A Lagrangian decomposition scheme for the choice-based optimization framework

Meritxell Pacheco Paneque

OR seminar - Erasmus University Rotterdam

June 26th, 2020

EPFL

Outline

Introduction

- 2 Choice-based optimization framework
- 3 Decomposition techniques: preliminaries
- 4 Lagrangian decomposition scheme
- 5 Numerical experiments
- 6 Conclusions and future work

Outline

Introduction

- 2) Choice-based optimization framework
- 3 Decomposition techniques: preliminaries
- 4 Lagrangian decomposition scheme
- 5 Numerical experiments
 - Conclusions and future work

Mismatch between supply and demand

Mismatch between supply and demand

• reduced profitability

Mismatch between supply and demand

- reduced profitability
- decrease in consumer goodwill

Mismatch between supply and demand

- reduced profitability
- decrease in consumer goodwill
- spillover effects

Supply-demand interplay

Take into account the interactions between supply and demand

M. Pacheco, TRANSP-OR, EPFL

Lagrangian decomposition scheme

June 26th, 2020 4/36

- Behavioral realism
- Disaggregate representation

- Behavioral realism
- Disaggregate representation

Discrete choice models (DCM)

- Behavioral realism
- Disaggregate representation

Discrete choice models (DCM)

• Causality between explanatory variables and choice (random utility)

- Behavioral realism
- Disaggregate representation

Discrete choice models (DCM)

- Causality between explanatory variables and choice (random utility)
- Probabilistic

- Behavioral realism
- Disaggregate representation

Discrete choice models (DCM)

- Causality between explanatory variables and choice (random utility)
- Probabilistic
- Heterogeneity of tastes and preferences in high detail

- Optimization models
- Tractability

- Optimization models
- Tractability

Mixed Integer Linear Problems (MILP)

- Optimization models
- Tractability

Mixed Integer Linear Problems (MILP)

• Modeling flexibility (integer and continuous variables)

- Optimization models
- Tractability

Mixed Integer Linear Problems (MILP)

- Modeling flexibility (integer and continuous variables)
- Commercial MILP solvers to find the global optima

- Optimization models
- Tractability

Mixed Integer Linear Problems (MILP)

- Modeling flexibility (integer and continuous variables)
- Commercial MILP solvers to find the global optima
- Variety of strategies and solution techniques

• Simple DCM and 2 groups in the population

- Simple DCM and 2 groups in the population
- A service offered by an operator and an opt-out option

- Simple DCM and 2 groups in the population
- A service offered by an operator and an opt-out option
- Supply-related decision: price (also in the DCM)

- Simple DCM and 2 groups in the population
- A service offered by an operator and an opt-out option
- Supply-related decision: price (also in the DCM)
- Revenue maximization (revenue = expected demand · price)

- Simple DCM and 2 groups in the population
- A service offered by an operator and an opt-out option
- Supply-related decision: price (also in the DCM)
- Revenue maximization (revenue = expected demand · price)
- Expected demand obtained from the individual choice probabilities

- Simple DCM and 2 groups in the population
- A service offered by an operator and an opt-out option
- Supply-related decision: price (also in the DCM)
- Revenue maximization (revenue = expected demand · price)
- Expected demand obtained from the individual choice probabilities

Choice-based optimization framework

• General framework that accommodates DCM in MILP

Choice-based optimization framework

- General framework that accommodates DCM in MILP
- Decision variables of MILP as explanatory variables of DCM

Choice-based optimization framework

- General framework that accommodates DCM in MILP
- Decision variables of MILP as explanatory variables of DCM
- Simulation-based linearization of the preference structure of DCM

Outline

Introduction

- 2 Choice-based optimization framework
 - 3 Decomposition techniques: preliminaries
 - 4 Lagrangian decomposition scheme
- 5 Numerical experiments
 - Conclusions and future work

• Population N(n) and set of alternatives C(i)

- Population N(n) and set of alternatives C(i)
- Utility associated with alternative i and individual n (U_{in}):

$$U_{in} = \underbrace{V_{in}}_{\text{systematic}} + \underbrace{\varepsilon_{in}}_{\text{random}}$$

- Population N(n) and set of alternatives C(i)
- Utility associated with alternative *i* and individual $n(U_{in})$:

$$U_{in} = \underbrace{V_{in}}_{ ext{systematic}} + \underbrace{arepsilon_{ ext{in}}}_{ ext{random}}$$

• V_{in}: modeled by the analyst (attributes, socioeconomic information)

e.g., $V_{in} = ASC_i + \beta_{cost} cost_{in} + \beta_{time} time_{in} + \beta_{income} income_n$

