Passenger satisfaction maximization within a demand-based optimization framework

Meritxell Pacheco Paneque
Shadi Sharif Azadeh Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
École Polytechnique Fédérale de Lausanne

16/05/2019
Introduction

Methodology

Proof of concept

Conclusions and future work
Motivation

- Negative externalities
- Revenue recycling
- Impact on the social welfare

- Demand-based optimization
- Operator’s point of view
- Profit maximization (MILP)
Passenger satisfaction

- Typically used to evaluate existing services and hypothetical scenarios
- Less often considered during the supply decision making
- Two relevant works with discrete choice models:
 - Atasoy et al. (2015): Flexible Mobility on Demand (FMOD) system
 - Robenek et al. (2016): train timetabling problem
 - In both cases, passenger satisfaction defined as the consumer surplus
- Here: measured as the **expected maximum utility** (EMU)
Revenue recycling allows to ameliorate adverse equity impacts

Disaggregate demand provides valuable insight into road pricing and public transportation (PT) management

However, restrictions on the elasticities and substitution patterns:
 - Huang (2002): elastic demand but identical commuters
 - Basso and Jara-Díaz (2012): logit model with only attributes

Here: revenue recycling with highway toll and PT fare as supply decisions for any choice model
1. Introduction
2. Methodology
3. Proof of concept
4. Conclusions and future work
Methodology

Choice model linearization

\[U_{in} = V_{in} + \varepsilon_{in} \]

\[U_{inr} = V_{in} + \xi_{inr} \]

draw distribution (R)

\[U_{nr} = \max_i U_{inr} \]

\[U_{nr} \leq U_{inr} \leq U_{inr} + M_{inr}(1 - w_{inr}) \]

Utility function:

\[U_{inr} = \beta_{in} p_{in} + g_{in}(x_{in}) + \xi_{inr} \]

Choice variables:

\[w_{inr} = 1 \text{ if } i \text{ chosen by } n \text{ in draw } r, \ 0 \text{ otherwise} \]

Demand for alternative \(i \):

\[D_i = \frac{1}{R} \sum_r \sum_n w_{inr} \]
Expected maximum utility

- It represents the benefit obtained by an individual from their choice
- Logit: EMU is equivalent to the consumer surplus up to a constant
- The same applies to Multivariate Extreme Value (MEV) models
Methodology

Passenger satisfaction maximization

\[
\max \sum_n E[\max_i U_{in}] \quad \text{linear choice model} \quad \max \frac{1}{R} \sum_n \sum_r U_{nr}
\]

- Approximation to the EMU
- \(E[\max_i U_{in}] \approx \frac{1}{R} \sum_r E[\max_i U_{inr}] = \frac{1}{R} \sum_r U_{nr} \) for one individual
- Passenger satisfaction = aggregation of the approximated EMU
Revenue recycling strategy (1)

- N individuals performing a trip in a given time horizon
- C: car and PT (and possibly other modes)
- One transportation authority that decides on:
 - highway toll (to be implemented): $p_{\text{car},n}$
 - PT fare: $p_{\text{PT},n}$
- These decisions are **endogenous variables** of the formulation
Revenue recycling strategy (2)

- Investment \(I \) does not exceed the available budget \(B \)

- Investment: \(I^{\text{car}} + I^{\text{PT}} \)
 - \(I^{\text{car}} \): fixed costs \(F^{\text{car}} \) and cost per transaction \(c^{\text{car}} \)
 - \(I^{\text{PT}} \): fixed costs \(F^{\text{PT}} \)

\[
I = F^{\text{car}} + \frac{1}{R} c^{\text{car}} \sum_n \sum_r w_{\text{car},n,r} + F^{\text{PT}}
\]

- Budget: initial budget \(B^0 \) + collected revenues

\[
B = B^0 + \frac{1}{R} \sum_n \sum_r \left[\eta_{\text{car},n,r} p_{\text{car},n} w_{\text{car},n,r} + \eta_{\text{PT},n,r} p_{\text{PT},n} w_{\text{PT},n,r} \right]
\]
Methodology

Passenger satisfaction maximization with revenue recycling

Objective Function

$$ \max \frac{1}{R} \sum_n \sum_r U_{nr} $$

Utility

$$ U_{inr} = \beta_{in} p_{in} + g_{in}(x_{in}) + \xi_{inr} $$

Linearizing Constraints

- Only one alternative can be chosen
- Linearization of the variable $\eta_{inr} = p_{in} w_{inr}$

```
F_{car} + \frac{1}{R} c_{car} \sum_n \sum_r w_{car,n,r} + F^{PT} \leq B^0 + \frac{1}{R} \sum_i \sum_n \sum_r \eta_{inr}
```
1. Introduction

2. Methodology

3. Proof of concept

4. Conclusions and future work
Motivation

- Case study to illustrate the logic of the formulation
- Definition of a scenario inspired in reality
- Estimation of a choice model (logit)
- Creation of a synthetic sample to run the MILP model
- Benchmark: initial vs optimized situation
Scenario (1)

