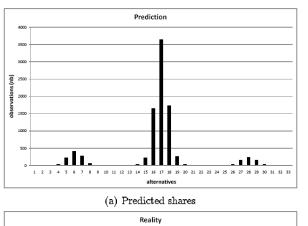
Model validation : ASC model

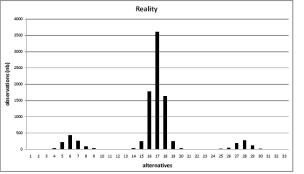
- The simplest model : utility of each alternative represented only by an alternative specific constant (ASC).
- ASC model estimated on the Japanese data set.

28 parameters (33, minus 4 never chosen, minus 1 for normalization)

- It reproduces the aggregated observations proportions of the estimation data.
- The ASC model **used for comparison** (for example the number of outliers).

Model validation

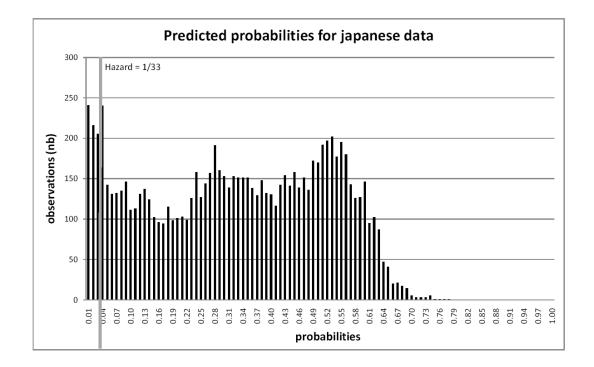

- Validation of the specification
- Validation of the model



Model validation : simulation on the Japanese data set (Aggregate level)

• The proposed model is applied to the Japanese data set (used for estimation)

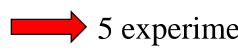
(b) Observed shares


Cone	Г	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	8486.16	8481	0.06%
Left	3, 4, 14, 15, 25, 26	348.86	367	-4.94%
Right	8,9,19,20,30,31	419.29.	407	3.02%
Extreme left	1, 2, 12, 13, 23, 24	12.29	10	22.92%
Extreme right	10, 11, 21, 22, 32, 33	14.39	16	-10.04%

Area	Г	M_{Γ}	RΓ	$(M_{\Gamma}\!-\!R_{\Gamma})/R_{\Gamma}$
acceleration	1 - 11	1059.85	1065	-0.48%
constant speed	12 - 22	7588.28	7565	0.31%
deceleration	23 - 33	632.87	651	-2.79%

Model validation : simulation on the Japanese data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)



Number of outliers: **7.10%** for proposed model **19.90%** for ASC model

Model validation : Cross-validation on the Japanese data set

Japanese data splited into 5 subsets, each containing 20% of the observations

5 experiments : **1** subset saved for **validation estimation** of the model on the 4 remaining

Number of **outliers** (compared with the ASC model cross validation)

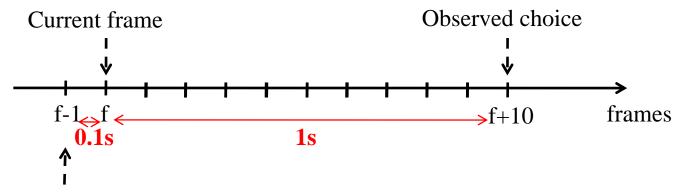
Model	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5
Proposed spec.	8.62%	6.52%	7.44%	7.87%	5.87%
Constant only	20.79%	20.70%	17.13%	19.88%	18.64%

Model validation

- Validation of the specification
- Validation of the model

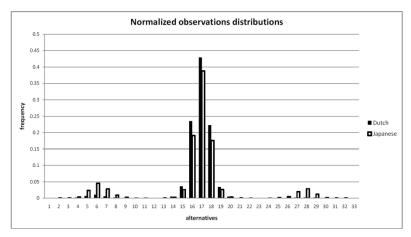
The Dutch data set : video sequence

• Collected at Delft university, in 2000-2001, 2 pedestrians crossing flows



The Dutch data set : general information

- Experimental data set
- Video sequence recorded at 10 frames per second
- Pedestrians trajectories extracted from the video sequence
- For each pedestrian trajectory :



frame used to calculate speed and direction

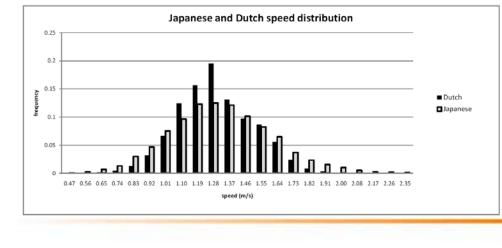
The Dutch data set : comparison with the Japanese data set

