Specification, estimation and validation of a pedestrian walking behavior model

Thomas Robin

Michel Bierlaire

Gianluca Antonini

Javier Cruz

Objectives

- Model the pedestrian behavior at operational level
- Develop a specification with 'constrained' and 'unconstrained' parameters
- Estimate the model
- Validate the model
- Implement the model in a simulator

Outline

- . Introduction
- . Model specification
- . Model estimation
- . Model validation
- Simulator
- Conclusion

. Introduction

- Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion

Introduction

• Microscopic model: capture the behavior of each pedestrian

Different behavioral levels :

Strategical: destination

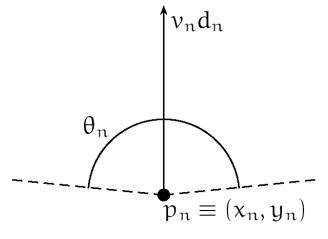
Tactical: route choice

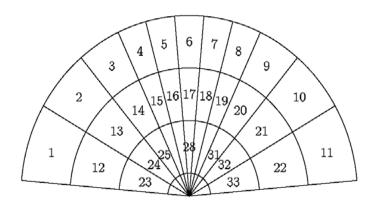
Operational level: short range behavior instantaneous decisions

• Concept of **personal space**: interactions with other pedestrians

Leader follower

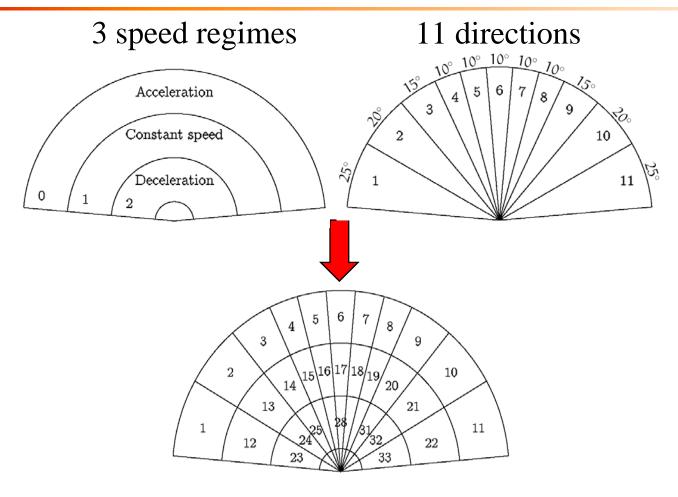
Collision avoidance


- Introduction
- . Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion



Model specification: the space discretization

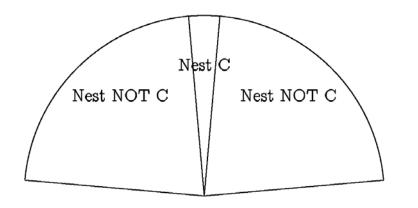
• **Discrete choice model:** at each step, the pedestrian has to choose the next step in the choice set


Pedestrian visual space

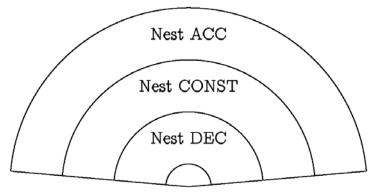
Choice set: discretization of the visual space

At each step the **choice set** depends on the pedestrian **speed** and **direction**

