Scheduling of daily activities: an optimization approach

Janody Pougala
Tim Hillel
Michel Bierlaire

STRC 2020
Activity-based models

Socio-economic characteristics
Social interactions
Cultural norms
Basic needs

... (Chapin, 1974)

Activity demand → Travel demand

Time and space constraints

(Hägerstrand, 1970)
Activity-based models

Utility-based models

Decision is made by maximizing utility derived from activities

e.g.
Bowman & Ben-Akiva, 2001
Bhat et al, 2004

Criticisms:
Lack of behavioural realism
Oversimplified models

Rule-based models

Decision is made by considering context-dependent rules

e.g.
Gollegde et al., 1994
Arentze & Timmermans 2000

Criticisms:
Lack of flexibility
Data requirements
Proposed framework

- Utility-based approach based on first behavioural principles

- Mixed integer optimization model to generate a distribution of likely schedules

- Simulation strategy to draw from this distribution
Fundamental concepts

- Activities

![Diagram of activities with start time, duration, travel, and feasible time interval]
Fundamental concepts

- Activities

Location
Mode

Location 2
Mode 2

...

Location n
Mode m
Fundamental concepts

- **Utilities**
- Individuals are time sensitive:
 - Preferences for start time, duration and/or end-time
Fundamental concepts

- Flexibility

![Diagram showing the relationship between utility and time, with categories of not flexible, moderately flexible, and flexible.](image-url)
An individual n considering an activity a with a flexibility k derives the following utility:

$$U_{an} = U_{const} + U_{early} + U_{late} + U_{long} + U_{short} + U_{travel} + \epsilon_{an}$$
An individual n considering an activity a with a flexibility k derives the following utility:

$$U_{an} = U_{const} + U_{early} + U_{late} + U_{long} + U_{short} + U_{travel} + \varepsilon_{an}$$
Utility function

- An individual n considering an activity a with a flexibility k derives the following utility:

$$U_{an} = U_{const} + U_{early} + U_{late} + U_{long} + U_{short} + U_{travel} + \varepsilon_{an}$$

Start time deviations:

$$U_{early} = \theta_{ek} \max(0, x_a^* - x_a)$$
$$U_{late} = \theta_{lk} \max(0, x_a - x_a^*)$$
Utility function

- An individual \(n \) considering an activity \(a \) with a flexibility \(k \) derives the following utility:

\[
U_{an} = U_{const} + U_{early} + U_{late} + U_{short} + U_{long} + U_{travel} + \varepsilon_{an}
\]

Duration deviations:

\[
U_{short} = \theta_{dsk} \max(0, \tau_a^* - \tau_a)
\]

\[
U_{long} = \theta_{dlk} \max(0, \tau_a - \tau_a^*)
\]
An individual n considering an activity a with a flexibility k derives the following utility:

$$U_{an} = U_{const} + U_{early} + U_{late} + U_{short} + U_{long} + U_{travel} + \varepsilon_{an}$$

Disutility of travelling:

$$U_{travel} = \theta_t t_a$$
An individual n considering an activity a with a flexibility k derives the following utility:

$$U_{an} = U_{const} + U_{early} + U_{late} + U_{short} + U_{long} + U_{travel} + \varepsilon_{an}$$

Error components:

$$\sum_{v} \sum_{i} \delta_{iv} \varepsilon_{iv} + \xi_{an}$$
Individuals maximize the total utility, subject to constraints:

\[\Omega = \max \sum_a \omega_{an} U_{an} \]

Decision variables:

- \(\omega_{an} \): indicator variable for activity participation
- \(z_{abn} \): indicator variable for succession between activities a and b
- \(x_{an} \): start time
- \(z_{an} \): duration
Mixed integer optimization problem

- Individuals maximize the total utility, subject to constraints:

\[\Omega = \max \sum_a \omega_{an} U_{an} \]

- Constraints:
 - Time budget
 - Schedule starts and ends at home
 - Time windows
 - Succession constraints
 - Timing consistency between successive activities
 - No duplicates
Simulation

- The output of the problem is conditional on the multivariate distributions of the parameters

- Simulation procedure:
 - Draw θ^* from distribution of θ
 - Draw ε^* from distribution of ε
 - Solve Ω for $(\theta^*, \varepsilon^*)$
 - Repeat N times
Results

- **Dataset:**
 - 10 individuals
 - Weekly and daily considered schedules
 - Considered locations for all activities
 - Considered modes
 - Flexibility
 - Timing preferences
 - Travel time matrices computed using Google Directions API
Example for 1 individual, different draws of the parameters
Results

- 2015 Swiss Mobility and Transport Microcensus

 - 1 day trip diaries
 - Available information:
 - Performed activities
 - Trip times
 - Modes
 - Location

 - Used heuristics to approximate the rest
Results

- Example for 1 individual, different draws of the parameters
Conclusion

Summary:
- Utility-based optimization problem
- Probabilistic output, simulation required
- Consistent results
- Data is a significant limitation

Further work:
- Validation metrics
- Parameter estimation from data: \(f(\beta | Y) \propto L(Y | \beta) f(\beta) \)
 - Hierarchical Bayes estimation
 - Maximum likelihood estimation
Thank you!

janody.pougala@epfl.ch
tim.hillel@epfl.ch
michel.bierlaire@epfl.ch
Bibliography

