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Introduction

Discrete choice models and optimization

Disaggregate demand modeling
Behavioral realism
Complex formulations

Supply decisions
Linearity and/or convexity
MILP models
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Introduction

Bridging the gap

Linear characterization of a discrete choice model
Simulation to address stochasticity
Demand-based benefit maximization problem
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Demand-based benefit maximization problem

Linearization of the choice model (1)

Uin =Vin+εin Uinr =Vin+ξinr
draw distribution (R)
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Demand-based benefit maximization problem

Linearization of the choice model (2)

winr =
{

1 if Uinr ≥Ujnr , ∀j ∈Cn, j 6= i
0 otherwise

Di = 1
R

∑
r

∑
n
winr
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Demand-based benefit maximization problem

Benefit maximization problem (1)

Set of services C (i > 0)
Opt-out option i = 0
Population N (n≥ 1)

Price ai ≤ pin ≤ bin

Capacity levels ciq (fixed fiq
and variable viq costs)
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Demand-based benefit maximization problem

Benefit maximization problem (2)

obj. fun.

availability

disc. utility

choice

price

capacity

∑
i>0Revenuei − Costi

operator level and scenario level

variable capturing availability and utility

linearization of the highest utility

linearization of the variable ηiqnr (revenue)

relation with the availability at scenario level
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Demand-based benefit maximization problem

Computational results

Parking choices: mixtures of logit model
Distributed parameters (and correlated)
R = 50 draws and N = 50 customers
|C | = 3: PSP, PUP and FSP (opt-out)

Computational times up to 34 hours!
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Lagrangian relaxation

Motivation

Maximization of own utility
Objective function and
capacity constraints

Behavioral scenario
Objective function
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Lagrangian relaxation

Uncapacitated case and revenue maximization

obj. fun.

availability

utility

choice

price

capacity

∑
i>0Revenuei

no need for discounted utility (no availability)

linearization of the highest utility

linearization of the variable ηiqnr (revenue)
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Lagrangian relaxation

Lagrangian decomposition

Relax complicating constraints ⇒ subproblems easier to solve

B Price pin is the same across draws ⇒ no decomposition by n and r

pin1 = pin2 = ·· · = pinR = pin1

pinr −pin(r−1) = 0⇒ Lagrangian multipliers αinr ⇒ decomposition by n and r
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Lagrangian relaxation

Subgradient method

Input: UB: Z (α) with α starting values, LB: Z∗ (from a feasible solution)
1 while k <K or Z (α(k)) has not improved in ω3 iterations do
2 for r = 1 . . .R do
3 for n= 1 . . .N do
4 Lagrangian subproblem Znr (α(k)) (MILP);
5 Obtain pinr , winr and Znr (α(k)) ;
6 end
7 end
8 Compute Z (α(k))=∑

r
∑

nZnr (α(k));
9 k ← k +1;

10 Obtain ω(k) (step) and dinr (k) (direction);
11 Update the Lagrangian multipliers: αinr (k)=αinr (k −1)−ω(k)dinr (k)
12 end
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Lagrangian relaxation

Preliminary results (1)

N = 20 and R = 100
λ(0)= 0.5, θ = 0.5, ω3 = 30
Number of iterations: K = 1000

Computational time:

Exact method: 33.7 min
Subgradient method: 21.4 min
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Lagrangian relaxation

Preliminary results (2)
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Conclusions and future work

Conclusions and future work

Efficient method to obtain lower and upper bounds
Calibrate the parameters of the subgradient method
Changes in the formulation (tighter LP relaxation)
Gradually include the complexity back (capacity, availability...)
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Conclusions and future work

Questions?

meritxell.pacheco@epfl.ch

MPP,BG,VL, SSA, MB IATBR 2018 17/07/2018 21 / 21



Subgradient method: step size and direction

αinr (k) = αinr (k −1)−ω(k)dinr (k)

Step:

ω(k)=λ(k)Z(α(k−1))−Z∗

‖γ(k)‖2
λ(0) ∈ [0,2)
γinr (k)= pinr (k)−pin(r−1)(k) (subgradients)
λ(k) divided by ω1 if Z (α(k)) has not improved in ω2 iterations

Direction:
d(k)= γ(k)+θd(k −1)
θ ∈ [0,1)
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