Model specification: the choice set

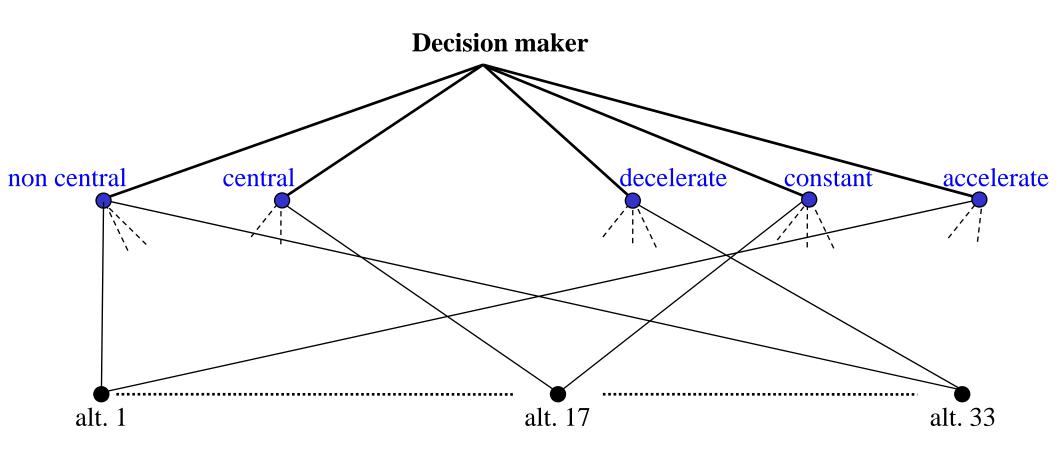


Model specification: cross nested structure


• Hypothesis: alternatives correlated along speed regimes and directions

• Cross Nested structure : each alternative belongs to 2 nests

Nesting based on direction



Nesting based on speed regime

Model specification: cross nested structure

Model specification: cross nested structure

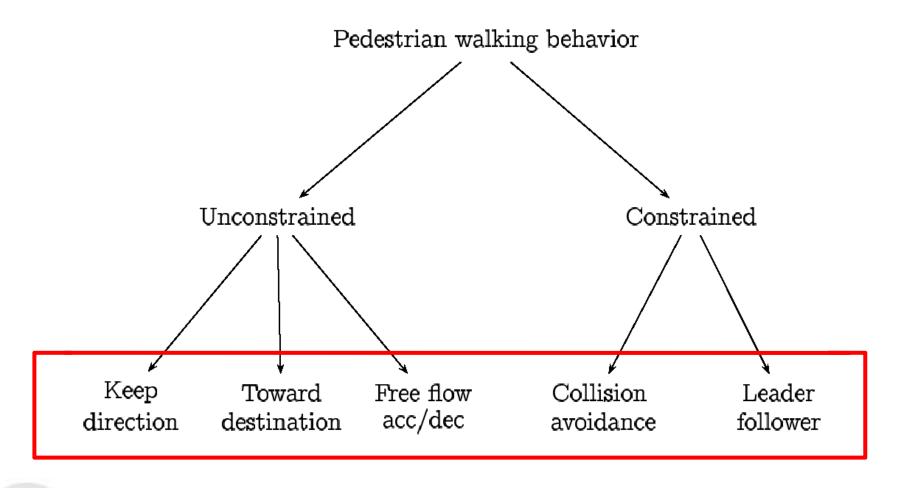
• Probability of choosing the alternative i:

$$P(i|C) = \sum_{m=1}^{M} \frac{\left(\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}\right)^{\frac{\mu}{\mu_{m}}}}{\sum_{n=1}^{M} \left(\sum_{j \in C} \alpha_{jn}^{\mu_{n}/\mu} y_{j}^{\mu_{n}}\right)^{\frac{\mu}{\mu_{n}}}} \frac{\alpha_{im}^{\mu_{m}/\mu} y_{i}^{\mu_{m}}}{\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}}$$

