Specification, estimation and validation of a pedestrian walking behavior model

Gianluca Antonini

Javier Cruz

Michel Bierlaire

Thomas Robin

14th March 2008

Motivation

• Model the pedestrian behaviour

Motivation

• Model of the pedestrian behaviour

incorporate the model in more global models

• Use of econometric models

visibility and control of the specification

- Calibration on real data
 - estimated parameters values

State of the art

Objectives

- Model the pedestrian behaviour at **operational** level
- Develop a specification with 'constrained' and 'unconstrained' parameters
- Estimate the model
- Validate the model
- Implement the model in a **simulator**

Outline

- . Introduction
- Discrete choice models
- . Model specification
- . Model estimation
- Model validation
- Simulator
- Conclusion

Introduction

- Microscopic model : capture the behavior of each pedestrian **Discrete choice model**
- Different **behavioral levels** :

Strategical : destination Tactical : route choice **Fixed Operational** level : short range behavior instantaneous decisions

Concept of **personal space** : interactions with other pedestrians

Leader follower

Collision avoidance

- Introduction
- **.** Discrete choice models
- Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion

Discrete choice models : introduction

- Econometric models developped since the 50's
- Disagregate model
- A choice theory defines :
 - a decision maker : each pedestrian
 - alternatives : possible immediate future steps
 - attributes of alternatives : characteristics
 - decision rule : utility maximisation theory

Discrete choice model : our context

- At each step the pedestrian has to choose the next step in a choice set
- Example : only considering distance toward destination

Discrete choice model : decision rule

- Utility maximisation theory
- Association of a function, called **utility** to each alternative
- It depends on the **alternative** *i*, and on the **decision maker** *n*

Alt. 1
Alt. 2
$$\longrightarrow$$
 U_{1n}
 U_{2n}
Alt. 3 U_{3n}

The decision maker *n* will choose the alternative *i* which has the higher utility

Discrete choice model : utility function

Uncertainty

- Utility is a **latent concept**
- It can not be directely observed
- Decision maker: stochastic decision rules
- Analyst: Lack of information

$$U_{in} = V_{in} + \epsilon_{in}$$

 V_{in} : deterministic part of the utility of alternative *i* for individual *n* ϵ_{in} : error term, different assumptions can be made on its distribution

Discrete choice model : utility specification

• **Example** : V_{in} depends only on the distance toward the destination

$$V_{in} = \beta dist_i$$

 β : unknown parameter, has to be estimated from the data $dist_i$: distance between alternative *i* and the final destination

Discrete choice model : error term

• **Example** : suppose ϵ_{in} independent and identically distributed (iid) with an extreme value distribution

 $P_n(i|C_n)$: probability for the individual **n** to choose the alternative **i**

$$P_n(i|C_n) = \frac{e^{V_{in}}}{\sum_{j \in C_n} e^{V_{jn}}}$$

 C_n : Choice set, depends on the individual n

Discrete choice model : estimation data

Data set

Observation	Choice	dist.1	dist.2	dist.3
1	2			
2	2			
3	2			
4	2			1
5	3	I		I I
6	2			

Discrete choice model : likelihood

• Maximisation of the likelihood function

$$l(\beta) = \prod_{n \in \mathbb{N}} \prod_{i \in C_n} (P_n(i|C_n))^{y_{in}} = \prod_{n \in \mathbb{N}} \prod_{i \in C_n} (\frac{e^{\beta dist_i}}{\sum_{j \in C_n} e^{\beta dist_j}})^{y_{in}}$$

 y_{in} : indicator equals to 1, if individual *n* has choosen alternative *i*, 0 otherwise N: set of individuals in the population

• In practice use of the log-likelihood (numerical reasons)

$$L(\beta) = \sum_{n \in N} \sum_{i \in C_n} y_{in} log(\frac{e^{\beta dist_i}}{\sum_{j \in C_n} e^{\beta dist_j}})$$

 $\Rightarrow \beta$ estimated from the data

Why using a discrete choice model?