- Population N(n) and set of alternatives C(i)
- Utility associated with alternative i and individual n (U_{in}):

$$U_{in} = \underbrace{V_{in}}_{ ext{systematic}} + \underbrace{arepsilon_{ ext{in}}}_{ ext{random}}$$

• V_{in}: modeled by the analyst (attributes, socioeconomic information)

e.g., $V_{in} = ASC_i + \beta_{cost}cost_{in} + \beta_{time}time_{in} + \beta_{income}income_n$

• ε_{in} : follows a probability distribution (e.g., Gumbel, normal)

- Population N(n) and set of alternatives C(i)
- Utility associated with alternative i and individual n (U_{in}):

$$U_{in} = \underbrace{V_{in}}_{ ext{systematic}} + \underbrace{arepsilon_{ ext{in}}}_{ ext{random}}$$

• V_{in}: modeled by the analyst (attributes, socioeconomic information)

e.g., $V_{in} = ASC_i + \beta_{cost}cost_{in} + \beta_{time}time_{in} + \beta_{income}income_n$

- ε_{in} : follows a probability distribution (e.g., Gumbel, normal)
- Behavioral assumption: alternative with the highest utility is chosen

- Population N(n) and set of alternatives C(i)
- Utility associated with alternative i and individual n (U_{in}):

$$U_{in} = \underbrace{V_{in}}_{ ext{systematic}} + \underbrace{arepsilon_{ ext{in}}}_{ ext{random}}$$

• V_{in}: modeled by the analyst (attributes, socioeconomic information)

e.g., $V_{in} = ASC_i + \beta_{cost}cost_{in} + \beta_{time}time_{in} + \beta_{income}income_n$

- ε_{in} : follows a probability distribution (e.g., Gumbel, normal)
- Behavioral assumption: alternative with the highest utility is chosen
- Choice probability: $P_n(i) = P(U_{in} \ge U_{jn}, \forall j \in C)$

- Population N(n) and set of alternatives C(i)
- Utility associated with alternative i and individual n (U_{in}):

$$U_{in} = \underbrace{V_{in}}_{ ext{systematic}} + \underbrace{arepsilon_{ ext{in}}}_{ ext{random}}$$

• V_{in}: modeled by the analyst (attributes, socioeconomic information)

e.g., $V_{in} = ASC_i + \beta_{cost}cost_{in} + \beta_{time}time_{in} + \beta_{income}income_n$

- ε_{in} : follows a probability distribution (e.g., Gumbel, normal)
- Behavioral assumption: alternative with the highest utility is chosen
- Choice probability: $P_n(i) = P(U_{in} \ge U_{jn}, \forall j \in C)$
- Expected demand: $D_i = \sum_n P_n(i)$
• Simulation to overcome the probabilistic nature of the utility (ε_{in})

- Simulation to overcome the probabilistic nature of the utility (ε_{in})
- *R* draws (*r*) from the distribution of ε_{in} (ξ_{inr})

- Simulation to overcome the probabilistic nature of the utility (ε_{in})
- *R* draws (*r*) from the distribution of ε_{in} (ξ_{inr})

$$U_{inr} = V_{in} + \xi_{inr}$$

- Simulation to overcome the probabilistic nature of the utility ($arepsilon_{in}$)
- *R* draws (*r*) from the distribution of ε_{in} (ξ_{inr})

$$U_{inr} = V_{in} + \xi_{inr}$$

• U_{inr} are deterministic expressions (can be included in a MILP)

- Simulation to overcome the probabilistic nature of the utility (ε_{in})
- *R* draws (*r*) from the distribution of ε_{in} (ξ_{inr})

$$U_{inr} = V_{in} + \xi_{inr}$$

*U*_{inr} are deterministic expressions (can be included in a MILP)
Explanatory variables of *V*_{in}:

- Simulation to overcome the probabilistic nature of the utility (ε_{in})
- *R* draws (*r*) from the distribution of ε_{in} (ξ_{inr})

$$U_{inr} = V_{in} + \xi_{inr}$$

- U_{inr} are deterministic expressions (can be included in a MILP)
- Explanatory variables of Vin:
 - Exogenous to the optimization problem: x_{in}^d (e.g., income)
 - Endogenous to the optimization problem: x_{in}^e (e.g., cost)

