Integrating discrete choice models in mixed integer linear programming to capture the interactions between supply and demand

Meritxell Pacheco Shadi Sharif Azadeh Michel Bierlaire Bernard Gendron Virginie Lurkin

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

17/07/2018

Outline

- 2 Demand-based benefit maximization problem
- 3 Lagrangian relaxation
- 4 Conclusions and future work

Introduction

Demand-based benefit maximization problem

3 Lagrangian relaxation

4 Conclusions and future work

Discrete choice models and optimization

- Disaggregate demand modeling
- Behavioral realism
- Complex formulations

- Linearity and/or convexity
- MILP models

Bridging the gap

- Linear characterization of a discrete choice model
- Simulation to address stochasticity
- Demand-based benefit maximization problem

Introduction

2 Demand-based benefit maximization problem

3 Lagrangian relaxation

4 Conclusions and future work

Linearization of the choice model (1)

Linearization of the choice model (2)

$$w_{inr} = \begin{cases} 1 & \text{if } U_{inr} \ge U_{jnr}, \forall j \in \mathcal{C}_n, j \neq i \\ 0 & \text{otherwise} \end{cases} \qquad D_i = \frac{1}{R} \sum_r \sum_n w_{inr}$$

8 / 21

Benefit maximization problem (1)

- Set of services \mathscr{C} (i > 0)
- Opt-out option *i* = 0
- Population $N (n \ge 1)$

- Price $a_i \le p_{in} \le b_{in}$
- Capacity levels c_{iq} (fixed f_{iq} and variable v_{iq} costs)

MPP, BG, VL, SSA, MB

IATBR 2018

Benefit maximization problem (2)

obj. fun.	$\sum_{i>0} \text{Revenue}_i - \text{Cost}_i$		
availability	operator level and scenario level		
disc. utility	variable capturing availability and utility		
choice	linearization of the highest utility		
price	linearization of the vari	able η_{iqnr} (revenue)	
capacity	relation with the availab	ility at scenario level	
STRANSP-OR		EPA	
MPP,BG,VL, SSA, MB	IATBR 2018	17/07/2018	10 /

Computational results

- Parking choices: mixtures of logit model
- Distributed parameters (and correlated)
- R = 50 draws and N = 50 customers
- $|\mathscr{C}| = 3$: PSP, PUP and FSP (opt-out)

Computational times up to 34 hours!

MPP, BG, VL, SSA, MB

IATBR 2018

Introduction

2 Demand-based benefit maximization problem

3 Lagrangian relaxation

4 Conclusions and future work

Motivation

- Maximization of own utility
- Objective function and capacity constraints

- Behavioral scenario
- Objective function

Uncapacitated case and revenue maximization

Lagrangian decomposition

$\mathsf{Relax} \text{ complicating constraints} \Rightarrow \mathsf{subproblems \ easier \ to \ solve}$

 $\cancel{!} Price p_{in} \text{ is the same across draws} \Rightarrow \mathbf{no} \text{ decomposition by } n \text{ and } r$

$$p_{in1} = p_{in2} = \cdots = p_{inR} = p_{in1}$$

 $p_{inr} - p_{in(r-1)} = 0 \Rightarrow$ Lagrangian multipliers $\alpha_{inr} \Rightarrow$ decomposition by n and r

Subgradient method

```
Input: UB: Z(\overline{\alpha}) with \overline{\alpha} starting values, LB: Z^* (from a feasible solution)
 1 while k < K or Z(\alpha(k)) has not improved in \omega_3 iterations do
        for r = 1 \dots R do
 2
             for n = 1 \dots N do
 3
                 Lagrangian subproblem Z_{nr}(\alpha(k)) (MILP);
 4
                 Obtain p_{inr}, w_{inr} and Z_{nr}(\alpha(k));
 5
 6
             end
        end
 7
        Compute Z(\alpha(k)) = \sum_{r} \sum_{n} Z_{nr}(\alpha(k));
 8
        k \leftarrow k + 1:
 9
        Obtain \omega(k) (step) and d_{inr}(k) (direction);
10
        Update the Lagrangian multipliers: \alpha_{inr}(k) = \alpha_{inr}(k-1) - \omega(k)d_{inr}(k)
11
12 end
```


Preliminary results (1)

- N = 20 and R = 100
- $\lambda(0) = 0.5, \ \theta = 0.5, \ \omega_3 = 30$
- Number of iterations: K = 1000

Computational time:

- Exact method: 33.7 min
- Subgradient method: 21.4 min

Preliminary results (2)

Introduction

2 Demand-based benefit maximization problem

3 Lagrangian relaxation

Conclusions and future work

- Efficient method to obtain lower and upper bounds
- Calibrate the parameters of the subgradient method
- Changes in the formulation (tighter LP relaxation)
- Gradually include the complexity back (capacity, availability...)

Questions?

meritxell.pacheco@epfl.ch

Subgradient method: step size and direction

$$\alpha_{inr}(k) = \alpha_{inr}(k-1) - \omega(k)d_{inr}(k)$$

Step:

•
$$\omega(k) = \lambda(k) \frac{Z(\alpha(k-1)) - Z^*}{\|\gamma(k)\|^2}$$

•
$$\lambda(0) \in [0,2)$$

•
$$\gamma_{inr}(k) = p_{inr}(k) - p_{in(r-1)}(k)$$
 (subgradients)

• $\lambda(k)$ divided by ω_1 if $Z(\alpha(k))$ has not improved in ω_2 iterations

Direction:

•
$$d(k) = \gamma(k) + \theta d(k-1)$$

• $\theta \in [0,1)$

$$\theta \in [0,1)$$

MPP, BG, VL, SSA, MB