OASIS: an optimisation framework for activity-based models

Janody Pougala · Tim Hillel · Michel Bierlaire

Arup CML Demo – 24/11/2022
OASIS framework

- Optimisation-based Activity Scheduling Integrating Simultaneous choice dimensions

Diagram:
- Data
- Literature
- Estimation
- Parameters β_n
- Disturbances ε
- Optimisation Ω
- Schedule S^m_ε
- Indicators
- Synthetic individual n
OASIS framework

- Optimisation-based Activity Scheduling **Integrating Simultaneous choice dimensions**
 - Activity participation, scheduling, mode, location choice
 - Explicitly capture **trade-offs** between choices
 - Combine econometric and rule-based approaches
OASIS framework

Data → Estimation

Parameters β_n → Synthetic individual n

Disturbances ϵ → Optimisation Ω

Schedule S^n_ϵ → Indicators
OASIS framework

Simulation module

Data

Estimation

Parameters β_n

Synthetic individual n

Literature

Disturbances ε

Optimisation Ω

Schedule S^n_ε

Indicators
Simulation

From an activity...

...to a utility function...

\[U_i(x_i, \tau_i, \delta_{xin}, \delta_{tin}, t_i, \omega_{in}) \]

... to a maximisation problem

\[\Omega_n = \max \sum_i U_{in} \]
Definitions

- Activities

![Diagram showing time intervals for activities, travel, and duration.](image-url)
Definitions

- **Activities**

 - **Location 1**
 - **Mode 1**: e.g. Working from home

 - **Location 2**
 - **Mode 2**: e.g. Working on campus, travelling by car

 - **Location n**
 - **Mode m**: e.g. Working on campus, travelling by PT
Definitions

- **Utilities**
- **People are time sensitive:**
 - Preferences for start time, duration and/or end-time

![Diagram showing time sensitivity and utility](image)
Definitions

- **Utilities**

- People derive a utility (satisfaction) when they perform activities

\[U = f(\beta, X) \]

E.g. (Pougala et al, 2022)

\[U_{an} = U_{participation} + U_{start \ time} + U_{duration} + U_{travel} + \epsilon_{an} \]
Utilities

People derive a utility (satisfaction) when they perform activities

\[U = f(\beta, X) \]

e.g. (Feil, 2010)

\[U_{an} = U_{perf} + U_{late} + U_{travel} + \varepsilon_{an} \]
Individuals maximise the total utility, subject to constraints:

$$\Omega = \max \sum_a U_{an}$$

Decision variables:
- Activity participation
- Start time
- Duration
- Succession between activities
Individuals maximise the **total utility**, subject to constraints:

\[
\Omega = \max \sum_a U_{an}
\]

Constraints:
- Time budget
- No duplicates
- Mode consistency
- Resource availability
- Participation constraints
- Sequence constraints
Simulation procedure:

- Draw β^r from distribution of β
- Draw ε^r from distribution of ε
- Solve Ω for (β^r, ε^r)
- Repeat N times
OASIS framework

Data → Estimation

Literature → Estimation

Estimation → Parameters β_n

Parameters β_n → Synthetic individual n

Disturbances ε → Optimisation Ω

Optimisation Ω → Schedule S^n_ε

Schedule S^n_ε → Indicators
OASIS framework

Parameter estimation

Data → Literature → Estimation

Synthetic individual n

Parameters β_n

Disturbances ε → Optimisation Ω

Schedule S^n_{ε} → Indicators
Estimation

How do we estimate the **parameters** of the model?

\[U = f(\beta, X) \]

\[U_{an} = U_{participation} + U_{start~time} + U_{duration} + U_{travel} + \varepsilon_{an} \]
Parameter estimation

- Maximum likelihood estimation (MLE) of parameters in discrete choice models:

\[\hat{\beta} = \arg \max L_n(\beta) \]

\[L_n = \prod_{n=1}^{N} \prod_{i \in C_n} P_n(i)^{y_{in}} \]
Parameter estimation

- Maximum likelihood estimation (MLE) of parameters in discrete choice models:

\[
\hat{\beta} = \arg \max L_n(\beta)
\]

\[
L_n = \prod_{n=1}^{N} \prod_{i \in C_n} P_n(i)^{y_{in}}
\]

Enumeration over choice set \(C_n\)

- Common assumptions on choice set:
 - Universal across population
 - Fully observed or observable
Estimation

- Choice set generation

Estimation choice set: sample of feasible schedules generated for estimation purposes

Feasible schedules

Considered schedules

Unobserved and possibly infinite

Actual choice set: Unobserved

Realised schedule

Based on Shocker (1991)
Estimation

- **Choice set generation**
 - Metropolis-Hastings sampling of feasible schedules

![Diagram](image)

- **Block**
- **Inflate/Deflate**
- **Swap**
- **Assign**
- **Mode**
- **Location**
Estimation

Data

Literature

Generic

Activity-specific
OASIS framework

Data → Estimation → Parameters β_n → Optimisation Ω → Schedule S^n_ε → Indicators

Literature → Synthetic individual n → Disturbances ε
OASIS framework

Data

Estimation

Parameters β_n

Synthetic individual n

Disturbances ε

Optimisation Ω

Schedule S^n_{ε}

Indicators

Applications
Applications

- **OPTIMS (OPTimisation of Individual Mobility Schedules)**
 - Collaboration with Swiss Federal Railways (SBB)
 - Integration of optimisation model into SBB’s forecasting framework

- https://github.com/optims-org/optims-sbb

Manser et al (2022)
Multiday extension

Single day

Data

Estimation

Parameters β_n

Disturbances ε

Optimisation Ω

Schedule S^n_ε

Indicators

Literature

Synthetic individual n
Multiday extension

Day 1

Short term

Long term
Multiday extension

- We solve a multiobjective optimisation problem

\[\Omega = \max \sum_d w_d \sum_a U_{ad} \]

- Decision variables for **each day** \(d \):
 - Activity participation
 - Start time
 - Duration
 - Succession between activities
We solve a multiobjective optimisation problem

$$\Omega = \max \sum_d w_d \sum_a U_{ad}$$

Constraints for each day d:
- Daily time budget
- No duplicates
- Mode consistency
- Resource availability
- Participation constraints
- Consistency across days
- Time budget over time horizon
- ...
The simulation results must reflect **typical patterns (habits)**

Additional parameters in utility function accounting for:

- Specific daily preferences (e.g., leisure activities on week-ends)
- Similarity across days (e.g., Weekdays vs. Week-ends)

Schultheiss (2021)
Conclusion

Summary

- Optimisation framework to simulate activity schedules
 - Simultaneous estimation of all scheduling dimensions
 - Combining econometric and rule-based approaches

- Methodology to estimate the parameters

- Successful practical applications

Current challenges – future work:
- Intra- and interpersonal interactions (N. Rezvany’s PhD, EPFL)
- Validation
Related publications

Thank you!

janody.pougala@epfl.ch
tim.hillel@ucl.ac.uk
michel.bierlaire@epfl.ch