- Simulation to overcome the probabilistic nature of the utility (ε_{in})
- *R* draws (*r*) from the distribution of ε_{in} (ξ_{inr})

$$U_{inr} = V_{in} + \xi_{inr}$$

- U_{inr} are deterministic expressions (can be included in a MILP)
- Explanatory variables of Vin:
 - Exogenous to the optimization problem: x_{in}^d (e.g., income)
 - Endogenous to the optimization problem: x_{in}^{e} (e.g., cost)
- Integration in MILP: $V_{in}(x_{in}^d, x_{in}^e)$ linear in x^e

• Capacity associated with each alternative: c_i

- Capacity associated with each alternative: c_i
- Availability: to propose an alternative (y_{in}) and to keep track of the occupancy of the alternatives (y_{inr})

- Capacity associated with each alternative: c_i
- Availability: to propose an alternative (y_{in}) and to keep track of the occupancy of the alternatives (y_{inr})
- **Capacity allocation:** controlled with the variables *y*_{inr} with an exogenous priority list (Binder et al., 2017)

- Capacity associated with each alternative: c_i
- Availability: to propose an alternative (y_{in}) and to keep track of the occupancy of the alternatives (y_{inr})
- **Capacity allocation:** controlled with the variables *y*_{inr} with an exogenous priority list (Binder et al., 2017)
- **Discounted utility:** unavailable alternative cannot be associated with the largest U_{inr} (z_{inr})

- Capacity associated with each alternative: c_i
- Availability: to propose an alternative (y_{in}) and to keep track of the occupancy of the alternatives (y_{inr})
- **Capacity allocation:** controlled with the variables *y*_{inr} with an exogenous priority list (Binder et al., 2017)
- **Discounted utility:** unavailable alternative cannot be associated with the largest U_{inr} (z_{inr})
- Choice: only one alternative can be chosen for each n and r

$$w_{inr} = \begin{cases} 1 & \text{if } z_{inr} = U_{nr} := \max_{j \in \mathcal{C}} z_{jnr} \\ 0 & \text{otherwise} \end{cases}$$

• $\{w_{inr}\}_r$ count number of times the behavioral assumption is met

- $\{w_{inr}\}_r$ count number of times the behavioral assumption is met
- Law of large numbers: $\frac{1}{R}\sum_{r} w_{inr} \xrightarrow[R \to \infty]{} P_n(i|x_{in}^d, x_{in}^e)$

- $\{w_{inr}\}_r$ count number of times the behavioral assumption is met
- Law of large numbers: $\frac{1}{R}\sum_{r} w_{inr} \xrightarrow{R \to \infty} P_n(i|x_{in}^d, x_{in}^e)$

$$D_i \approx \frac{1}{R} \sum_{r=1}^R \sum_{n=1}^N w_{inr}$$

- $\{w_{inr}\}_r$ count number of times the behavioral assumption is met
- Law of large numbers: $\frac{1}{R}\sum_{r} w_{inr} \xrightarrow{R \to \infty} P_n(i|x_{in}^d, x_{in}^e)$

$$D_i \approx rac{1}{R} \sum_{r=1}^R \sum_{n=1}^N w_{inr}$$

• Original problem (\mathcal{P}): demand via choice probabilities

- $\{w_{inr}\}_r$ count number of times the behavioral assumption is met
- Law of large numbers: $\frac{1}{R}\sum_{r} w_{inr} \xrightarrow{R \to \infty} P_n(i|x_{in}^d, x_{in}^e)$

$$D_i \approx rac{1}{R} \sum_{r=1}^R \sum_{n=1}^N w_{inr}$$

- Original problem (\mathcal{P}): demand via choice probabilities
- Approximated problems (\mathcal{P}_R): demand via linear approximation

- $\{w_{inr}\}_r$ count number of times the behavioral assumption is met
- Law of large numbers: $\frac{1}{R}\sum_{r} w_{inr} \xrightarrow{R \to \infty} P_n(i|x_{in}^d, x_{in}^e)$

$$D_i \approx \frac{1}{R} \sum_{r=1}^R \sum_{n=1}^N w_{inr}$$

- Original problem (\mathcal{P}): demand via choice probabilities
- Approximated problems (\mathcal{P}_R): demand via linear approximation
- Sequence of optimal sols. of \mathcal{P}_R converges to an optimal sol. of \mathcal{P}

• Mixed-integer linear formulation can be embedded in any MILP

- Mixed-integer linear formulation can be embedded in any MILP
- Illustration: profit maximization problem

- Mixed-integer linear formulation can be embedded in any MILP
- Illustration: profit maximization problem
 - \bullet Operator proposing services + opt-out option

- Mixed-integer linear formulation can be embedded in any MILP
- Illustration: profit maximization problem
 - \bullet Operator proposing services + opt-out option
 - Price (and capacity) to be decided

- Mixed-integer linear formulation can be embedded in any MILP
- Illustration: profit maximization problem
 - $\bullet~\mbox{Operator}$ proposing services $+~\mbox{opt-out}$ option
 - Price (and capacity) to be decided

obj. fun.	max profit from all services but the opt-out
DCM	availability, discounted utility, choice
capacity	fixed or variable (discretized)
price	<i>p_{in}</i> endogenous (continuous or discrete)

• DCM estimated in Ibeas et al. [2014]: non-closed form choice probs.