- Lausanne-Morges region
- 66.6% of the trips by car in the region use the highway
- Simplification: we only consider the city centers
Scenario (2)

- Trips from the city center of Morges to the city center of Lausanne
- Car (highway), PT (railway) and slow modes (SM, only bicycle)
- Departing time horizon: morning peak hour (07:00-07:59)
- Purpose of the trip: going to work
- Data not available for this scenario:
 - existing RP data (Switzerland) to calibrate the choice model
 - creation of synthetic data to run the optimization model
Optima case study

- Project conducted by LASUR, TRANSP-OR and CEAT (EPFL)
- RP survey conducted between 2009 and 2010 by CarPostal
- 1124 completed surveys: trip information and socioeconomic data
Choice model

- Sample of 446 individuals (excluding missing values + rural + leisure)
- Time and cost for car and PT, distance for SM
- Income as the only socioeconomic variable (interacted with cost)

<table>
<thead>
<tr>
<th></th>
<th>Car</th>
<th>PT</th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC_{Car}</td>
<td>0.958</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ASC_{PT}</td>
<td>1.57</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>β_{Time}</td>
<td>-0.016</td>
<td>TimeCar$_n$</td>
<td>TimePT$_n$</td>
</tr>
<tr>
<td>β_{CostLow}</td>
<td>-0.143</td>
<td>CostCar$_n$ · LowIncome$_n$</td>
<td>CostPT$_n$ · LowIncome$_n$</td>
</tr>
<tr>
<td>β_{CostMed}</td>
<td>-0.198</td>
<td>CostCar$_n$ · MedIncome$_n$</td>
<td>CostPT$_n$ · MedIncome$_n$</td>
</tr>
<tr>
<td>β_{CostHigh}</td>
<td>-0.105</td>
<td>CostCar$_n$ · HighIncome$_n$</td>
<td>CostPT$_n$ · HighIncome$_n$</td>
</tr>
<tr>
<td>β_{Distance}</td>
<td>-0.125</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Synthetic sample (1)

Distance between O and D divided in three parts: $d_{1n} + d + d_{2n}$
- Distance within Morges (d_{1n}): [0.1, 1.5] km
- Distance within Lausanne (d_{2n}): [0.2, 3] km
- Distance connecting the zones (d): 12 km
Synthetic sample (2)

- Generation of $N = 50$ individuals to run the optimization problem
- Morning peak hour: considered for speed assumptions
- TimeCar_n:
 - d_1 and d_2: 15 km/h
 - d: [45, 70] km/h
- TimePT_n:
 - d_1 and d_2: 5 km/h if $d_j < 1.5$ km and 15 km/h if $d_2 > 1.5$ km
 - waiting time: [0,8] min (8 = expected waiting time)
 - in-vehicle time: 13.8 min (weighted average current in-vehicle times)
- $\text{Distance}_n = d_{1n} + d + d_{2n}$
Proof of concept

Benchmark (1)

- PT fare: 3.27 CHF (Mobilis monthly ticket)
- Car toll: 0 CHF
- Car cost: 0.27 CHF/km

\[B^0 = 0 \text{ CHF} \]
\[F^{\text{car}} = 54.53 \text{ CHF} \]
\[c^{\text{car}} = 0.44 \text{ CHF} \]
\[F^{\text{PT}} = 22.96 \text{ CHF} \]

- Variable car cost: gas, maintenance and repairs, etc. (TCS)
- Fixed costs: cost per person and kilometer (ARE)
Benchmark (2)

<table>
<thead>
<tr>
<th>Situation</th>
<th>Fare</th>
<th>Toll</th>
<th>(D_{PT}) (%)</th>
<th>(D_{car}) (%)</th>
<th>(D_{SM}) (%)</th>
<th>EMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>3.27</td>
<td>0</td>
<td>57.50</td>
<td>36.22</td>
<td>6.28</td>
<td>156.27</td>
</tr>
<tr>
<td>Optimized</td>
<td>1.56</td>
<td>2.30</td>
<td>71.80</td>
<td>23.02</td>
<td>5.18</td>
<td>163.77</td>
</tr>
</tbody>
</table>

- Illustrative values based on the tested scenario
- Modal shift towards PT
- Decrease of the fare associated with PT
- Increase of the passenger satisfaction (EMU)
Conclusions and future work
Conclusions

- Linear framework to maximize passenger satisfaction
- Any decision variable related to revenue recycling can be included
- Flexible approach: integrate different policies, evaluate specific goals
- Proof of concept to illustrate the logic of the formulation
Conclusions and future work

Future work

- Incorporate frequency of PT as a decision variable (capacity?)
- Additional decisions: to set the toll or not
- Generate different scenarios to test other features: congestion effect
- Test the formulation with an ICLV model from the literature in a real case study
Questions?

meritxell.pacheco@epfl.ch
Conclusions and future work

Bibliography