Disaggregate •

capture the behaviour of each pedestrian

- Flexible
 - \rightarrow easy to add behavioural modules
 - easy to add pedestrians characteristics
- Estimation
 - estimation on a real data set by likelihood maximisation

- Introduction
- Discrete choice models
- Model specification
- Model estimation
- Model validation
- Simulator
- Conclusion

Model specification : the space discretization

Pedestrian visual space

Choice set : discretization of the visual space

At each step the choice set depends on the pedestrian speed and direction

Model specification : the choice set

33 alternatives

Model specification : cross nested structure

• Hypothesis : alternatives correlated along speed regimes and directions

Cross Nested Logit model

• Cross Nested structure : each alternative belongs to 2 nests

Model specification : cross nested structure

Model specification : cross nested structure

• Probability of choosing the alternative i :

$$P(i|C) = \sum_{m=1}^{M} \frac{\left(\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}\right)^{\frac{\mu}{\mu_{m}}}}{\sum_{n=1}^{M} \left(\sum_{j \in C} \alpha_{jn}^{\mu_{n}/\mu} y_{j}^{\mu_{n}}\right)^{\frac{\mu}{\mu_{n}}}} \frac{\alpha_{im}^{\mu_{m}/\mu} y_{i}^{\mu_{m}}}{\sum_{j \in C} \alpha_{jm}^{\mu_{m}/\mu} y_{j}^{\mu_{m}}}$$

C : choice set

M: number of nests

 V_i : utility of alternative i

 α_{jm} : membership degree of alternative j in the nest n

 μ_m : parameter of the nest m

 $V_{vdn} = \beta_{dir central} dir_{dn} I_{central}$ $\beta_{dir side} dir_{dn} I_{side}$ $\beta_{dir} extreme dir_{dn} I_{extreme}$ $\beta_{ddist}ddist_{vdn}$ $\beta_{ddir}ddir_{dn}$ $\beta_{\text{dec}} I_{v,\text{dec}} (\nu_n / \nu_{\text{max}})^{\lambda_{\text{dec}}}$ $\beta_{accLS} I_{LS} I_{v,acc} (\nu_n / \nu_{maxLS})^{\lambda_{accLS}} +$ $\beta_{\text{accHS}} I_{\text{HS}} I_{\text{v.acc}} (\nu_n / \nu_{\text{max}})^{\lambda_{\text{accHS}}}$ $I_{v,acc}I_{acc}^{L}\alpha_{acc}^{L}D_{L}^{\rho_{acc}^{L}}\Delta\nu_{L}^{\gamma_{acc}^{L}}\Delta\theta_{L}^{\delta_{acc}^{L}}$ + $I_{v,dec}I_{dec}^{L}\alpha_{dec}^{L}D_{I}^{\rho_{dec}^{L}}\Delta\nu_{I}^{\gamma_{dec}^{L}}\Delta\theta_{I}^{\delta_{dec}^{L}} +$ $I_{d,d_n}I_C\alpha_C e^{-\rho_C D_C} \Delta \nu_C^{\gamma_C} \Delta \theta_C^{\delta_C}$

keep direction

toward destination

free flow acceleration

leader-follower

collision avoidance

• Keep direction (**unconstrained**) :

- Free flow acceleration (**unconstrained**) :
 - Acceleration :

- Free flow acceleration (**unconstrained**) :
 - Deceleration :

 $-0.0630 \qquad -2.41$ $\beta_{\text{dec}} I_{\text{v,dec}} (\nu_n / \nu_{\text{max}})^{\lambda_{\text{dec}}}$

• Leader follower (constrained) :

- Introduction
- Discrete choice models
- Model specification
- . Model estimation
- Model validation
- Simulator
- Conclusion

The Japanese data set : video sequence

• Collected in Sendaï, Japan, on August 2000, large pedestrian crossing road

The Japanese data set : data processing

- Tracking from video sequence: 2 observations per second
- Pedestrians trajectories extracted using 3D-calibration (DLT algorithm)
- For each pedestrian trajectory :

The Japanese data set : pedestrian trajectory

• 4 alternatives are never chosen: 1, 12, 23, 33

Model estimation : general diagnosis

- Estimation made using the free Biogeme package (biogeme.epfl.ch)
- Estimation results :

```
Number of estimated parameters : 24
Init log-likelihood : -32451
Final log-likelihood : -13997.27
Likelihood ratio test : 36907
\overline{\rho}^2 = 0.568
```

