Optimisation-based ActBM

Janody Pougala · Tim Hillel · Michel Bierlaire
Outline

- Framework
- State of research
- Current investigations
- Applications
- Further work, ideas…
Framework

- Optimisation-based simulation framework for activity-based models

- Joint estimation
 - Activity participation
 - Activity scheduling
 - Mode choice
 - Location choice

- Three modelling elements:
 1. Schedule simulation
 2. Choice set generation
 3. Parameter estimation
State of research

Data

Estimation

Literature

Parameters β_n

Synthetic individual n

Disturbances ε

Optimisation Ω

Schedule S^n_ε

Indicators
State of research

Simulation framework

Data

Estimation

Parameters β_n

Disturbances ε

Optimisation Ω

Schedule S^n_ε

Indicators

Literature

Synthetic individual n
State of research

Simulation framework

From an activity...

...to a utility function...

... to a maximisation problem

\[\Omega_n = \max \sum w_i U_i \]

\[U_i (x_i, \tau_i, \delta_{xin}, \delta_{tin}, t_i, \omega_{in}) \]
State of research

- **Simulation framework**
 - Successfully implemented in practice (Innosuisse project with SBB)
 - Publication available

Journal of Choice
Modelling
Volume 43, June 2022, 100354

Capturing trade-offs between daily scheduling choices

Janody Pougałaᵃ, Tim Hillelᵇ, Michel Bierlaireᶜ

https://doi.org/10.1016/j.jocm.2022.100354
Under a Creative Commons license

Get rights and content

Open access
State of research

Parameter estimation

Data \rightarrow \text{Estimation} \rightarrow \text{Parameters } \beta_n \rightarrow \text{Synthetic individual } n \rightarrow \text{Optimisation } \Omega \rightarrow \text{Schedule } S^n_\varepsilon \rightarrow \text{Indicators}

\text{Disturbances } \varepsilon \rightarrow \text{Estimation} \rightarrow \text{Literature}
State of research

- Choice set generation

Feasible schedules

- Considered schedules

Unobserved and possibly infinite

Estimation choice set: sample of feasible schedules generated for estimation purposes

Actual choice set: Unobserved

Realized schedule

Based on Shocker (1991)
State of research

- Choice set generation
 - Metropolis-Hastings sampling of feasible schedules
 - STRC 2021

- Initial state
- Swap
- Inflate/Deflate
- Assign
Parameter estimation

- Calibration of DCMs using Biogeme and sampled choice sets
- Case study: Lausanne population in MZMV 2015
- Estimating:
 - Activity specific constants
 - Penalties for schedule deviation
 - Desired times*

- STRC 2022
Current investigations

- Simulation framework
 - Formulation of the problem using Constraint Programming
 - So far 2.5x faster than MILP
 - Fully open-source (Google OR-Tools instead of CPLEX)
Current investigations

- **Choice set generation**
 - Generation of choice sets for location and mode
 - **ICMC 2022:**
 - N. Salvadé, “Representing mode and location choice within activity-based models”

Salvadé (2022)
Applications

Data → Estimation → Parameters β_n → Optimisation Ω → Schedule S^n_ε → Indicators

Literature → Estimation → Synthetic individual n → Disturbances ε
Applications

- **OPTIMS (OPTimisation of Individual Mobility Schedules)**
 - Sept 2020 – March 2022

- Integration of optimisation model into SIMBA MOBi (SBB’s forecasting framework)

Manser et al (2021)
Applications
What’s next?

- **Other applications**
 - Sociological applications (e.g. mobility motifs)
 - Shared mobility
 - Energy demand
 - ...

- **Output**
 - Open-source code for the simulator to be released

Schultheiss (2021)
Thank you!

janody.pougala@epfl.ch
tim.hillel@ucl.co.uk
michel.bierlaire@epfl.ch
References

- Schultheiss M., Spatial familiarity and mobility motifs, Bridging Transportation Researchers, August 2021