C: choice set

M: number of nests

 V_i : utility of alternative i


 α_{jm} : membership degree of alternative j in the nest n

 μ_m : parameter of the nest m

$$y_i = e^{V_i}$$

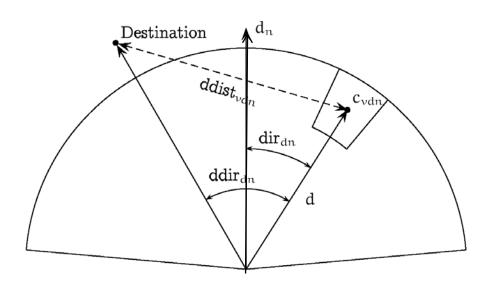
$$\begin{split} V_{\nu dn} = & \beta_{\text{dir_central}} \text{dir}_{\text{dn}} I_{\text{central}} & + \\ & \beta_{\text{dir_side}} \text{dir}_{\text{dn}} I_{\text{side}} & + \\ & \beta_{\text{dir_side}} \text{dir}_{\text{dn}} I_{\text{side}} & + \\ & \beta_{\text{dir_extreme}} \text{dir}_{\text{dn}} I_{\text{extreme}} & + \\ & \beta_{\text{ddist}} \text{ddist}_{\nu \text{dn}} & + \\ & \beta_{\text{ddist}} \text{ddist}_{\nu \text{dn}} & + \\ & \beta_{\text{ddir}} \text{ddir}_{\text{dn}} & + \\ & \beta_{\text{dec}} I_{\text{v,dec}} (\nu_{\text{n}} / \nu_{\text{max}})^{\lambda_{\text{dec}}} & + \\ & \beta_{\text{accLS}} I_{\text{LS}} I_{\text{v,acc}} (\nu_{\text{n}} / \nu_{\text{max}} L_{\text{S}})^{\lambda_{\text{accLS}}} & + \\ & \beta_{\text{accHS}} I_{\text{HS}} I_{\text{v,acc}} (\nu_{\text{n}} / \nu_{\text{max}})^{\lambda_{\text{accHS}}} & + \\ & I_{\text{v,acc}} I_{\text{acc}}^{L} \alpha_{\text{acc}}^{L} D_{\text{L}}^{\rho_{\text{acc}}^{L}} \Delta \nu_{\text{L}}^{\gamma_{\text{acc}}^{L}} \Delta \theta_{\text{L}}^{\delta_{\text{acc}}^{L}} & + \\ & I_{\text{v,dec}} I_{\text{dec}}^{L} \alpha_{\text{dec}}^{L} D_{\text{L}}^{\rho_{\text{dec}}^{L}} \Delta \nu_{\text{L}}^{\gamma_{\text{dec}}^{L}} \Delta \theta_{\text{L}}^{\delta_{\text{dec}}^{L}} & + \\ & I_{\text{d,d_{n}}} I_{\text{C}} \alpha_{\text{C}} e^{-\rho_{\text{C}} D_{\text{C}}} \Delta \nu_{\text{C}}^{\gamma_{\text{C}}} \Delta \theta_{\text{C}}^{\delta_{\text{C}}} & \\ \end{pmatrix}$$

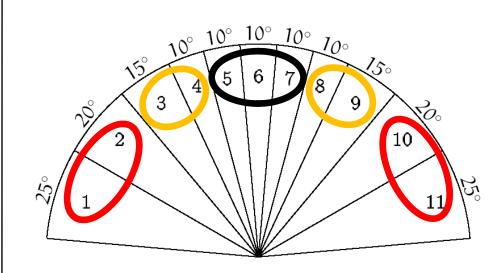
keep direction

toward destination

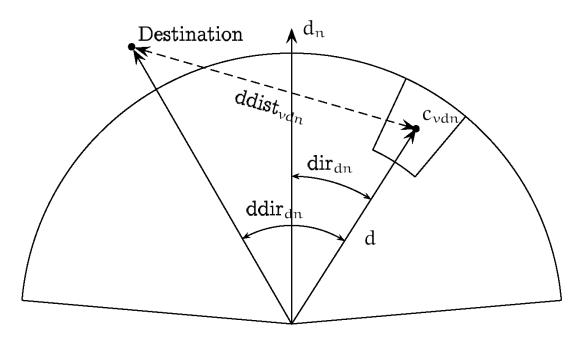
free flow acceleration

 $leader ext{-}follower$


collision avoidance



• Keep direction (unconstrained):

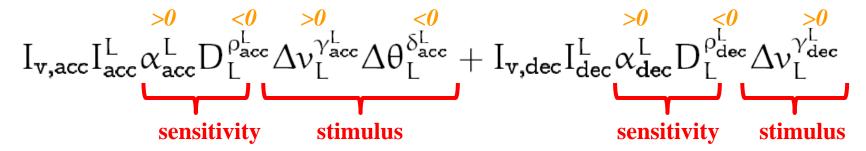


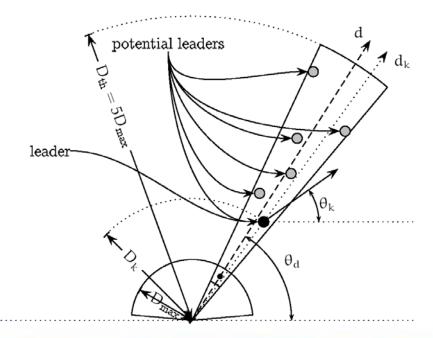
• Toward destination (unconstrained): $\beta_{\text{ddist}} \text{ddist}_{\text{vdn}} + \beta_{\text{ddir}} \text{ddir}_{\text{dn}}$

- Free flow acceleration (unconstrained):
 - Acceleration :