- DCM estimated in Ibeas et al. [2014]: non-closed form choice probs.
- C: PSP (paid on-street), PUP (underground), FSP (opt-out)

- DCM estimated in Ibeas et al. [2014]: non-closed form choice probs.
- C: PSP (paid on-street), PUP (underground), FSP (opt-out)
- N = 50 (random priority list)

- DCM estimated in Ibeas et al. [2014]: non-closed form choice probs.
- C: PSP (paid on-street), PUP (underground), FSP (opt-out)
- N = 50 (random priority list)
- Common price (same price proposed to everyone): p_i

• Flexibility of the framework: price segmentation, aggregation of individuals with similar characteristics, capacity allocation strategies

- Flexibility of the framework: price segmentation, aggregation of individuals with similar characteristics, capacity allocation strategies
- Revenue maximization problem (without and with fixed capacity)

- Flexibility of the framework: price segmentation, aggregation of individuals with similar characteristics, capacity allocation strategies
- Revenue maximization problem (without and with fixed capacity)
 - Without capacity constraints: 1.75h for R = 250 draws
 - With capacity constraints: 21h for R = 250 draws

- Flexibility of the framework: price segmentation, aggregation of individuals with similar characteristics, capacity allocation strategies
- Revenue maximization problem (without and with fixed capacity)
 - Without capacity constraints: 1.75h for R = 250 draws
 - With capacity constraints: 21h for R = 250 draws
- Profit maximization problem

- Flexibility of the framework: price segmentation, aggregation of individuals with similar characteristics, capacity allocation strategies
- Revenue maximization problem (without and with fixed capacity)
 - Without capacity constraints: 1.75h for R = 250 draws
 - With capacity constraints: 21h for R = 250 draws
- Profit maximization problem
 - Parking facilities might not be open: 9.8h for R = 25 draws
 - All parking facilities must be open: 11.5h for R = 25 draws

- Flexibility of the framework: price segmentation, aggregation of individuals with similar characteristics, capacity allocation strategies
- Revenue maximization problem (without and with fixed capacity)
 - Without capacity constraints: 1.75h for R = 250 draws
 - With capacity constraints: 21h for R = 250 draws
- Profit maximization problem
 - Parking facilities might not be open: 9.8h for R = 25 draws
 - All parking facilities must be open: 11.5h for R = 25 draws
- Exploit the decomposable structure of the framework!

Outline

Choice-based optimization framework

3 Decomposition techniques: preliminaries

- 4 Lagrangian decomposition scheme
- 5 Numerical experiments

Motivation

- Disaggregate demand
- Simulation-based linearization

high computational complexity

Motivation

- Disaggregate demand
- Simulation-based linearization

high computational complexity

• In practice, large populations and/or considerable number of draws
Motivation

- Disaggregate demand
- Simulation-based linearization

high computational complexity

- In practice, large populations and/or considerable number of draws
- Framework built on two dimensions that can be addressed separately:

Motivation

- Disaggregate demand
- Simulation-based linearization

high computational complexity

- In practice, large populations and/or considerable number of draws
- Framework built on two dimensions that can be addressed separately:
 - Individuals: most fundamental unit of demand

Motivation

- Disaggregate demand
- Simulation-based linearization

high computational complexity

- In practice, large populations and/or considerable number of draws
- Framework built on two dimensions that can be addressed separately:
 - Individuals: most fundamental unit of demand
 - Draws: independent behavioral scenario

obj. fun. (Z)	max revenue from all services but the opt-out
DCM	availability, discounted utility, choice
price	p_{in} continuous, $\eta_{inr} = p_{in}w_{inr}$ + linearizing constraints (revenue calculation)
capacity	uncapacitated or fixed capacity

obj. fun. (Z)	max revenue from all services but the opt-out
DCM	availability, discounted utility, choice
price	p_{in} continuous, $\eta_{inr} = p_{in}w_{inr}$ + linearizing constraints (revenue calculation)
capacity	uncapacitated or fixed capacity