• Normalized observations distribution among alternatives

• Observations repartitions inside the nest (Japanese / Dutch)

Nest	# steps	% of total
acceleration	1065	11.48%
constant speed	7565	81.51%
deceleration	651	7.01%
central	4297	46.30%
not central	4984	53.70%

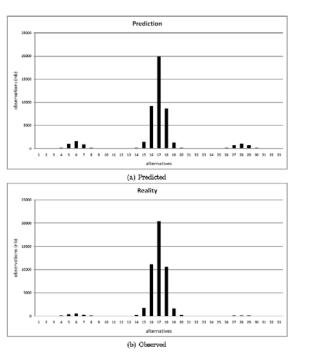
Nest	# steps	% of total	
acceleration	1273	2.68%	
constant speed	45869	96.61%	
deceleration	339	0.71%	
central	20950	44.12%	
not central	26531	55.88%	



The Dutch data set : comparison with the Japanese data set

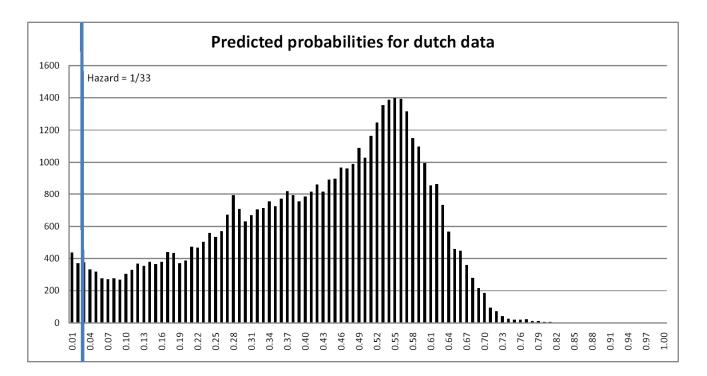
• Quite similar observations proportions in the **direction's cones** (not for speed regime)

Dataset	extremeleft	left	front	right	extremeright
Japanese	0.11%	3.95%	91.38%	4.39%	0.17%
Dutch	0.06%	4.40%	91.35%	4.15%	0.04%


• Speed distributions have different shapes (experimental design of Dutch data set)

Model validation : simulation on the Dutch data set (Aggregate level)

• The proposed model is applied to the **Dutch** data set (**NOT** used for estimation)


	Cone F		M_{Γ}	RΓ	$(M_{\Gamma} - R_{I})$	$-)/R_{\Gamma}$	
	Front	5 – 7, 16 – 18, 27 – 29		43552.36	43374	0.41%	
	Left	3, 4, 14, 15, 25, 26		1948.77	2089	-6.71%	
	Right	8, 9, 19, 20, 30, 31		1853.34	1972	-6.02%	
E	xtreme left	1, 2, 12, 13, 23, 24		43.91	27	62.61%	
Ex	treme right	10, 11, 21, 22, 32, 33		82.62	19	334.85%	
	Area	Г	M _Γ	R _Γ	$(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$		
6	acceleration	1 – 11	4022.32	1273	215.97%		
constant speed		d 12-22	40581.06	45869	_	-11.53%	
deceleration		23 - 33	2877.62	339	7	48.86%	

• Overprediction of acceleration and deceleration

Model validation : simulation on the Dutch data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)

Number of outliers: 2.41%

Model validation : Comparison with the ASC model on the Dutch data set (Aggregate level)

• The ASC model is applied to the Dutch data set and compared to the proposed model)

Cone	Г	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5 - 7, 16 - 18, 27 - 29	43386.42	43374	0.03%
Left	3, 4, 14, 15, 25, 26	1877.47	2089	-10.13%
Right	8, 9, 19, 20, 30, 31	2082.10	1972	5.58%
Extreme left	1, 2, 12, 13, 23, 24	51.16	27	89.47%
Extreme right	10, 11, 21, 22, 32, 33	81.85	19	33.08%

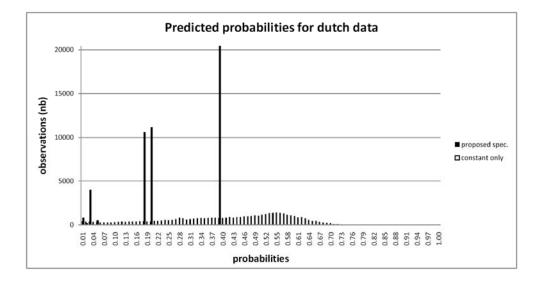
ASC model

Area	Г	M_{Γ}	RΓ	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 - 11	5448.24	1273	327.98%
constant speed	12 - 22	38700.42	45869	-15.63%
deceleration	23 - 33	3330.34	339	882.40%