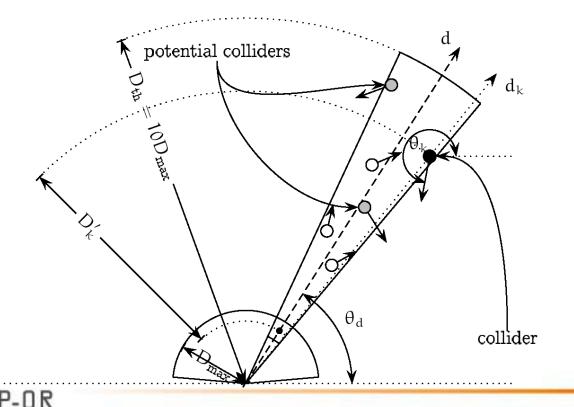
$$\beta_{\text{accLS}} I_{\text{LS}} I_{\text{v,acc}} (\nu_{\text{n}} / \nu_{\text{maxLS}})^{\lambda_{\text{accLS}}} + \beta_{\text{accHS}} I_{\text{HS}} I_{\text{v,acc}} (\nu_{\text{n}} / \nu_{\text{max}})^{\lambda_{\text{accHS}}}$$

$$\text{Low speed} \qquad \qquad \text{High speed}$$


- Deceleration :


$$\beta_{\text{dec}} I_{\text{v,dec}} (\nu_n / \nu_{\text{max}})^{\lambda_{\text{dec}}}$$

• Leader follower (constrained) :

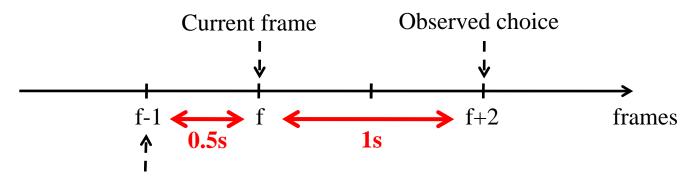


• Collision avoidance (constrained): $I_{d,d_n} I_C \alpha_C e^{-\rho_C D_C} \Delta \nu_C^{\gamma_C} \Delta \theta_C^{\delta_C}$

- Introduction
- Model specification
- . Model estimation
- Model validation
- Simulator
- Conclusion

The Japanese data set: video sequence

• Collected in Sendaï, Japan, on August 2000, large pedestrian crossing road



The Japanese data set: data processing

- Tracking from video sequence: 2 observations per second
- Pedestrians trajectories extracted using 3D-calibration (DLT algorithm)
- For each pedestrian trajectory:

frame used to calculate speed and direction

The Japanese data set: pedestrian trajectory

• 4 alternatives are never chosen: 1, 12, 23, 33

Model estimation: general diagnosis

- Estimation made using the free Biogeme package (biogeme.epfl.ch)
- Estimation results :

Number of estimated parameters: 24

Init log-likelihood: -32451

Final log-likelihood: -13944.74

Likelihood ratio test: 37013

$$\bar{\rho}^2 = 0.570$$

• Parameters values consistent with hypothesis

Model estimation : parameters values

Variable	Coefficient	t test 0	Variable	Coefficient	t test 0	t test 1
name	estimate		name	estimate		
Bddir	-0.0793	-24.14	ρ_{acc}^{L}	-0.465	-1.78	
$\beta_{ ext{ddist}}$	-1.52	-11.63	$\gamma_{\rm acc}^{\rm L}$	0.552	1.98	
β _{dir extreme}	-0.0343	-9.71	$\alpha_{\rm dec}^{\rm L}$	3.78	5.41	
β _{dir_side}	-0.0553	-22.71	$\rho_{ m dec}^{ m L}$	-0.654	-6.70	
β _{dir_central}	-0.0320	-13.90	$\gamma_{ m dec}^{ m L}$	0.658	5.48	
β _{accLS}	-4.94	-25.20	δ_{acc}^{L}	-0.179	-2.22	
β _{accHS}	-7.41	-5.10	$\alpha_{\rm C}$	-0.00730	-10.84	
$\beta_{ ext{dec}}$	-0.0645	-2.46	ρc	-0.212	-8.38	
$\lambda_{\mathtt{accLS}}$	4.37	20.06	μ_{acc}	1.66	9.97	3.95
λ_{accHS}	0.354	2.02	μ_{const}	1.45	16.99	5.25
$\lambda_{ ext{dec}}$	-2.40	-8.50	μ _{central}	5.76	2.84	2.34
$\alpha_{ ext{acc}}^{ ext{L}}$	0.735	1.87	µnot central	1.82	13.12	5.91

