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Introduction

Demand model

@ Behavioral realism

o Disaggregate representation

Discrete choice models (DCM)

e Causality between explanatory variables and choice (random utility)
@ Probabilistic

@ Heterogeneity of tastes and preferences in high detail
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Introduction

Supply-related decisions

@ Optimization models

@ Tractability

Mixed Integer Linear Problems (MILP)

@ Modeling flexibility (integer and continuous variables)
@ Commercial MILP solvers to find the global optima

@ Variety of strategies and solution techniques
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Introduction

DCM and MILP: an illustrative example

Expected revenue

M. Pacheco, TRANSP-OR, EPFL

Simple DCM and 2 groups in the population
A service offered by an operator and an opt-out option
Supply-related decision: price (also in the DCM)
Revenue maximization (revenue = expected demand - price)
Expected demand obtained from the individual choice probabilities
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Choice-based optimization framework

o General framework that accommodates DCM in MILP
@ Decision variables of MILP as explanatory variables of DCM

@ Simulation-based linearization of the preference structure of DCM
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DCM

Population N (n) and set of alternatives C (i)

Utility associated with alternative i and individual n (Uj,):

Uin = VI + Ein
~~~ ~~~

systematic  random

@ Vi,: modeled by the analyst (attributes, socioeconomic information)
eg., Vin= ASC; + Beostcostin + Brimetimejn + Bincomeincome,

ein: follows a probability distribution (e.g., Gumbel, normal)
Behavioral assumption: alternative with the highest utility is chosen
Choice probability: P,(i) = P(Ujs > Ujn,Vj € C)

Expected demand: D; =" P,(i)
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Choice-based optimization framework

Simulation-based linearization

e Simulation to overcome the probabilistic nature of the utility (&)
@ R draws (r) from the distribution of £, (&inr)
Unr = Vin + Sinr

@ Ui, are deterministic expressions (can be included in a MILP)
o Explanatory variables of Vj,:

o Exogenous to the optimization problem: x¢ (e.g., income)

e Endogenous to the optimization problem: x¢ (e.g., cost)
o Integration in MILP: V;,(x%, x¢) linear in x®
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Choice-based optimization framework

Mixed-integer linear formulation

o Capacity associated with each alternative: ¢;

@ Availability: to propose an alternative (y;,) and to keep track of the
occupancy of the alternatives (yin,)

o Capacity allocation: controlled with the variables y;,, with an
exogenous priority list (Binder et al., 2017)

o Discounted utility: unavailable alternative cannot be associated with
the largest Uinr (zinr)

@ Choice: only one alternative can be chosen for each n and r

S 1 if Zinr = U,,, = MaXjec Zjnr
nr 0 otherwise
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Choice-based optimization framework

Expected demand

@ {Wwjp }r count number of times the behavioral assumption is met

/n’ I)

e Law of large numbers: & Z Winr —> Pn(i|xg

@ Original problem (P): demand via choice probabilities
@ Approximated problems (Pg): demand via linear approximation

@ Sequence of optimal sols. of Pr converges to an optimal sol. of P
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Choice-based optimization framework

Profit maximization

@ Mixed-integer linear formulation can be embedded in any MILP
@ lllustration: profit maximization problem

o Operator proposing services + opt-out option

o Price (and capacity) to be decided

obj. fun. max profit from all services but the opt-out
DCM availability, discounted utility, choice
capacity fixed or variable (discretized)
price pin endogenous (continuous or discrete)
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Choice-based optimization framework

Parking case study

e DCM estimated in |beas et al. [2014]: non-closed form choice probs.
e C: PSP (paid on-street), PUP (underground), FSP (opt-out)
e N =50 (random priority list)

e Common price (same price proposed to everyone): p;
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Choice-based optimization framework

Computational complexity

Flexibility of the framework: price segmentation, aggregation of
individuals with similar characteristics, capacity allocation strategies
@ Revenue maximization problem (without and with fixed capacity)

e Without capacity constraints: 1.75h for R = 250 draws
e With capacity constraints: 21h for R = 250 draws

@ Profit maximization problem
e Parking facilities might not be open: 9.8h for R = 25 draws
e All parking facilities must be open: 11.5h for R = 25 draws
@ Exploit the decomposable structure of the framework!
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Decomposition techniques: preliminaries

Motivation

o Disaggregate demand

) ] ) o high computational complexity
@ Simulation-based linearization

@ In practice, large populations and/or considerable number of draws