M_{Γ} R_{Γ} $(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$ Cone 5 - 7, 16 - 18, 27 - 2943552.36 43374 Front 0.41% 1948.77 -6.71%3, 4, 14, 15, 25, 26 Left 2089 8, 9, 19, 20, 30, 31 -6.02%Right 1853.34 1972 62.61% Extreme left 1, 2, 12, 13, 23, 24 43.91 27 10, 11, 21, 22, 32, 33 82.62 334.85% Extreme right 19

Proposed model

Area	Г	M_{Γ}	RΓ	$(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$
acceleration	1 - 11	4022.32	1273	215.97%
constant speed	12 - 22	40581.06	45869	-11.53%
deceleration	23 - 33	2877.62	339	748.86%


• Equivalent for direction (logical, due to proportions)_

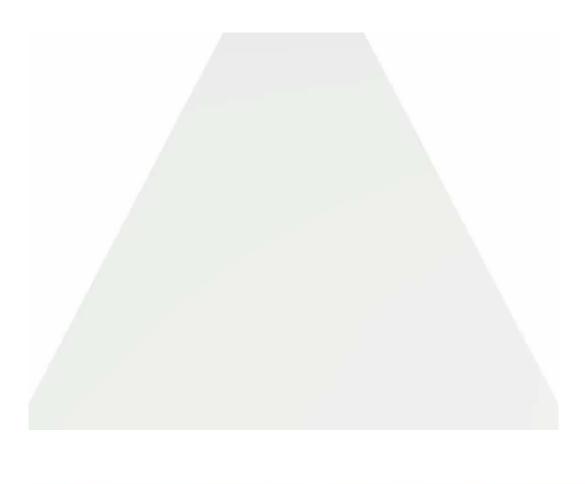
Model validation : simulation on the Dutch data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)

Number of outliers: **2.41%** for proposed model **10.31%** for ASC model

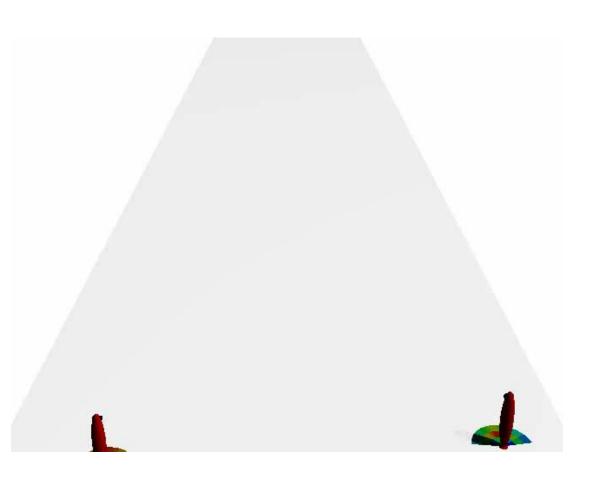
Superiority of the proposed model

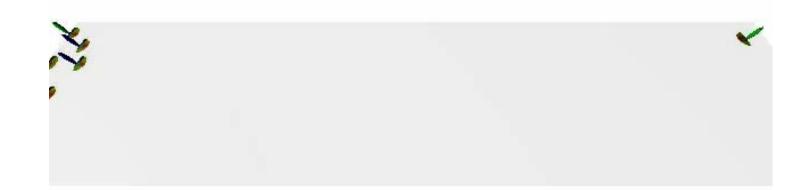
- Introduction
- Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion



- **Implementation** of the **developped specification** in a simulator
- Simulation of 2 pedestrian crossing flows with the model
- Examples :- Simulation of 300s- Start : random speed and direction- Finish : random destination

Ex1 : low density, 2 pedestrians per second entering Ex2 : high density, 5 pedestrians per second entering


• Low density :