• Parameters values consistent with hypothesis

Model estimation : parameters values

Variable	Coefficient	t test 0	t test 1
name	estimate		
ßddir	-0.0790	-24.53	
βddist	-1.55	-11.66	
βdir_extreme	-0.0326	-9.30	
βdir_side	-0.0521	-21.87	
βdir_central	-0.0252	-8.74	
β_{accLS}	-4.97	-22.61	
βaccHS	-7.47	-5.21	
β _{dec}	-0.0630	-2.40	
λ_{accLS}	4.16	15.94	
λ_{aocHS}	0.358	2.09	
λ_{dec}	-2.41	-8.43	
α_{acc}^{L}	0.942	2.28	
ρ_{acc}^{L}	-0.489	-2.19	
$\gamma^{\rm L}_{\rm acc}$	0.625	2.87	
α_{dec}^{L}	3.69	6.90	
ρ_{dec}^{L}	-0.663	-7.11	
γ_{dec}^{L}	0.652	6.19	
δ ^L _{acc}	-0.171	-2.33	
$\alpha_{\rm C}$	-0.00639	-9.82	
ρ _C	0.239	-8.28	
μ_{acc}	1.66	9.73	3.88
μ_{const}	1.50	13.46	4.48
µ _{central}	2.35	1.93	1.11
μ_{not} central	1.75	9.46	4.04

- Introduction
- Discrete choice models
- Model specification
- Model estimation
- . Model validation
- Simulator
- Conclusion

Model validation : methodology

- Validation of the specification :
 - Developpment of a model with constants only (ASC model)
 - Simulation on the Japanese data set
 - Cross validation on the Japanese data set
- Validation of the model :
 - Simulation on an experimental Dutch data set, not used for model estimation
 - Comparison of the proposed model with the ASC model

Model validation : model constants-only

- The simplest model : utility of each alternative represented only by an alternative specific constant (ASC)
- This model with only constants (ASC model) estimated on the Japanese data set.

28 parameters (33, minus 4 never chosen, minus 1 for normalization)

- It reproduces the aggregated observations proportions of the Japanese data set
- The ASC model **used for comparison** (for example the number of outliers)

Model validation : simulation on the Japanese data set (Aggregate level)

• The proposed model is applied to the Japanese data set (used for estimation)

alternatives (b) Observed shares

Cone	Г	M_{Γ}	R_{Γ}	$(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	8489.27	8481	0.10%
Left	3, 4, 14, 15, 25, 26	349.67	367	-4.72%
Right	8, 9, 19, 20, 30, 31	415.41.	407	2.08%
Extreme left	1, 2, 12, 13, 23, 24	12.29	10	22.96%
Extreme right	10, 11, 21, 22, 32, 33	14.30	16	-10.59%

Area	Г	\mathcal{M}_{Γ}	RΓ	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 - 11	1041.50	1065	-2.21%
constant speed	12 - 22	7606.49	7565	0.55%
deceleration	23 - 33	633.02	651	-2.76%

Model validation : simulation on the Japanese data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)

Number of outliers: **7.13%** for proposed model **19.90%** for ASC model

Model validation : Cross-validation on the Japanese data set

Japanese data splited into 5 subsets, each containing 20% of the observations

5 experiments : **1** subset saved for **validation estimation** of the model on the 4 remaining

Number of **outliers** (compared with the ASC model cross validation)

Model	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5
Proposed spec.	8.78%	6.36%	7.60%	7.87%	5.87%
Constant only	20.79%	20.70%	17.13%	19.88%	18.64%

The Dutch data set : video sequence

• Collected at Delft university, in 2000-2001, 2 pedestrians crossing flows

The Dutch data set : general information

- Experimental data set
- Video sequence recorded at 10 frames per second
- Pedestrians trajectories extracted from the video sequence
- For each pedestrian trajectory :

frame used to calculate speed and direction

The Dutch data set : comparison with the Japanese data set

• Normalized observations distribution among alternatives

• Observations repartitions inside the nest (Japanese / Dutch)

Nest	# steps	% of total
acceleration	1065	11.48%
constant speed	7565	81.51%
deceleration	651	7.01%
central	4297	46.30%
not central	4984	53.70%

Nest	# steps	% of total
acceleration	1273	2.68%
constant speed	45869	96.61%
deceleration	339	0.71%
central	20950	44.12%
not central	26531	55.88%