- Introduction
- Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion

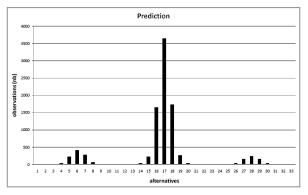
Model validation: methodology

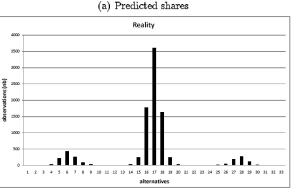
- Validation of the specification :
 - Development of a model with constants only (ASC model)
 - Simulation on the Japanese data set
 - Cross validation on the Japanese data set
- Validation of the model:
 - Simulation on an experimental Dutch data set, not used for model estimation
 - Comparison of the proposed model with the ASC model

Model validation: ASC model

- The simplest model: utility of each alternative represented only by an alternative specific constant (ASC).
- ASC model estimated on the Japanese data set.
 - 28 parameters (33, minus 4 never chosen, minus 1 for normalization)
- It reproduces the aggregated observations proportions of the estimation data.
- The ASC model **used for comparison** (for example the number of outliers).

Model validation


- Validation of the specification
- Validation of the model

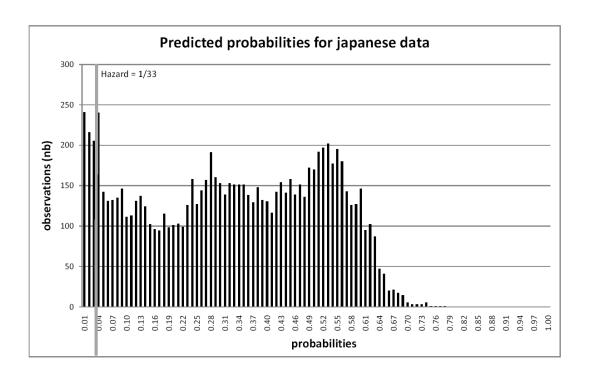


Model validation: simulation on the Japanese data set (Aggregate level)

• The proposed model is applied to the Japanese data set (used for estimation)

(b) Observed shares

Cone	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5 - 7, 16 - 18, 27 - 29	8486.16	8481	0.06%
Left	3, 4, 14, 15, 25, 26	348.86	367	-4.94%
Right	8, 9, 19, 20, 30, 31	419.29.	407	3.02%
Extreme left	1, 2, 12, 13, 23, 24	12.29	10	22.92%
Extreme right	10, 11, 21, 22, 32, 33	14.39	16	-10.04%


Area	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 – 11	1059.85	1065	-0.48%
constant speed	12 - 22	7588.28	7565	0.31%
deceleration	23 - 33	632.87	651	-2.79%

Model validation: simulation on the Japanese data set (Disaggregate level)

• Outlier: Observation with predicted probability less than 1/33 (hazard)

Number of outliers:

7.10% for proposed model 19.90% for ASC model

Model validation: Cross-validation on the Japanese data set

Japanese data splited into 5 subsets, each containing 20% of the observations

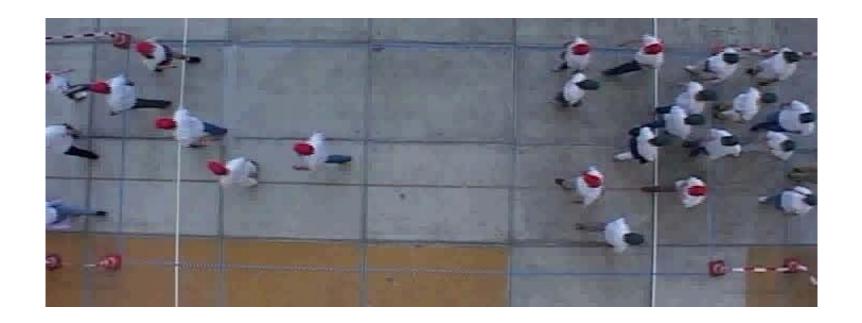
5 experiments : 1 subset saved for **validation estimation** of the model on the 4 remaining

Number of **outliers** (compared with the ASC model cross validation)

Model	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5
Proposed spec.	8.62%	6.52%	7.44%	7.87%	5.87%
Constant only	20.79%	20.70%	17.13%	19.88%	18.64%