@ Framework built on two dimensions that can be addressed separately:

e Individuals: most fundamental unit of demand
e Draws: independent behavioral scenario
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obj. fun. (2) max revenue from all services but the opt-out
DCM availability, discounted utility, choice
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Revenue maximization problem

obj. fun. (2) max revenue from all services but the opt-out
DCM availability, discounted utility, choice
. in continuous, N,y = PinW;
price Pin Ninr PinWinr

+ linearizing constraints (revenue calculation)

capacity uncapacitated or fixed capacity

@ pj,: different price per individual, groups or same price for everyone
e Individual price: disaggregate formulation (iterative procedure)

@ Common price: aggregate formulation
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Decomposition techniques: preliminaries
Lagrangian relaxation

@ Uncapacitated revenue maximization problem

@ ldea: relax utility functions (link between operator and customers)

@ Introduce duplicates of the choice to come up with independent sets
of variables for each subproblem

ZLR(p,w) = max Z Z Z %ninr

iec\{o} n r

revenue

+ Z Z Z pmr inr — dinr ,B,np,n)

ieC n

relaxation utility function

+ Z Z Z ’Ymr Vinr — WIHI’)

ieC n

relaxation duplicate choice
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Decomposition techniques: preliminaries

Limitations of the Lagrangian relaxation

Customer subproblem
@ DCM-related variables
@ Decomposition by n and r

@ U, set to the bounds

Operator subproblem
@ Supply-related variables
@ Decomposition by n

@ pj, set to the bounds

@ Trivial solutions:

e lIterative methods to approximate the Lagrangian dual (e.g.,
subgradient method)

e Derivation of feasible solutions to the original problem Z

@ Preserve supply-demand interplay: Lagrangian decomposition
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Decomposition techniques: preliminaries

Lagrangian decomposition

o Capacitated revenue maximization problem
e ldea: duplicate the variables that are not draw-dependent (pj,)

e Lagrangian decomposition (variable splitting) in combinatorial
optimization
e Scenario decomposition in stochastic programming

Pint = Pin2 = - = PinR

ZLD(a) = max Z Z Z %ninr + Z Z Z OZinr(pinr - pin(r+1))

iec\{o}y n r iec\{o} n r

revenue relaxation copy constraints
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Decomposition techniques: preliminaries

Limitations of the Lagrangian decomposition

e Decomposition by scenario (original problem for each draw)
@ Individual prices: might be set to the bounds if the service is not
chosen (trivial solutions)

~_  max{ain, pi}s if Qinr — Qjp(r—1y) <0, . o
Pinr = { bina otherwise, Vi e C” \ {0} | Winr = 0,

Uinr (pinr)

N
~

S L Uinr(pinr)

Pinr

Ujﬂr

pij.;lr \\

N
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o Capacitated revenue maximization problem

o Motivated by scenario grouping in stochastic programming
@ Grouping scenarios within each subproblem

e Improve the bound

e Solving larger subproblems

Key idea
1. S groups of R/S draws each

1 _ 2 _ nS
2. Pin = Pin = =+ = Pip

@ Relax copy constraints (Lagrangian decomposition)
o Relaxed problem splits into S subproblems: ZYB(«a)
o ZUB(a) =", ZYB(a) upper bound on Z
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Lagrangian decomposition scheme

Generalization of the Lagrangian decomposition

o Capacitated revenue maximization problem

o Motivated by scenario grouping in stochastic programming
@ Grouping scenarios within each subproblem

e Improve the bound

e Solving larger subproblems

Key idea

1. S groups of R/S draws each
2. Py =P =""=p

Relax copy constraints (Lagrangian decomposition)
Relaxed problem splits into S subproblems: ZYB(a)
ZYB(a) =Y, ZYB(a) upper bound on Z

Best upper bound (Lagrangian dual): subgradient method
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Lagrangian decomposition scheme

Subgradient method

initial values solve step size and update Lag.
—_ —_ —_ ..
Lag. mult. subproblems direction multipliers

until stopping criterion

e Initialize Lagrangian multipliers: o° (e.g., a° = 0)
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Lagrangian decomposition scheme

Subgradient method

initial values solve step size and update Lag.
e e e L.
Lag. mult. subproblems direction multipliers
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M. Pacheco, TRANSP-OR, EPFL Lagrangian decomposition scheme June 26th, 2020 23/36



Lagrangian decomposition scheme

Subgradient method

initial values solve step size and update Lag.
—— —_— —_—> - .
Lag. mult. subproblems direction multipliers

until stopping criterion

e Upper bound: Solve ZYB(a?),Vs (CPLEX solver)
o Lower bound: Obtain Z'B by generating feasible solutions for Z
@ Keep track of the best bounds found so far: ZUB:best 3pd zLB.best
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Lagrangian decomposition scheme

Feasible solutions

@ Sequence of prices: {p;}s
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Lagrangian decomposition scheme