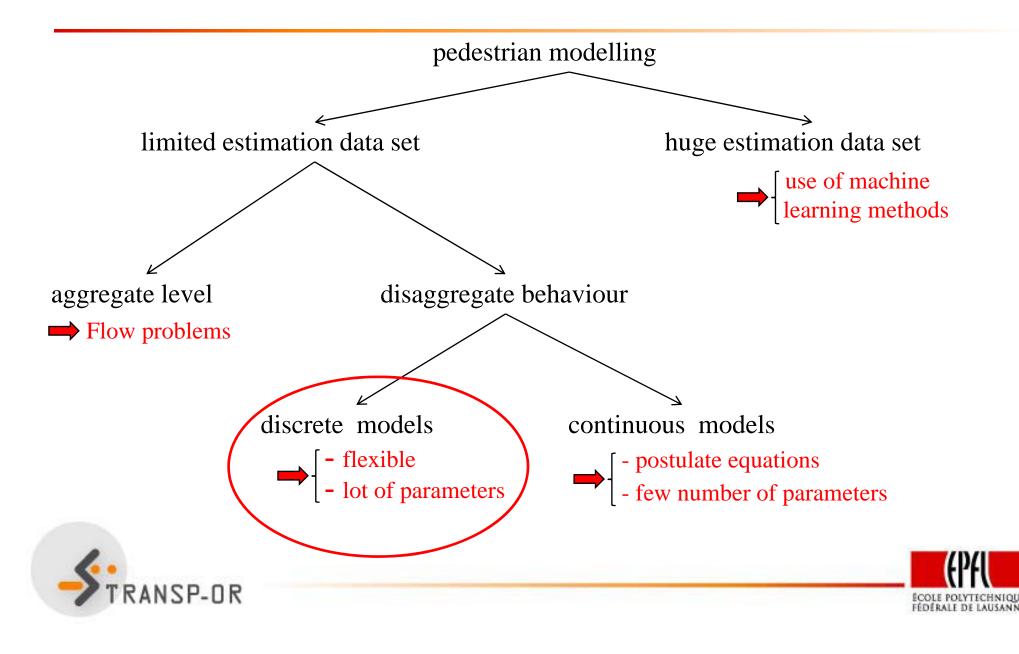
• High density :

- Introduction
- Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion

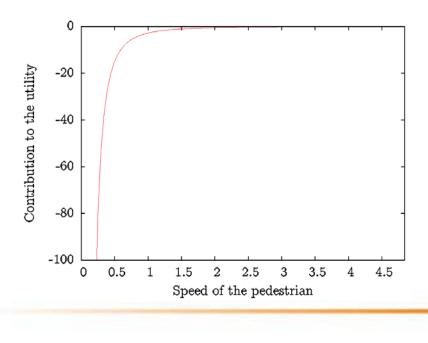
Conclusions and Perspectives

<u>Conclusions</u> :

- Discrete choice model for pedestrian walking behavior with 'unconstrained' and 'constrained' parameters
- Model **estimated** on a real data set, parameters values consistent with hypothesis
- Model validated on a real data set, not used for estimation
- Operating Simulator
- Perspectives :
 - Improve the **acceleration** and **deceleration** patterns
 - Incorporate **physical characteristics** of the pedestrians
 - Model the **strategical** and **tactical** behavioural levels



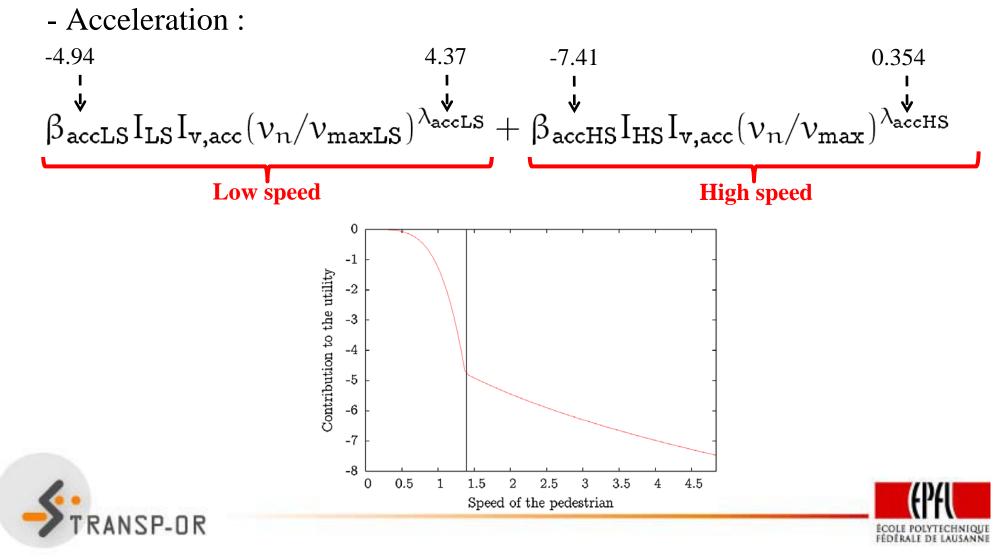
Thanks for your attention



State of the art

Model estimation : parameters values

• Free flow acceleration (unconstrained) :



Model estimation : parameters values

• Free flow acceleration (unconstrained) :

Model estimation : parameters values

• Leader-Follower (constrained) :

• Collision avoidance (constrained) :

-0.00730 0.212 non significative \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow $I_{d,d_n} I_C \alpha_C e^{-\rho_C D_C} \Delta \nu_C^{\gamma_C} \Delta \theta_C^{\delta_C}$