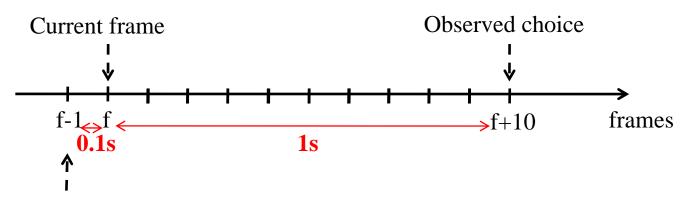
Robust specification

Model validation


- Validation of the specification
- . Validation of the model

The Dutch data set: video sequence

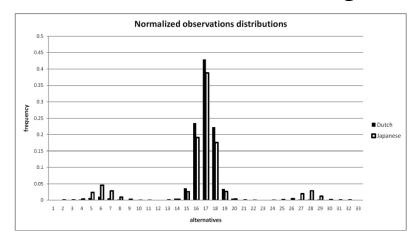
• Collected at Delft university, in 2000-2001, 2 pedestrians crossing flows



The Dutch data set: general information

- Experimental data set
- Video sequence recorded at 10 frames per second
- Pedestrians trajectories extracted from the video sequence
- For each pedestrian trajectory:

frame used to calculate speed and direction



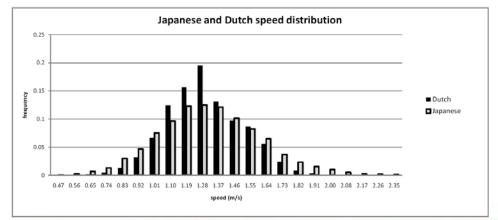
The Dutch data set: comparison with the Japanese data set

Normalized observations distribution among alternatives

• Observations repartitions inside the nest (Japanese / Dutch)

Nest	# steps	% of total	
acceleration	1065	11.48%	
constant speed	7565	81.51%	
deceleration	651	7.01%	
central	4297	46.30%	
not central	4984	53.70%	

Nest	# steps	% of total
acceleration	1273	2.68%
constant speed	45869	96.61%
deceleration	339	0.71%
central	20950	44.12%
not central	26531	55.88%

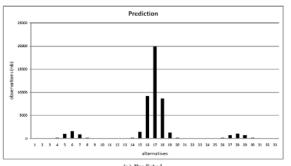


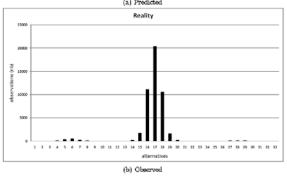
The Dutch data set: comparison with the Japanese data set

• Quite similar observations proportions in the **direction's cones** (not for speed regime)

Dataset	extremeleft	left	\mathbf{front}	\mathbf{right}	extremeright
Japanese	0.11%	3.95%	91.38%	4.39%	0.17%
Dutch	0.06%	4.40%	91.35%	4.15%	0.04%

Speed distributions have different shapes (experimental design of Dutch data set)



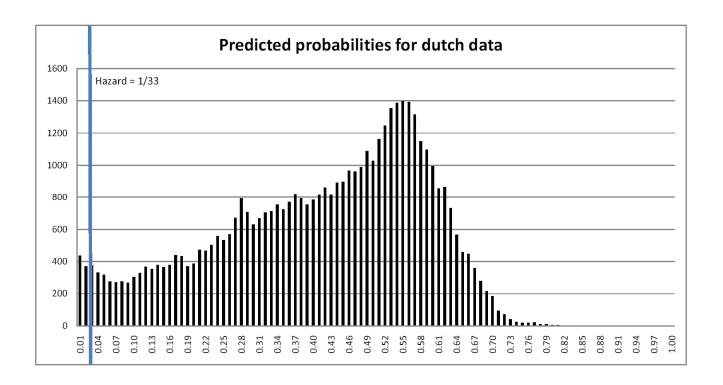


Model validation: simulation on the Dutch data set (Aggregate level)

The proposed model is applied to the **Dutch** data set (**NOT** used for estimation)

Cone	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5 - 7, 16 - 18, 27 - 29	43552.36	43374	0.41%
Left	3, 4, 14, 15, 25, 26	1948.77	2089	-6.71%
Right	8, 9, 19, 20, 30, 31	1853.34	1972	-6.02%
Extreme left	1, 2, 12, 13, 23, 24	43.91	27	62.61%
Extreme right	10, 11, 21, 22, 32, 33	82.62	19	334.85%