• p_{in} : different price per individual, groups or same price for everyone

obj. fun. (Z)	max revenue from all services but the opt-out
DCM	availability, discounted utility, choice
price	p_{in} continuous, $\eta_{inr} = p_{in}w_{inr}$ + linearizing constraints (revenue calculation)
capacity	uncapacitated or fixed capacity

• pin: different price per individual, groups or same price for everyone

• Individual price: disaggregate formulation (iterative procedure)

obj. fun. (Z)	max revenue from all services but the opt-out
DCM	availability, discounted utility, choice
price	p_{in} continuous, $\eta_{inr} = p_{in}w_{inr}$ + linearizing constraints (revenue calculation)
capacity	uncapacitated or fixed capacity

- p_{in}: different price per individual, groups or same price for everyone
- Individual price: disaggregate formulation (iterative procedure)
- Common price: aggregate formulation

• Uncapacitated revenue maximization problem

- Uncapacitated revenue maximization problem
- Idea: relax utility functions (link between operator and customers)

- Uncapacitated revenue maximization problem
- Idea: relax utility functions (link between operator and customers)
- Introduce duplicates of the choice to come up with independent sets of variables for each subproblem

- Uncapacitated revenue maximization problem
- Idea: relax utility functions (link between operator and customers)
- Introduce duplicates of the choice to come up with independent sets of variables for each subproblem

Customer subproblem

Customer subproblem

• DCM-related variables

Customer subproblem

- DCM-related variables
- Decomposition by *n* and *r*

Customer subproblem

- DCM-related variables
- Decomposition by *n* and *r*
- U_{inr} set to the bounds

Customer subproblem

- DCM-related variables
- Decomposition by *n* and *r*
- U_{inr} set to the bounds

Operator subproblem

• Supply-related variables

Customer subproblem

- DCM-related variables
- Decomposition by *n* and *r*
- U_{inr} set to the bounds

- Supply-related variables
- Decomposition by *n*

Customer subproblem

- DCM-related variables
- Decomposition by *n* and *r*
- U_{inr} set to the bounds

- Supply-related variables
- Decomposition by *n*
- *p*_{in} set to the bounds

Customer subproblem

- DCM-related variables
- Decomposition by *n* and *r*
- U_{inr} set to the bounds

• Trivial solutions:

- Supply-related variables
- Decomposition by *n*
- *p*_{in} set to the bounds

Customer subproblem

- DCM-related variables
- Decomposition by *n* and *r*
- U_{inr} set to the bounds

- Supply-related variables
- Decomposition by *n*
- *p*_{in} set to the bounds

- Trivial solutions:
 - Iterative methods to approximate the Lagrangian dual (e.g., subgradient method)

Customer subproblem

- DCM-related variables
- Decomposition by *n* and *r*
- U_{inr} set to the bounds

- Supply-related variables
- Decomposition by *n*
- *p*_{in} set to the bounds

- Trivial solutions:
 - Iterative methods to approximate the Lagrangian dual (e.g., subgradient method)
 - Derivation of feasible solutions to the original problem \boldsymbol{Z}

Customer subproblem

- DCM-related variables
- Decomposition by *n* and *r*
- U_{inr} set to the bounds

- Supply-related variables
- Decomposition by *n*
- *p*_{in} set to the bounds

- Trivial solutions:
 - Iterative methods to approximate the Lagrangian dual (e.g., subgradient method)
 - $\bullet\,$ Derivation of feasible solutions to the original problem Z
- Preserve supply-demand interplay: Lagrangian decomposition

• Capacitated revenue maximization problem

- Capacitated revenue maximization problem
- Idea: duplicate the variables that are not draw-dependent (p_{in})

- Capacitated revenue maximization problem
- Idea: duplicate the variables that are not draw-dependent (*p_{in}*)
 - Lagrangian decomposition (variable splitting) in combinatorial optimization

- Capacitated revenue maximization problem
- Idea: duplicate the variables that are not draw-dependent (*p*_{in})
 - Lagrangian decomposition (variable splitting) in combinatorial optimization
 - Scenario decomposition in stochastic programming