The Dutch data set : comparison with the Japanese data set

• Quite similar observations proportions in the **direction's cones** (not for speed regime)

Dataset	extremeleft	left	front	\mathbf{right}	extremeright
Japanese	0.11%	3.95%	91.38%	4.39%	0.17%
Dutch	0.06%	4.40%	91.35%	4.15%	0.04%

• Speed distributions have different shapes (experimental design of Dutch data set)

Model validation : simulation on the Dutch data set (Aggregate level)

• The proposed model is applied to the **Dutch** data set (**NOT** used for estimation)

Cone	Г	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	43619.98	43374	0.57%
Left	3, 4, 14, 15, 25, 26	1968.79	2089	-5.75%
Right	8, 9, 19, 20, 30, 31	1764.39	1972	-10.53%
Extreme left	1, 2, 12, 13, 23, 24	45.86	27	69.85%
Extreme right	10, 11, 21, 22, 32, 33	81.97	19	331.44%
	•			

Area	Г	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 – 11	3892.35	1273	205.76%
constant speed	12 - 22	40733.53	45869	-11.20%
deceleration	23 - 33	2855.12	339	742.22%

• Overprediction of acceleration and deceleration

Model validation : simulation on the Dutch data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)

Number of outliers: 2.48%

Model validation : Comparison with the ASC model on the Dutch data set (Aggregate level)

• The ASC model is applied to the Dutch data set and compared to the proposed model)

Cone	Г	M_{Γ}	R _Γ	$(M_{\Gamma} - R_{\Gamma})/R_{\Gamma}$
Front	5-7,16-18,27-29	43386.42	43374	0.03%
Left	3, 4, 14, 15, 25, 26	1877.47	2089	-10.13%
Right	8, 9, 19, 20, 30, 31	2082.10	1972	5.58%
Extreme left	1, 2, 12, 13, 23, 24	51.16	27	89.47%
Extreme right	10, 11, 21, 22, 32, 33	81.85	19	330.80%

ASC model

Area	Г	M_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 - 11	5448.24	1273	327.98%
constant speed	12 - 22	38700.42	45869	-15.63%
deceleration	23 - 33	3330.34	339	882.40%

Proposed model

Cone	Г	M_{Γ}	R _Γ	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
Front	5-7, 16-18, 27-29	43619.98	43374	0.57%
Left	3, 4, 14, 15, 25, 26	1968.79	2089	-5.75%
Right	8, 9, 19, 20, 30, 31	1764.39	1972	-10.53%
Extreme left	1, 2, 12, 13, 23, 24	45.86	27	69.85%
Extreme right	10, 11, 21, 22, 32, 33	81.97	19	331.44%

Area	Г	\mathcal{M}_{Γ}	R_{Γ}	$(M_{\Gamma}-R_{\Gamma})/R_{\Gamma}$
acceleration	1 - 11	3892.35	1273	205.76%
constant speed	12 - 22	40733.53	45869	-11.20%
deceleration	23 - 33	2855.12	339	742.22%

• Equivalent for direction (logical, due to proportions)_

Model validation : simulation on the Japanese data set (Disaggregate level)

• Outlier : Observation with predicted probability less than 1/33 (hazard)

Number of outliers: **2.48%** for proposed model **10.31%** for ASC model

Superiority of the proposed model

- Introduction
- Discrete choice models
- Model specification
- Model estimation
- Model validation
- . Simulator
- Conclusion

Simulator

- **Implementation** of the **developped specification** in a simulator
- Simulation of **2 pedestrian crossing flows** with the model
- Examples : Simulation of 300s
 Start : random speed and direction
 Finish : random destination

Ex1 : low density, 2 pedestrians per second entering Ex2 : high density, 5 pedestrians per second entering

Simulator

• Low density :

Simulator

• High density :

Conclusions and Perspectives

Conclusions :

- Discrete choice model for pedestrian walking behavior with 'unconstrained' and 'constrained' parameters
- Model **estimated** on a real data set, parameters values consistent with hypothesis
- Model validated on a real data set, not used for estimation
- Operating **Simulator**
- Perspectives :
 - Improve the **acceleration** and **deceleration** patterns
 - Incorporate **physical characteristics** of the pedestrians
 - Model the **strategical** and **tactical** behavioural levels

Thanks for your attention

http://transp-or2.epfl.ch/publications.php#techrep