Area	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 – 11	4022.32	1273	215.97%
constant speed	12 - 22	40581.06	45869	-11.53%
deceleration	23 - 33	2877.62	339	748.86%


Overprediction of acceleration and deceleration

Model validation: simulation on the Dutch data set (Disaggregate level)

• Outlier: Observation with predicted probability less than 1/33 (hazard)

Number of outliers: 2.41%

Model validation: Comparison with the ASC model on the Dutch data set (Aggregate level)

• The ASC model is applied to the Dutch data set and compared to the proposed model)

ASC model

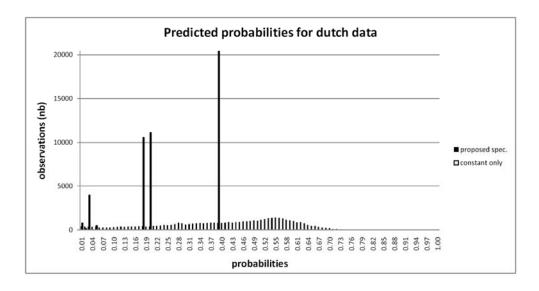
Cone	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5 - 7, 16 - 18, 27 - 29	43386.42	43374	0.03%
Left	3, 4, 14, 15, 25, 26	1877.47	2089	-10.13%
Right	8, 9, 19, 20, 30, 31	2082.10	1972	5.58%
Extreme left	1, 2, 12, 13, 23, 24	51.16	27	89.47%
Extreme right	10, 11, 21, 22, 32, 33	81.85	19	33.08%

Area	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 – 11	5448.24	1273	327.98%
constant speed	12 - 22	38700.42	45869	-15.63%
deceleration	23 - 33	3330.34	339	882.40%

Proposed model

Cone	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	43552.36	43374	0.41%
Left	3, 4, 14, 15, 25, 26	1948.77	2089	-6.71%
Right	8, 9, 19, 20, 30, 31	1853.34	1972	-6.02%
Extreme left	1, 2, 12, 13, 23, 24	43.91	27	62.61%
Extreme right	10, 11, 21, 22, 32, 33	82.62	19	334.85%

Area	Γ	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 – 11	4022.32	1273	215.97%
constant speed	12 - 22	40581.06	45869	-11.53%
deceleration	23 - 33	2877.62	339	748.86%



Equivalent for direction (logical, due to proportions)

Model validation: simulation on the Dutch data set (Disaggregate level)

• Outlier: Observation with predicted probability less than 1/33 (hazard)

Number of outliers:

2.41% for proposed model 10.31% for ASC model

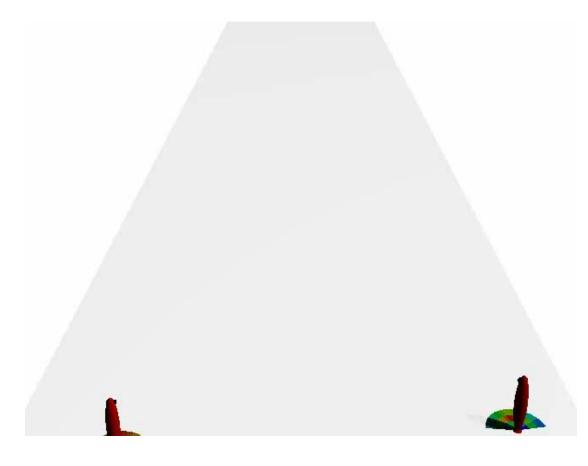
Superiority of the proposed model

- Introduction
- Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion

- **Implementation** of the **developed specification** in a simulator
- Simulation of 2 pedestrian crossing flows with the model
- Examples: | Simulation of 300s Start: random speed and direction Finish: random destination

Ex1: low density, 2 pedestrians per second entering

Ex2: high density, 5 pedestrians per second entering



• Low density:

• **High** density:

- Introduction
- Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion

Conclusions and Perspectives

• Conclusions :

- Discrete choice model for pedestrian walking behavior with 'unconstrained' and 'constrained' parameters
- Model **estimated** on a real data set, parameters values consistent with hypothesis
- Model validated on a real data set, not used for estimation
- Operating **Simulator**

• Perspectives :

- Improve the **acceleration** and **deceleration** patterns
- Incorporate **physical characteristics** of the pedestrians
- Model the **strategical** and **tactical** behavioural levels

Thanks for your attention