- Capacitated revenue maximization problem
- Idea: duplicate the variables that are not draw-dependent (p_{in})
 - Lagrangian decomposition (variable splitting) in combinatorial optimization
 - Scenario decomposition in stochastic programming

$$p_{in1} = p_{in2} = \cdots = p_{inR}$$

- Capacitated revenue maximization problem
- Idea: duplicate the variables that are not draw-dependent (pin)
 - Lagrangian decomposition (variable splitting) in combinatorial optimization
 - Scenario decomposition in stochastic programming

$$Z^{LD}(\alpha) = \max \underbrace{\sum_{i \in \mathcal{C} \setminus \{0\}} \sum_{n} \sum_{r} \frac{1}{R} \eta_{inr}}_{\text{revenue}} + \underbrace{\sum_{i \in \mathcal{C} \setminus \{0\}} \sum_{n} \sum_{r} \alpha_{inr} (p_{inr} - p_{in(r+1)})}_{\text{relaxation copy constraints}}$$

Limitations of the Lagrangian decomposition

• Decomposition by scenario (original problem for each draw)

Limitations of the Lagrangian decomposition

- Decomposition by scenario (original problem for each draw)
- Individual prices: might be set to the bounds if the service is not chosen (trivial solutions)

Limitations of the Lagrangian decomposition

- Decomposition by scenario (original problem for each draw)
- Individual prices: might be set to the bounds if the service is not chosen (trivial solutions)

M. Pacheco, TRANSP-OR, EPFL

Outline

- 2) Choice-based optimization framework
- 3 Decomposition techniques: preliminaries
- 4 Lagrangian decomposition scheme
 - 5 Numerical experiments

• Capacitated revenue maximization problem

- Capacitated revenue maximization problem
- Motivated by scenario grouping in stochastic programming

- Capacitated revenue maximization problem
- Motivated by scenario grouping in stochastic programming
- Grouping scenarios within each subproblem
 - Improve the bound
 - Solving larger subproblems

- Capacitated revenue maximization problem
- Motivated by scenario grouping in stochastic programming
- Grouping scenarios within each subproblem
 - Improve the bound
 - Solving larger subproblems

Key idea

1. S groups of R/S draws each

2.
$$p_{in}^1 = p_{in}^2 = \cdots = p_{in}^S$$
- Capacitated revenue maximization problem
- Motivated by scenario grouping in stochastic programming
- Grouping scenarios within each subproblem
 - Improve the bound
 - Solving larger subproblems

Key idea

1. S groups of R/S draws each

2.
$$p_{in}^1 = p_{in}^2 = \dots = p_{in}^S$$

• Relax copy constraints (Lagrangian decomposition)

- Capacitated revenue maximization problem
- Motivated by scenario grouping in stochastic programming
- Grouping scenarios within each subproblem
 - Improve the bound
 - Solving larger subproblems

Key idea

1. S groups of R/S draws each

2.
$$p_{in}^1 = p_{in}^2 = \dots = p_{in}^S$$

- Relax copy constraints (Lagrangian decomposition)
- Relaxed problem splits into S subproblems: $Z_s^{\text{UB}}(\alpha)$

- Capacitated revenue maximization problem
- Motivated by scenario grouping in stochastic programming
- Grouping scenarios within each subproblem
 - Improve the bound
 - Solving larger subproblems

Key idea

1. S groups of R/S draws each

2.
$$p_{in}^1 = p_{in}^2 = \dots = p_{in}^S$$

- Relax copy constraints (Lagrangian decomposition)
- Relaxed problem splits into S subproblems: $Z_s^{\text{UB}}(\alpha)$
- $Z^{\text{UB}}(\alpha) = \sum_{s} Z_{s}^{\text{UB}}(\alpha)$ upper bound on Z

- Capacitated revenue maximization problem
- Motivated by scenario grouping in stochastic programming
- Grouping scenarios within each subproblem
 - Improve the bound
 - Solving larger subproblems

Key idea

1. S groups of R/S draws each

2.
$$p_{in}^1 = p_{in}^2 = \dots = p_{in}^S$$

- Relax copy constraints (Lagrangian decomposition)
- Relaxed problem splits into S subproblems: $Z_s^{\text{UB}}(\alpha)$
- $Z^{\text{UB}}(\alpha) = \sum_{s} Z^{\text{UB}}_{s}(\alpha)$ upper bound on Z
- Best upper bound (Lagrangian dual): subgradient method

• Initialize Lagrangian multipliers: α^0 (e.g., $\alpha^0 = 0$)

M. Pacheco, TRANSP-OR, EPFL

• **Upper bound**: Solve $Z_s^{UB}(\alpha^0), \forall s$ (CPLEX solver)

- **Upper bound**: Solve $Z_s^{UB}(\alpha^0), \forall s$ (CPLEX solver)
- Lower bound: Obtain Z^{LB} by generating feasible solutions for Z