Feasible solutions

@ Sequence of prices: {p;}s
@ Solve Z for all configurations pj, = p3, Vs and pick the highest

Input: Fixed prices pjn;
Output: Values for yinr, Winr, Uinr, Unr and Z;
Initialize Z = 0;
forr=1...Rdo
Initialize occupancy level o;, = 0 and yj,, = 1;
forn=1...N do
for i € C,\ {0} do

if 0, < ¢; then

L Calculate Uinr = ﬁinﬁin + dinr;

else
L Set yinr = 0 and Ujpy = py;

Determine wjn,, Uinr, Unr;
| Update Z =7+ EIGCn\{O} %Winrﬁin and oy = 0 + 1;
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Lagrangian decomposition scheme

Subgradient method

initial values solve step size and update Lag.
—_ —_ —_ ..
Lag. mult. subproblems direction multipliers

until stopping criterion

. )\k ZUB(ak)izLB,best

e Step size: ¥ T (\* step decreasing parameter)
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Lagrangian decomposition scheme

Subgradient method

initial values solve step size and update Lag.
—_ —_ —_ ..
Lag. mult. subproblems direction multipliers

until stopping criterion

UB( . kY)_ 7LB,best .
e Step size: 7<= )\k% (\¥ step decreasing parameter)
e Step direction: vk = —(gk + ¢kvk—1)
e subgradient: g,-’,‘,s = pfj,s - pfj’(sﬂ)
o deflection parameter: ¢¥
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Lagrangian decomposition scheme

Deflected subgradient method: zigzagging of kind |

@ Angle between current subgradient and previous one might be obtuse
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Lagrangian decomposition scheme

Deflected subgradient method: zigzagging of kind |

@ Angle between current subgradient and previous one might be obtuse
@ = next iterate near to the previous one (slows down convergence)

*
u

@ Deflect the step direction to decrease the angle

@ Only when g* forms an obtuse angle with the previous direction
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Lagrangian decomposition scheme

Subgradient method

initial values solve step size and update Lag.
—— —_— - .
Lag. mult. subproblems direction multipliers

until stopping criterion

e Update Lagrangian multipliers: of*t1 = ok 4+ vkvk
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Lagrangian decomposition scheme

Subgradient method

initial values solve step size and update Lag.
o e e L
Lag. mult. subproblems direction multipliers

until stopping criterion

e Update Lagrangian multipliers: o/t = ok + ykvk

@ Stopping criterion: computational time
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Numerical experiments

Case study

@ Parking choices

e Common price: p; (aggregate formulation)
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Numerical experiments

Comparison with optimal solutions
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Numerical experiments

Comparison with optimal solutions

e N =50, 5 draws per group and R € {100, 250,500}

@ Run the LD scheme for 10% of the exact computational time
ZﬁzLB,best ZUB,bestizLB,best
° gapopt = Z ! gapdual = ZLB best

R dtler. ZUBPest (ip) ZLBbest (it)  Avg. timeit. (min)  gapgu.i(%)  82Pop:(%)
100 5 2670 (5) 2618 (2) 516 1.98 0.11
250 14 2646 (14) 2602 (1)  16.81 1.70 0.09
500 21 26.40 (21) 25.99 (7) 35.82 1.58 0.02
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Numerical experiments
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Numerical experiments

Large populations
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Numerical experiments

Large populations

e R =500, 2 draws per group, N € {50,100, 150,197}
e Time [min] as stopping criterion: T € {150, 300,450,600}
@ Average iteration time: 8 min (N = 50) and 95 min (N = 100)
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Numerical experiments

Large populations

e R =500, 2 draws per group, N € {50,100, 150,197}
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Numerical experiments

Trade-off with respect to the size of the draw groups

e N =50, R =500, #draws per group € {1,2,3,4,5,10}
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Conclusions and future work

Conclusions

@ Supply-demand interplay should not be dualized

@ Heuristic approach based on Lagrangian decomposition for the
revenue maximization problem

@ Speed up the solution approach with the generation of good feasible
solutions (duality gaps < 4% in all instances)

@ As long as the subproblems are computationally manageable, large
number of draws per group is recommended
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Future research directions

e Parallelization routines (to solve the subproblems, to generate feasible
solutions)
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Conclusions and future work

Future research directions

e Parallelization routines (to solve the subproblems, to generate feasible
solutions)

@ Generalization of the approach with additional endogenous variables

e Combination with other techniques (e.g., Benders decomposition in
the presence of discrete design variables) and variance reduction
methods (to decrease the number of draws)
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Conclusions and future work

Questions?
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