- Upper bound: Solve $Z_s^{\text{UB}}(\alpha^0), \forall s$ (CPLEX solver)
- Lower bound: Obtain Z^{LB} by generating feasible solutions for Z
- Keep track of the best bounds found so far: $Z^{\text{UB,best}}$ and $Z^{\text{LB,best}}$

Feasible solutions

• Sequence of prices: $\{\bar{p}_{in}^s\}_s$

Feasible solutions

- Sequence of prices: $\{\bar{p}_{in}^s\}_s$
- Solve Z for all configurations $\bar{p}_{in} = \bar{p}_{in}^s \ \forall s$ and pick the highest

Feasible solutions

- Sequence of prices: $\{\bar{p}_{in}^s\}_s$
- Solve Z for all configurations $\bar{p}_{in} = \bar{p}_{in}^s \ \forall s$ and pick the highest

```
Input: Fixed prices \bar{p}_{in};
Output: Values for y_{inr}, w_{inr}, U_{inr}, U_{nr} and Z;
Initialize Z = 0:
for r = 1 \dots R do
     Initialize occupancy level o_{ir} = 0 and y_{inr} = 1;
     for n = 1 \dots N do
          for i \in C_n \setminus \{0\} do
               if o_{ir} < c_i then
               Calculate U_{inr} = \beta_{in} \bar{p}_{in} + d_{inr};
               else
                Set y_{inr} = 0 and U_{inr} = \ell_{nr};
          Determine w_{inr}, U_{inr}, U_{nr};
          Update Z = Z + \sum_{i \in C_n \setminus \{0\}} \frac{1}{R} w_{inr} \bar{p}_{in} and o_{jr} = o_{jr} + 1;
```

M. Pacheco, TRANSP-OR, EPFL

• Step size:
$$\gamma^k = \lambda^k \frac{Z^{\text{UB}}(\alpha^k) - Z^{\text{LB,best}}}{\|v^k\|^2}$$
 (λ^k step decreasing parameter)

- Step size: $\gamma^k = \lambda^k \frac{Z^{\text{UB}}(\alpha^k) Z^{\text{LB,best}}}{\|v^k\|^2} (\lambda^k \text{ step decreasing parameter})$
- Step direction: $v^k = -(g^k + \zeta^k v^{k-1})$
 - subgradient: $g_{ins}^k = p_{ins}^k p_{in(s+1)}^k$
 - deflection parameter: ζ^k

• Angle between current subgradient and previous one might be obtuse

- Angle between current subgradient and previous one might be obtuse
- \Rightarrow next iterate near to the previous one (slows down convergence)

- Angle between current subgradient and previous one might be obtuse
- \Rightarrow next iterate near to the previous one (slows down convergence)

- Angle between current subgradient and previous one might be obtuse
- \Rightarrow next iterate near to the previous one (slows down convergence)

• Deflect the step direction to decrease the angle

- Angle between current subgradient and previous one might be obtuse
- \Rightarrow next iterate near to the previous one (slows down convergence)

- Deflect the step direction to decrease the angle
- Only when g^k forms an obtuse angle with the previous direction

M. Pacheco, TRANSP-OR, EPFL

Lagrangian decomposition scheme

June 26th, 2020 26/36

• Update Lagrangian multipliers: $\alpha^{k+1} = \alpha^k + \gamma^k v^k$

M. Pacheco, TRANSP-OR, EPFL

- Update Lagrangian multipliers: $\alpha^{k+1} = \alpha^k + \gamma^k v^k$
- Stopping criterion: computational time

Outline

1 Introduction

- 2 Choice-based optimization framework
- 3 Decomposition techniques: preliminaries
- 4 Lagrangian decomposition scheme

5 Numerical experiments

Case study

• Parking choices

Case study

- Parking choices
- Common price: *p_i* (aggregate formulation)

• N = 50, 5 draws per group and $R \in \{100, 250, 500\}$

- N = 50, 5 draws per group and $R \in \{100, 250, 500\}$
- Run the LD scheme for 10% of the exact computational time

- N = 50, 5 draws per group and $R \in \{100, 250, 500\}$
- $\bullet\,$ Run the LD scheme for 10% of the exact computational time
- $gap_{opt} = \frac{Z Z^{LB,best}}{Z}$, $gap_{dual} = \frac{Z^{UB,best} Z^{LB,best}}{Z^{LB,best}}$

- N = 50, 5 draws per group and $R \in \{100, 250, 500\}$
- Run the LD scheme for 10% of the exact computational time

•
$$gap_{opt} = \frac{Z - Z^{LB, best}}{Z}$$
, $gap_{dual} = \frac{Z^{UB, best} - Z^{LB, best}}{Z^{LB, best}}$

R	#lter.	$Z^{\text{UB,best}}$ (it.)	$Z^{\text{LB,best}}$ (it.)	Avg. time it. (min)	gap _{dual} (%)	gap _{opt} (%)
100	5	26.70 (5)	26.18 (2)	5.16	1.98	0.11
250	14	26.46 (14)	26.02 (1)	16.81	1.70	0.09
500	21	26.40 (21)	25.99 (7)	35.82	1.58	0.02

Evolution of bounds

M. Pacheco, TRANSP-OR, EPFL

Lagrangian decomposition scheme

June 26th, 2020 30/36

• $N = 50, 2 \text{ draws per group}, R \in \{100, 250, 500, 1000, 2500, 5000\}$

- N = 50, 2 draws per group, $R \in \{100, 250, 500, 1000, 2500, 5000\}$
- Time [min] as stopping criterion: $T \in \{30, 75, 150, 300, 750, 1500\}$

- $N = 50, 2 \text{ draws per group}, R \in \{100, 250, 500, 1000, 2500, 5000\}$
- Time [min] as stopping criterion: $T \in \{30, 75, 150, 300, 750, 1500\}$
- Average iteration time: 57 min (R = 2500) and 145 min (R = 5000)

- $N = 50, 2 \text{ draws per group}, R \in \{100, 250, 500, 1000, 2500, 5000\}$
- Time [min] as stopping criterion: $T \in \{30, 75, 150, 300, 750, 1500\}$
- Average iteration time: 57 min (R = 2500) and 145 min (R = 5000)

• R = 500, 2 draws per group, $N \in \{50, 100, 150, 197\}$

- R = 500, 2 draws per group, $N \in \{50, 100, 150, 197\}$
- Time [min] as stopping criterion: $T \in \{150, 300, 450, 600\}$

- R = 500, 2 draws per group, $N \in \{50, 100, 150, 197\}$
- Time [min] as stopping criterion: $T \in \{150, 300, 450, 600\}$
- Average iteration time: 8 min (N = 50) and 95 min (N = 100)

- R = 500, 2 draws per group, $N \in \{50, 100, 150, 197\}$
- Time [min] as stopping criterion: $T \in \{150, 300, 450, 600\}$
- Average iteration time: 8 min (N = 50) and 95 min (N = 100)

• N = 50, R = 500, #draws per group $\in \{1, 2, 3, 4, 5, 10\}$

- N = 50, R = 500, #draws per group $\in \{1, 2, 3, 4, 5, 10\}$
- Same computational time limit T = 150 min

- N = 50, R = 500, #draws per group $\in \{1, 2, 3, 4, 5, 10\}$
- Same computational time limit T = 150 min
- Less iterations as the number of draws per group increases

- N = 50, R = 500, #draws per group $\in \{1, 2, 3, 4, 5, 10\}$
- Same computational time limit T = 150 min
- Less iterations as the number of draws per group increases

Outline

1 Introduction

- 2 Choice-based optimization framework
- 3 Decomposition techniques: preliminaries
- 4 Lagrangian decomposition scheme
 - 5 Numerical experiments

• Supply-demand interplay should not be dualized

- Supply-demand interplay should not be dualized
- Heuristic approach based on Lagrangian decomposition for the revenue maximization problem

- Supply-demand interplay should not be dualized
- Heuristic approach based on Lagrangian decomposition for the revenue maximization problem
- Speed up the solution approach with the generation of *good* feasible solutions (duality gaps < 4% in all instances)

- Supply-demand interplay should not be dualized
- Heuristic approach based on Lagrangian decomposition for the revenue maximization problem
- Speed up the solution approach with the generation of *good* feasible solutions (duality gaps < 4% in all instances)
- As long as the subproblems are computationally manageable, large number of draws per group is recommended

Future research directions

• Parallelization routines (to solve the subproblems, to generate feasible solutions)

Future research directions

- Parallelization routines (to solve the subproblems, to generate feasible solutions)
- Generalization of the approach with additional endogenous variables

Future research directions

- Parallelization routines (to solve the subproblems, to generate feasible solutions)
- Generalization of the approach with additional endogenous variables
- Combination with other techniques (e.g., Benders decomposition in the presence of discrete design variables) and variance reduction methods (to decrease the number of draws)

Questions?

